用户名: 密码: 验证码:
精确农作管理模型与决策支持系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业生产过程的精确管理模型及决策支持系统是变量处方生成的数字化基础,是整个精确农作信息流管理中的核心环节。本研究以小麦、水稻为对象,运用系统学分析方法和定量建模技术,基于作物-土壤-气候-技术的动态关系,建立了精确农业管理模型的框架结构及共性算法,重点构建了水氮运筹设计模型、生长指标动态模型,进而建立了基于作物和土壤实时养分及水分状况的精确诊断与动态调控模型;最后,基于农田信息获取技术,结合GIS和数据库,运用软构件设计方法,研制和实现了基于模型和GIS的精确农作决策支持系统。研究成果为构建精确生产管理模型提供了基本框架,也为精确衣作技术的应用奠定了技术基础。
     通过综合分析作物生产管理系统的相关成分及影响因子,提出了精确农作管理模型的结构及框架,包括播前栽培方案设计、产中适宜生育指标预测以及基于实时苗情信息的作物生长精确诊断与动态调控三大模块。在此基础上,利用作物栽培理论与技术方面的已有研究资料,借助动态建模技术,对作物生育及栽培管理指标与品种类型、生态环境及生产力水平之间的关系进行解析、提炼和综合,建立了各功能模块的算法框架,为有效利用精确农作管理模型中的通用函数构件,提高精确农作模型系统的开发效率提供了技术指导和基本框架。
     通过定量分析和提炼作物水氮管理方案与栽培技术、品种类型、生态环境之间的动态关系,建立了具有时空适应性的作物水氮运筹设计模型。模型包括氮肥运筹和水分管理两个子模块。氮肥运筹模型借鉴养分平衡原理,综合考虑了气候、土壤、品种等多种因子的影响,通过将不同类型稻麦品种按产量和品质进行分类,确定了不同品种类型的百公斤籽粒吸氮量,并根据目标产量和空白区产量计算目标产量需氮量和土壤供氮量,确立了氮的合理用量及基追比。水分管理模型基于水分平衡原理,采用土壤水势作为灌溉指标,动态计算了各主要生育期的适宜水分灌溉量。利用历史文献资料及大田试验资料对氮肥运筹模型和水分管理模型的可靠性和适应性进行了测试与检验,结果表明本模型具有较好的指导性和广适性。
     根据作物生理发育时间(PDT)恒定的原理,以PDT为生育期预测器,通过动态计算到达不同环境条件下各主要生育时期所需的累积生长度日(GDD),然后将生长指标和GDD进行归一化处理,以相对GDD和相对生长指标为参数建立了适宜生长指标动态的相对变化曲线。根据有理方程,建立了作物相对叶面积指数动态和相对茎蘖数动态;根据Logistic增长模式,建立了相对干物质积累动态和相对植株氮积累动态。在建立相对生长指标动态模型的基础上,通过进一步计算适宜条件下的最大生长指标值,从而得到实际的适宜生长指标动态。利用不同品种、不同栽培处理的试验资料对模型设计值进行了对比分析,表明模型对于高产条件下的作物生长指标适宜动态具有较好的预测性和指导性。
     通过分析作物生长动态与栽培措施、生态环境等之间的关系,确定了作物生长的诊断指标,并结合作物适宜生长指标动态模型及作物水氮运筹设计模型,建立了基于作物和土壤实时养分及水分状况的精确诊断与动态调控模型。模型以适宜生长指标动态模型设计的适宜生长指标为标准“专家曲线”,当田间实时苗情明显偏离标准的“专家曲线”时,模型通过计算作物长势调控因子,再结合作物水氮运筹设计模型,给出适宜的施肥灌溉量及调控时期。经田间资料测试表明,模型对于不同条件下的作物生长动态优化管理具有较好的科学性和适用性,克服了传统作物栽培模式及农业专家系统中经验性知识规则的时空适应性差等弱点,为作物生长动态的优化管理提供了定量化工具和标准化模式。
     在构建精确农作管理模型的基础上,应用面向对象的程序设计与构件化技术,并有效耦合GIS技术,在.NET平台上运用C#语言设计和实现了基于模型和GIS的精确农作决策支持系统(MGPFDSS),实现了不同尺度下精确农作生产管理决策的精确化和动态化,为精确农业体系中主要农作物的全过程变量处方生成提供了模型化和系统化的决策工具,为精确农作和数字农作的发展奠定了技术基础。
The precision crop management model and decision support system is the digital base of making variable prescription, and is the core of precision farming information management. On the basis of the time-course relationships of crop-soil-climate-technology, using the system analysis method and mathematical modeling technique, this study developed a basic framework for design and development of precision crop management model and mainly developed three models including water and nitrogen strategy design model, dynamic of suitable growth indices model and growth dynamics regulation model. By further adopting the component method and integrating the GIS and database technology, a model and GIS-based decision support system for precision farming was established. This work has provided a basic platform for development of precision crop management model, and laid a technical foundation for the practical application of precision farming system.
     By combining with the experts of crop cultivation and analyzing the crop management problems, a framework and structure of precision crop management model was developed under the guide of system engineering. The model included three modules as pre-sowing plan deign, suitable dynamic indices prediction and real-time regulation according to actual crop growth status. Based on the analysis and extraction of the newest researches on crop cultivation theories and technologies, using the system analysis theory and method, the arithmetic framework of each module was developed by quantifying the time-course relationships of crop growth and cultivation management indices to variety traits, eco-environments and production levels. This work provided the technology guide and framework for effectively using the general function components in the precision crop management model, and for improving the development efficiency of the precision crop management model.
     Based on the analysis and extraction of the newest researches on crop cultivation theories and technologies, a design model for water and nitrogen strategy in crop was developed driven by quantifying the time-course relationships of water and nitrogen management plan to production levels, variety traits and eco-environments. The model included two modules as nitrogen strategy and water management. The submodel for nitrogen strategy was developed with the principle of nutrient balance and by combining the effects of climate, soil and variety. In the submodel, N demand per 100 kg grain was calculated by classifying the rice and wheat varieties according to yield and quality, and the N demand for grain yield target and indigenous soil N supply were quantified by the grain yield target and the grain yield in the plot without N fertilizer. The submodel for nitrogen strategy can make decisions on the suitable total N rates and the ratio of base to topdressing N. Based on the principle of water balance, the submodel for water management was developed by adopting soil water potential as irrigation index. The model was evaluated using the data from literatures, field experiments of diverse eco-sites and years. The results indicated the model's good guidance and wide applicability.
     According to the concept of constant physiological development time (PDT), the development stages under different environment were predicted with PDT. Then through dynamically calculating growing degree days required by main development stages under different environments, the dynamic model for growth and nutrient diagnosis and management in crop driven by physiological development time-based relative growing degree-days and relative growth indices was developed.The relative dynamic curve of leaf area index and stem and tiller number was according to the Raditional Function, and the relative dynamic of dry matter accumulation and plant nitrogen accumulation was established according to the growth characteristic of Logitic curve. On the basis of the relative growth indices dynamics, the model for design of growth indices dynamics in crop was developed by calculating the maximal indices under suitable conditions. Case studies with the data from field experiments at Nanjing in three years indicate a good performance of the model system for prediction and wide applicability.
     Based on the analysis and extraction of the newest researches on crop cultivation theories and technologies, a model for growth dynamics regulation in crop was developed combining with suitable dynamics of indices model, water and nitrogen strategy model. The growth diagnosis indices were confirmed by analyzing the time-course relationships of crop growth dynamics to production levels and eco-environments. The model made the suitable growth and nutrient indices designed by suitable dynamic of indices model as standard expert curve. When the actual crop growth condition departed from the expert curve, the model analyzed the reason and studied out the suitable dressing N application and irrigation amount by calculating the regulation factor and combining with the water and nitrogen strategy model. Case studies with the data sets of field experiments indicated the model's wide applicability and good guidance. The model avoided the deficiencies of regional limitation and empirical decision with traditional crop cultivation patterns and expert systems, and thus provided a promising quantitative tool for crop growth management.
     On the basis of the precision crop management model, a model and GIS-based decision system for precision farming (MGPFDSS) was established on the platforms of.NET with the programming language of C# by using the techniques of object-oriented and component-based programming and incorporating the GIS. The MGPFDSS provided a modeling, parametric, dynamic and systematic tool for making variable prescription during the process of crops growth and development, and lay a foundation for the development of precision farming and digital farming.
引文
1. 汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999,15(1):1-8
    2. 邝朴生,蒋文科,刘刚等.精确农业基础[M].北京:中国农业大学出版社,1999
    3. Basso B, Ritchie J T, Pierce F J, et al. Spatial validation of crop models for precision agriculture [J]. Agricultural Systems,2001,68 (2):97-112
    4. van Bergeijk J, Goense D, van Willigenburg L G, et al. PA—Precision Agriculture:Dynamic weighing for accurate fertilizer application and monitoring [J]. Journal of Agricultural Engineering Research,2001,80 (1):25-35
    5. Sirjacobs D, Hanquet B, Lebeau F, et al. On-line soil mechanical resistance mapping and correlation with soil physical properties for precision agriculture [J]. Soil and Tillage Research, 2002,64 (3-4):231-242
    6. Walley F, Yates T, van Groenigen J W, et al. Relationships between soil nitrogen availability indices, yield, and nitrogen accumulation of wheat [J]. Soil Science Society of America Journal, 2002,66 (5):1549-1561
    7. Seelan S K, Laguette S, Casady G M, et al. Remote sensing applications for precision agriculture: A learning community approach [J]. Remote Sensing of Environment,2003,88 (1-2):157- 169
    8. Vrindts E, Reyniers M, Darius P, et al. Analysis of soil and crop properties for precision agriculture for winter wheat[J]. Biosystems Engineering,2003,85 (2):141-152
    9. Welsh J P, Wood G A, Godwin R J, et al. Developing strategies for spatially variable nitrogen application in cereals, Part II:wheat[J]. Biosystems Engineering,2003,84 (4):495-511
    10. Osbahr H, Allan C. Indigenous knowledge of soil fertility management in southwest Niger [J]. Geoderma,2003,111 (3-4):457-479
    11. Marchetti R, Ponzoni G, Spallacci P. Simulating nitrogen dynamics in agricultural soils fertilized with pig slurry and urea [J]. Journal of Environmental Quality,2004,33 (4):1217-1229
    12. Hong N, White J G, Gumpertz M L, et al. Spatial analysis of precision agriculture treatments in randomized complete blocks:guidelines for covariance model selection [J]. Agronomy Journal, 2005,97 (4):1082-1096
    13. Starr G C. Assessing temporal stability and spatial variability of soil water patterns with implications for precision water management [J]. Agricultural Water Management,2005,72(3): 223-243
    14. Erives H, Fitzgerald G J. Automated registration of hyperspectral images for precision agriculture [J]. Computers and Electronics in Agriculture,2005,47 (2):103-119
    15. Reuter H I, Kersebaum K C, Wendroth O. Modelling of solar radiation influenced by topographic shading—evaluation and application for precision farming [J]. Physics and Chemistry of the Earth, 2005,30 (1-3):143-149
    16. Baxter S J, Oliver M A. The spatial prediction of soil mineral N and potentially available N using elevation[J]. Geoderma,2005,128 (3-4):325-339
    17.何勇,方惠,冯雷.基于GPS和GIS的精细农业信息处理系统研究[J].农业工程学报,2002,15(1):145—149
    18.张仰洪,杨星卫,陆贤等.精准农业管理决策支持系统的设计与实现[J].遥感技术与应用,2003,18(1):10—13
    19.陈立平,赵春江,刘学馨等.精确农业智能决策支持平台的设计与实现[J].农业工程学报,2002,18(2):145—148
    20.孙治贵,黎贞发,李杰等.基于组件式GIS技术的水稻生产管理信息系统开发研究[J].农业工程学报,2004,20(3):137—140
    21.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003
    22.承继成.精准农业技术与应用[M].北京:科学出版社,2004
    23. Blackmore B S. An information system for precision farming[C]. In:Brighton Crop Protection Conference:Pests&Diseases-1996 (3):Proceedings, Brighton, UK. Franham:British Crop Preotection Concil,1996
    24. Stafford J V. Implementing precision agriculture in the 21st century [J]. Journal of Agricultural Engineering Research,2000,76 (3):267-275
    25. Dobos E, Montanarella L, Negre T, et al. A regional scale soil mapping approach using integrated AVHRR and DEM data[J]. International Journal of Applied Earth Observation and Geoinformation,2001,3 (1):30-42
    26. Running, Steven W, Loveland, Tomas R. A remote sensing based vegetation classification logic for global land cover analysis [J]. Remote Sensing of Environment,1995,51 (1):39-48
    27. Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture [J]. Remote Sensing Environment,2002,81 (2-3):179-193
    28.薛利红,罗卫红,曹卫星等[J].作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1):73—80
    29.杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214—218
    30. Stafford J V, Ambler B. In-field location using GPS for spatially variable filed operations [J]. Computers and Electronics in Agriculture,1994,11 (1):23-26
    31. Zhang N, Runquist E, Schrock M, et al. Making GIS a versatile analytical tool for research in precision farming [J]. Computers and Electronics in Agriculture.2003,22 (2-3):221-231
    32.黄敬峰,王秀珍,王人潮.地理信息系统技术在水稻产量时空变化研究中的应用[J].中国水稻科学,2000,14(4):213—218
    33.王正军,程家安,祝增荣.地理信息系统及其在害虫综合治理中的应用[J].浙江农业学报,2000,12(4):233—238
    34. Kersebaum K C, Lorenz K, Reuter H I, et al. Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes [J]. Physics and Chemistry of the Earth, Parts A/B/C,2005,30 (1-3):59-67
    35. Earl R, Thomas G, Blackmore B S. The potential role of GIS in autonomous field operations [J]. Computers and Electronics in Agriculture.2000,25 (1-2):107-120
    36.褚庆全,李林.地理信息系统(GIS)在农业上的应用及其发展趋势[J].中国农业科技导报,2003,5(1):22—26
    37. Diodato N, Ceccarelli M. Multivariate indicator Kriging approach using a GIS to classify soil degradation for Mediterranean agricultural lands [J]. Ecological Indicators,2004,4(3):177-187
    38.谢高地,陈沈斌等.环境的空间连续变异与精准农业[M].北京:气象出版社,2005
    39.李军.农业信息技术[M].北京:科学出版社,2006
    40.杨玉建,朱建华,尚明华等.精准农业关键技术及其发展前景[J].山东农业科学,2006,(6):66-69
    41.曹卫星.国外小麦生长模拟研究的进展[J].南京农业大学学报,1995,18(1):10-14
    42.高亮之.农业模型学基础[M].香港:天马图书有限公司,2004
    43. De Wit C T. Photosynthesis of leaf canopies[M]. Wageningen, the Netherlands:Institute for Biological and Chemical Research on Field Crops and Herbage. Agriculture Research Report, 1965,663-671
    44. Duncan W G, Loomis R S, Williams W A, et al. A model for simulating photosynthesis in plant communities [J]. Hilgardia,1967,38:181-205
    45.郑国清,段韶芬,张瑞玲等.基于模拟模型的玉米栽培管理信息系统[J].中国农业科学,2004,37(4):619-624
    46. De Wit C T. Dynamic concepts in biology [C]. In:Prediction and Management of Photosynthetic Productivity. Proceeding International Biological Program/Plant Production Technical Meeting. Wageningen, Netherlands:PUDOC,1970,17-23
    47. Penning de Vries F W T, Van laar H H. Simulation of plant growth and crop production [M]. In: Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands: PUDOC,1982,114-136
    48. Van Keulen H. Simulation of water use and herbage growth in arid regions [M]. In:Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands:PUDOC, 1982,176
    49. Baker D N, Hesketh J D, Duncan W G. Simulation of growth and yield in cotton,1. Gross Photosynthesis, respiration, and growth [J]. Crop Science,1972,12 (4):431-435
    50. Duncan W G, Hesketh J D. Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures [J]. Crop Science,1968,8 (6):670-674
    51. Baker D N, Lammert J R, Mckinon J M. GOSSYM:A simulation of cotton growth and yield[C]. South Carolina Agricultural Experiment Station, Technical Bulletin,1983,125
    52. Penning de Vries F W T, Jansen D M, Ten Berge H F M, et al. Simulation of ecophysiological processes of growth in several annual crops [M]. In:Penning de Vries F W T, van Laar H H eds. Simulation Mnongrahs. Wageningen, Netherlands:PUDOC,1982,271
    53. Williams J R. The EPIC model [M]. USDA-ARS, Grassland, Soil and Water Research Laboratory, 1995
    54. Stockle C O, Martin S A, Campbell G S. CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield[J]. Agricultural Systems,1994,46 (3):335-359
    55. Kiniry J R, Williams J R, Gassman P W. A general, process-oriented model for two competing plant species [J]. Transactions of the ASAE,1992,35 (3):801-810
    56. Kiniry J R, Sanderson M A, Williams J R. Simulation Alamo switchgrass with the ALMANAC model [J]. Agronomy Journal,1996,88 (4):602-606
    57. Wells A T, Heam A B. OZCOT:A cotton crops simulation model for management [J]. Mathematics and Computers in Simulation,1992,33 (5-6):433-438
    58. Porter J R, Jamiesom P D, Wilson D R. Comparison of wheat simulation models ARC-WHEAT, CERES-wheat and SWHEAT for non-limiting conditions of crop growth [J]. Field Crops Research,1993,33 (1-2):131-157
    59. Ritchie J T, Otter S. Description and performance of CERES-Wheat:A User-oriented wheat yield model [J]. USDA-ARS ARS-38,1985,159-175
    60. Jones C A, Kiniry F R. CERES-Maize:A simulation model of maize growth and development [M]. College Station, US:Texas A& M University Press,1986
    61. Ritchie J T, Alocijia E C, Llenhara G. IBSNAT/CERES rice model [J]. Agrortechnology Transter, 1986, (3):1-5
    62. Alagarswamy G, Ritchie J T, Godwin D, et al. A user's guide to CERES-Sorghum[M]. Michigan State University, ICRISAT, IFDC and IBSNAT Joint Publication,1988
    63. Van Kenlen H. Crop production under semi-arid conditions, as determinted by nitrogen and moisture [M]. In:Penning de Vries F W T, van Laar H H eds. Simulation Monographs. Wageningen, Netherlands:PUDOC,1982,234-251
    64. McCown R L, Hammer G L, Hargreaves J N G. APSIM:A novel software system for model development, model testing, and simulation in agricultural systems research [J]. Agricultural Systems,1996,50 (3):225-271
    65. Wang E, Robertson M J, Hammer G L, et al. Development of a generic crop model template in the cropping system model APSIM [J]. European Journal of Agronomy,2002,18 (1-2):121-140
    66. Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation [J]. European Journal of Agronomy,2003,18 (1-2):267-288
    67.高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS) [M]北京:中国农业科技出版社,1992
    68.殷新佑,戚昌瀚.水稻生长日历模拟模型及其应用研究[J].作物学报,1994,20(3):339—346
    69.骆世明,郑华,陈春焕等.水稻高产栽培中应用计算机模拟的研究[J].广东农业科学,1990,(3):14—17
    70.潘学标COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):11—16
    71.潘学标.作物模型原理[M].北京:气象出版社,2003
    72.严美春.基于过程的小麦生育期和器官形成的机理模型[D].南京:南京农业大学,1999
    73.刘铁梅.小麦光合生产与物质分配的模拟模型[D].南京:南京农业大学,2000
    74.孟亚利.基于过程的水稻生长模拟模型研究[D].南京:南京农业大学,2002
    75.周西苓.人工智能原理及应用[M].北京:航空工业出版社,1997
    76. Goodell P B, Strand J F, Ostergard M. Delivering expert systems to agriculture:experiences with CALEX/cotton[J]. AI Application,1993,7 (2-3):14-20
    77. Srinivasan R, Engel B A, Paudyal G N. Expert system for irrigation management (ESIM) [J]. Agricultural Systems,1991,36 (3):297-314
    78. Yialouris C P, Passam H C, Sideridis A B. VEGES-A multilingual expert system for the diagnosis of pests, diseases and nutritional disorders of six greenhouse vegetable [J]. Computers and Electronics in Agriculture,1997,19(1):55-67
    79. Shipp J L, Clarke N D, Jarvis W R. Expert system for integrated crop management of greenhouse cucumber[J]. Bulletin OILB SROP.1992,16 (2):149-152
    80. Boone K, Porter D O. GOSSYM/COMAX-the quixotic quest. In:Proceedings of the Beltwide Cotton Conference [J]. National Cotton Council of America:Memphis, Tennessee,1997, (1): 380-383
    81. McKinion J M, Baker D N, Whisler F D, et al. Application of the GOSSYM/COMAX system to cotton crop management [J]. Agricultural Systems,1989,31 (1):55-65
    82.熊范纶,郭霖,吴文荣.砂僵黑土小麦施肥计算机专家咨询系统[J].信息与控制,1987,16(2):7—11
    83.上官周平,陈培元,李英等.黄土旱塬小麦生产管理专家系统的设计与实现[J].水土保持学报,1995,9(4):75—83
    84.薛亮,方瑜.农业信息化[M].北京:京华出版社,1998
    85.熊范纶.农业专家系统及开发工具[M].北京:清华大学出版社,1998
    86.王铭阳,孙优贤,李平等.蛋鸡饲料配方专家系统:ICMIX—一种基于范例推理的实现[J].控制与决策,1997,12(1):91—93
    87.岳桂兰,赵明远,杜艳艳等.“水稻育种专家系统”研制中的知识获取[J].计算机农业应用, 1995,(3):13—16
    88.曹卫星,李旭,罗卫红等.基于生长模型的小麦管理专家系统[J].模式识别与人工智能,1999,12(增刊):30—35
    89.赵春江,诸德辉,李鸿祥等.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42—49
    90. Keen P G W. Decision support system:The next decade[J]. Decision Support Systems,1987, 3 (3):253-265
    91.高洪深.决策支持系统(DSS)理论·方法·案例[M].北京:清华大学出版社,2005
    92.曹卫星.农业信息学[M].北京:中国农业出版社,2005
    93. Pria S, Shibasaki R. National spatial crop yield simulation using GIS-based crop production model [J]. Ecological Modeling,2001,136 (2-3):113-129
    94. Lal H, Hoogenboom G, Calixte J P, et al. Using crop simulation models and GIS for regional productivity analysis [J]. Transactions of ASAE,1993,36 (1):175-184
    95. Engel T, Hoogenboom G, Jones J W, et al. AEGIS/Win:a computer program for the application of crop simulation models across geographic areas [J]. Agronomy Journal,1997,89 (6):919-928
    96. Montas H, Madramootoo C A. A decision support system for soil conservation planning [J]. Computers and Electronics in Agriculture,1992,7 (3):187-202
    97. Singh V, Brink J E, Thornton P K, et al. Linking crop models to geographical information systems to assist decision making:a prototype for the Indian semiarid tropics[C].International Fertilizer Development Center,1993
    98.金继运.“精准农业”及其在我国的应用前景[J].植物营养与肥料学报,1998,4(1):1-7
    99.王卷乐,陈沈斌,廖顺宝.基于组件GIS的精准水稻种植信息系统的开发[J].地球信息科学,2004,6(2):27-29
    100.孙治贵,黎贞发,李杰等.基于组建式GIS技术的水稻生产管理信息系统开发研究[J].农业工程学报,2004,20(3):137-140
    101.李昌志,王兆印,刘兴年等.基于SuperMap的玉丰水土保持决策支持系统的设计与开发[J].水土保持学报,2003,17(3):96-100
    102.潘瑜春,王纪华,赵春江等.基于网络GIS的作物品质监测与调优栽培系统[J].农业工程学报,2004,20(6):120-123
    103.沈雨,黄耀,宗良纲等.基于模型和GIS的江苏省农田土壤有机碳变化研究[J].中国农业科学,2003,36(11):1312-1317
    104.周治国,曹卫星,朱艳等.基于GIS的作物生产管理信息系统[J].农业工程学报,2005,21 (1):114—118
    105.吕新,魏亦农,李少昆.基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究[J].中国农业科学,2002,35(7):883—887
    106.危常州,侯振安,朱和明等.基于GIS的棉田精准施肥和土壤养分管理系统的研究[J].中国农业科学,2002,35(6):678—685
    107.刘书华,杨晓红,蒋文科等.基于GIS的农作物病虫害防治决策支持系统[J].农业工程学报,2003,19(4):147—150
    108. Evans R G, Han S, Schneider S M, et al. Precision center pivot irrigation for efficient use of water and nitrogen[C]. Precision Agriculture:Proceedings of the 3rd International Conference. In: Robert P C, Rust R H, Larson W E eds. Madsion, Wisconsin, ASA, CSSSA, SSSA,1996: 75-84
    109.曹卫星.作物智能栽培学:信息科学与作物栽培学的结合[J].科技导报,2000,(1):37—40
    110.廖桂平.作物智能化栽培管理系统的现状与发展[J].中国农学通报,2000,16(5):34—37.
    111.李存东,曹卫星,李旭等.论作物信息技术及其发展战略[J].农业现代化研究,1998,19(1):17—20
    112.吴新年,陈永平.决策支持系统发展现状与趋势分析[J].情报资料工作,2007,(1):57—60
    113.陈曦,王执铨.决策支持系统理论与方法研究综述[J].控制与决策,2006,21(9):961—968
    114. Suresh Sridhar. Decision support using the Intranet[J]. Decision Support Systems,1998,23 (1): 19-28
    115. Bhargava H, Power D J. Decision support systems and web technologies:a status report[C]. In: America's Conference on Information Systems,2001
    116.黄健昌,吴沧浦.基于Web的决策支持系统界面开发的一种面向对象框架[J].计算机工程与设计,2002,23(11):59—62
    117.廖桂平,李爱平,吴泉源.多媒体在Web农业专家系统中的应用技术[J].计算机与农业,2002,(11):6—9
    1.曹卫星.农业信息学[M].北京:中国农业出版社,2005
    2.曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005
    3. Loague K, Green R E. Statistical and graphical methods for evaluating solute transport models: overview and application [J]. Journal of Contaminant Hydrology,1991,7 (1-2),51-73
    4. Sinclair T T, Seligman N G. Crop modeling:from infancy to maturity [J]. Agronomy Journal, 88 (5),698-704
    5.刘长毅.软件开发技术基础[M].北京:科学出版社,2006
    6.熊范纶,淮小永,丁立志.基于软构件技术的新一代专家系统开发平台-雄风6.0[J].模式识别与人工智能,1999,12(增刊):8—17
    7.朱艳,曹卫星,王绍华等.软构件技术在作物管理智能决策支持系统设计中的应用[J].农业工程学报,2003,19(1):132—136
    8. Pfleeger S L, Atlee J M著;杨卫东译.软件工程[M].北京:人民邮电出版社,2007
    9. Sommerville L.软件工程[M].北京:机械工业出版社,2004
    1. 曹卫星.农业信息学[M].北京:中国农业出版社,2005
    2. Sinclair R R, Seligman N G. Crop modeling, from infancy to maturity [J]. Agronomy Journal, 1996,88 (5):698-704
    3. 熊范纶.农业专家系统及开发工具[M].北京:清华大学出版社,1998
    4. 曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005
    5. 董钻,沈秀瑛.作物栽培学总论[M].北京:中国农业出版社,2000
    6. 杜心田.作物群落栽培学[M].郑州:河南医科大学出版社,2003
    7. 刁操铨.作物栽培学各论(南方本)[M].北京:中国农业出版社,1999
    8. 河南农业科学院.河南小麦栽培学[M].郑州:河南科学技术出版社,1988
    9. 卢良恕.中国小麦栽培研究新进展[M].北京:农业出版社,1994
    10.于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2006
    11.余松烈.中国小麦栽培理论与实践[M].上海:上海科学技术出版社,2006
    12.江苏省农学会.江苏稻作科学[M].南京:江苏科学技术出版社,1990
    13.凌启鸿,张宏程,苏祖芳等.稻作新理论[M].北京:中国农业出版社,1994
    14.郭庆法,王庆成,汪黎明.中国玉米栽培学[M].上海:上海科学技术出版社,2004
    15.中国农业科学院棉花研究所.中国棉花栽培[M].上海:上海科学技术出版社,1983
    16.中国农业科学院油料作物研究所.中国油菜栽培学[M].北京:农业出版社,1990
    17.李卫东,张孟臣.黄淮海夏大豆及品种参数[M].北京:中国农业科学技术出版社,2006
    18.曹卫星.作物智能栽培学:信息科学与作物栽培学的结合[J].科技导报,2000,1:37—40
    19.高亮之.农业系统学基础[M].南京:江苏省科技出版社,1991
    20.江苏省农学会.江苏麦作科学[M].南京:江苏科学技术出版社,1994
    21.曹卫星,郭文善,王龙俊等.小麦品质生理生态及调优技术[M].北京:中国农业出版社2005
    22. Rharrabi Y, Royo C, Villegas D, et al. Durum wheat quality in Mediterranean environment: I. Quality expression under different zones, latitudes and water regimes across Spain [J]. Filed Crops Research,2003,80 (2):123-131
    23. Tribio E, Abad A, Michelena A, et al. Environmental effects on the quality of two wheat genotypes:I. Quantitative and qualitative variation of storage proteins [J]. European Journal of Agronomy,2000,13 (1):47-64
    24.荆奇,姜东,戴廷波等.基因型和生态环境对小麦品质和蛋白组分的影响[J].应用生态学报,2003,14(10):1649—1653
    25.孟亚利,高如嵩,张嵩午.影响稻米品质的主要气候生态因子研究[J].西北农业大学学报,1994,22(1):40—43
    26.潘洁,戴廷波,姜东等.基于生态效应的冬小麦籽粒蛋白质含量预测模型[J].中国农业科学,2005,38(4):684—691
    27.李卫国,戴廷波,朱艳等.基于生态效应的水稻籽粒蛋白质含量预测模型研究[J].植物生态学报,2005,29(4):630—635
    28.崔读昌.世界农业气候和作物气候[M].杭州:浙江科技出版社,1993
    29.金善宝.小麦生态研究[M].杭州:浙江科技出版社,1989
    30.中国水稻研究所.中国水稻区划[M].杭州:浙江科学出版社,1988
    31.高亮之,李林,郭鹏.中国水稻生长季与稻作制度的气候生态研究[J].中国农业气象,1983,(1):51—55
    32.中国农业科学院.中国稻作学[M].北京:农业出版社,1986
    33.高亮之,李林.水稻气象生态[M].北京:农业出版社,1992
    34.邓根云,王树森.作物适宜播种期的农业气候基础[J].中国农业气象,1988,(2):13—15
    35. Ritchie J T, Nesmith D S. Temperature and crop development [M]. In:Hanks J and Ritchie J T eds. Modeling plant and soil systems, ASA,USA,1991,5-29
    36.凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    37.白朴,王元辉,项雄等.杂交水稻两优培九安全齐穗期和适宜播期的研究[J].浙江农业学报, 2006,18(3):146—150
    38.凌启鸿,苏祖芳,张洪程等.水稻品种不同生育类型的叶龄模式[J].中国农业科学,1983(1):9—18
    39.杨海生,张洪程,杨连群.黄淮优质水稻应用公式计算合理基本苗数量[J].山东农业大学学报(自然科学版),2003,34(1):37—43
    40.幕成功,郑义.农作物配方施肥[M].北京:中国农业科技出版社,1995
    41.侯彦林,陈守伦.施肥模型研究综述[J].土壤通报,2004,35(4):493—501
    42.康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996
    43.山仑,康绍忠,吴普特.中国节水农业[M].北京:中国农业出版社,2004
    44.崔读昌.中国农业气候学[M].杭州:浙江科学技术出版社,1999
    45.曹宏鑫,董玉红,孙立荣等.作物模拟技术在小麦栽培中应用的研究[J].中国农业科学,2003,36(3):342—348
    46.凌启鸿,张洪程,丁艳锋等.水稻高产精确定量栽培[J].北方水稻,2007(2):1—9
    47.张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51—56
    48.黄耀,高亮之,金之庆等.水稻群体茎蘖动态的计算机模拟模型[J].生态学杂志,1994,13(4):37—32
    49.高亮之,金之庆,黄耀等.作物模拟与栽培优化原理的结合—RCSODS[J].作物杂志,1994(3):4—7
    50.陈奇恩,田明军,吴云康.棉花生育规律与优质高产高效栽培[M].北京:农业出版社,1997
    51.纪从亮,沈建辉,束林华.棉花高产群体质量栽培技术[J].棉花学报,1998,10(5):225—231
    52.蒋国柱.棉花优质高产的理论与技术.北京:农业出版社,1999
    53.孙学振,施培,周治国.我国棉花高产栽培技术理论研究现状与展望[J].中国棉花,1999,26(4):2—7
    54.李蒙春,张旺峰,马富裕.高产棉花生育规律及生理指标的研究[J].石河子大学学报(自然科学版),1997,1(2):87—90
    55.冷锁虎.油菜高产群体质量指标及其调控[D].南京:南京农业大学,2001
    56.陆卫平.玉米高产群体质量指标及其调控途径[D]。南京:南京农业大学:1997
    57.姚万山,宋连启,郭宏敏等.夏玉米高产群体形态质量指标的研究[J].玉米科学,2004,12(专刊):14—16
    58.严美春,曹卫星,罗卫红等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355—359
    59.刘铁梅,曹卫星,罗卫红.小麦抽随后生理发育时间的计算与生育期的预测[J].麦类作物学 报,2000,20(3):29—34
    60.孟亚利,曹卫星,周治国等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362—1367
    61.张立祯,曹卫星,张思平等.基于生理发育时间的棉花生育期模拟模型[J].棉花学报,2003,15(2):97—103
    62.曹静,朱艳,姚霞等.小麦群体养分指标动态的知识模型[J].麦类作物学报,2005,25(3):47—52
    63.严定春,朱艳,曹卫星等.水稻适宜养分指标动态的知识模型研究[J].植物营养与肥料学报,2005,11(5):590—596
    64.郭文善,严六零,封超年等.小麦库源协调栽培途径的研究[J].江苏农学院学报,1995,16(1):33—37
    65. Cruz-Aguado J A, Reyes F, Rodes R, et al. Effect of source-to-sink ratio on partitioning of dry matter and 14C-photoassimilates in wheat during grain filling [J]. Annals of Botany,1999,83 (6): 655-665
    66.王夫玉,黄丕生.水稻群体源库特征及高产栽培策略研究[J].中国农业科学,1997,30(5):26—33
    67.李明,李文雄.玉米产量形成与源库关系[J].玉米科学,2006,14(2):67—70
    68. Rajcan I, Tollenaar M. Source:sink ratio and leaf senescence in maize:I. Dry matter accumulation and partitioning during grain filling [J]. Field crops research,1999,60 (3):245-253
    69. Sala R G, Westgate M E, Andrade F H. Source/sink ratio and the relationship between maximum water content, maximum volume, and final dry weight of maize kernels [J]. Field Crops Research, 2007,101 (1):19-25
    70. Egli D B and Bruening W P. Source-sink relationships, seed sucrose levels and seed growth rates in soybean [J]. Annals of Botany,2001,88 (2):235-242
    71.李朝霞,赵世杰,孟庆伟等.高粒叶比小麦群体生理基础研究进展[J].麦类作物学报,2002,22(4):79—83
    72.凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究[J].中国农业科学,1986,(3):1-8
    73. Ritchie J T, Godwin D C, et al. CERES-Wheat(unpublished). Michigan State University. US.1988
    74. Ritchie J T, Alocijia E C, Sigh U, et al. IBSNAT and CERES-Rice model [C]. Los Bannos: International Rice Research Institute,1987,271-281
    75. Jones C A, Kiniry F R. CERES-Maize:A simulation model of maize growth and development [M]. College station, US:Tesas S&M Univ. Press,1986
    76. Alagarswamy G, Ritchie J T, Godwin D, et al. A user's guide to CERES-Sorghum [M]. Michigan State University, ICRISAT, IFDC and IBSNAT Joint Publication,1988
    77.高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统(RCSODS) [M].北京:中国农业科技出版社,1992
    78.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003
    79.高亮之.农业模型学基础[M].香港:天马图书有限公司,2004
    80.左大康.地球表层辐射研究[M].北京:科学出版社,1991
    81.张军连,林培.土地生产潜力评价中土壤修正系数模型的研究——以河北省涿鹿县为例[J].自然资源学报,1994,9(3):260—269
    1. Hossain M F, White S K, Elahi S F, et al. The efficiency of nitrogen fertiliser for rice in Bangladeshi farmers'fields[J]. Field Crops Reseach,2005,93 (1):94-107
    2. 中国农业统计资料2004.中华人民共和国农业部编[M].北京:中国农业出版社,2005
    3. Alam M M, Ladha J K, Khan S R, et al. Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh [J]. Agronomy Journal,2005,97 (3):949-959
    4. 彭少兵,黄见良,钟旭华等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095—1103
    5. Beaudoin N, Saad J K, Laethem C V, et al. Nitrate leaching in intensive agriculture in Northern France:Effect of farming practices, soils and crop rotations [J]. Agriculture, Ecosystems and Environment,2005,111 (1-4):292-310
    6. 康绍忠.农业水土工程概论[M].北京:中国农业出版社,2007
    7. 科学技术部农村科技司,中国农村技术开发中心.中国现代节水高效农业技术发展战略[M].北京:中国农业科学技术出版社,2006.54—68
    8. 李百凤,冯洁,吴普特.作物非充分灌溉适宜土壤水分下限指标研究进展[J].干旱地区农业研究,2007,25(3):227—231
    9. Battam M A, Sutton B G, Boughton D G. Soil pits as a simple design aid for subsurface drip irrigation systems [J]. Irrigation Science,2003,22 (3-4):135-141
    10. Belder P, Bouman B A M, Cabangon R, et al. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia[J]. Agricultural Water Management,2004,65 (3): 193-210
    11. Fortes P S, Platonov A E, Pereira L S. GISAREG—A GIS based irrigation scheduling simulation model to support improved water use [J]. Agricultural Water Management,2005,77 (1-3):159-179
    12. Srinivasan R, Engel B A, Paudyal G N. Expert system for irrigation management (ESIM) [J]. Agricultural System,1991,36 (3):297-314
    13.汪志农,冯浩.节水灌溉管理决策专家系统[M].郑州:黄河出版社,2001
    14.霍军军,尚松浩.基于模拟技术及遗传算法的作物灌溉制度优化方法[J].农业工程学报,2007,23(4):23—27
    15.凌启鸿,张洪程,戴其根等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457—2467
    16. ZhuXK., GuoWS, Zhou Z Q, et al. Effects of nitrogen on N uptake, grain yield and quality of medium-gluten wheat Yangmai 10[J]. Agricultural Science in China,2005,4 (46):421-428
    17.曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005
    18.段项锁,薛正平,杨星卫等.精准农业土壤养分与水稻产量关系模型研究[J].中国生态农业学报,2003,11(1):62—65
    19.高辉,张洪程,戴其根等.不同土种十壤氮素等养分与水稻基础产量的关系[J].扬州大学学报(农业与生命科学版),2007,28(1):49—53
    20.高祥照,胡克林,郭焱等.土壤养分与作物产量的空间变异特征与精确施肥[J].中国农业科学,35(6):660—666
    21.赵淑章,季书勤,王绍中等.不同类型土壤与强筋小麦品质和产量的关系[J].河南农业科学,2004,(7):52—53
    22.朱庆森,黄丕生.水稻节水栽培研究论文集[M].北京:中国农业科技出版社,1995
    23.杨建昌,王维,王志琴等.水稻旱秧大田期需水特性与节水灌溉指标研究[J].中国农业科学,2000,33(2):34—42
    24.王宝英,张学.农作物高产的适宜土壤水分指标研究[J].灌溉排水,1996,15(3):35—39
    25.江苏省农学会.江苏麦作科学[M].南京:江苏科学技术出版社,1994
    26.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003
    27.山仑,康绍忠,吴普特.中国节水农业[M].北京:中国农业出版社,2004
    28.严定春,朱艳,曹卫星等.水稻群体生长指标动态的知识模型研究[J].中国农业科学,2005,38(1):38—44
    29.朱艳,曹卫星,周治国等.冬小麦生长适宜动态指标的知识模型[J].中国农业科学,2004,37(1):43—50
    30.朱庭芸.水稻优化灌溉原理及其应用[J].辽宁农业科学,1993,(6):29—33
    31.李霞,康绍忠,粟晓玲.农作物优化灌溉制度及水资源分配模型的研究进展[J].西北农林科技大学学报(自然科学版),2005,33(12):148—152
    32.康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996
    33.于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2006
    34.余松烈.中国小麦栽培理论与实践[M].上海:上海科学技术出版社,2006
    35.刘立军,王志琴,桑大志等.氮肥运筹对水稻产量及稻米品质的影响[J].扬州大学学报(农业与生命科学版),2002,23(3):46—50
    36.阙金华.水稻优质高产氮肥精量确定技术的研究[D].扬州:扬州大学,2003
    37.贺帆,黄见良,崔克辉等.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,2007,40(1):123—132
    38.刘明强,宇振荣,刘云慧.作物养分定量化模型原理及方法比较分析[J].土壤通报,2006, 37(3):582—587
    39. Schlegel A J, Grant C A, Hbvlin J L. Challenging approaches to nitrogen fertilizer recommendations in continuous cropping systems in the Great Plains [J]. Agronomy Journal, 2005,97 (2):391-398
    40. Pathak H, Aggarwal P K, Roetter R, et al. Modeling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in India [J]. Nutrient Cycling in Agroecosystems,2003,65 (2):105-113
    41. Ten Berge H F M, Thiyagarajan T M, Shi Q, et al. Numerical optimization of nitrogen application to rice. PartⅠ. Description of MANAGE-N[JJ. Filed crops research,51 (1-2):29-42
    42. Leenhardt D, Trouvat J L, Gonzales G, et al. Estimating irrigation demand for water management on a regional scale:I. ADEAUMIS, a simulation platform based on bio-decisional modeling and spatial information [J]. Agricultural Water Management,2004,68 (3):207-232
    43. Rinaldi M, Losavio N, Flagella Z. Evaluation and application of the OILCROR-SUN model for sunflower in southern Italy [J]. Agricultural Systems,2003,78 (1):17-30
    44. Plant R E, Horrocks R D, Grimes, D W, et al. CALEX/COTTON:An integrated expert system application for irrigation scheduling [J]. Transaction of the ASAE,1992,35 (6):11-12
    45.汪志农,康绍忠,熊运章等.灌溉预报与节水灌溉决策专家系统研究[J].2001,(1):4—7.
    46.鲁如坤.土壤植物营养学原理和施肥[M].北京:化学工业出版社,1998
    47.黄德明.作物营养和科学施肥[M].北京:农业出版社,1993
    48. Russell C A, Dunn B W, Batten G D, et al. Soil tests to predict optimum fertilizer nitrogen rate for rice[J]. Field Crops Research,2006,97 (2-3):286-301
    49.朱兆良.中国土壤氮素[M].南京:江苏科技出版社,1991
    1. 曹卫星.作物智能栽培学:信息科学与作物栽培学的结合[J].科技导报,2000,139(1):37—41
    2. 于强,傅抱璞.水稻叶面积指数的普适增长模型[J].中国农业气象,1995,16(2):68
    3. 王秀珍,黄敬峰,李运海等.水稻叶面积指数的高光谱遥感估算模型[J].遥感学报,2004,8(1):47—52
    4. 王伯伦,高佩文,董克.水稻高产群体干物质积累与分配数学模型的研究[J].沈阳农业大学学报,1988,19(3):9—15
    5. 乔玉辉,宇振荣.冬小麦叶面积动态变化规律及其定量化研究[J].中国生态农业学报,2002, 10(2):83—85
    6. 王信理.在作物干物质积累的动态模拟中如何合理运用Logistic方程[J].中国农业气象,1986,(1):14—19
    7. Feng W, Zhu Y, Tian Y C, et al. Monitoring leaf nitrogen accumulation in wheat with hyper-spectral remote sensing[J]. Acta Ecologica Sinica.2008,28 (1):23-32
    8. 黄耀,高亮之.水稻群体物质生产的农业气候计算机模拟及最适季节[J].中国农业气象,1988,(1):1—6
    9. 刘桃菊,殷新佑,戚吕瀚等.气候变化与水稻生长发育及产量形成关系的模拟研究[J].应用生态学报,2005,16(3):486—490
    10.涂修亮,胡秉民,程功煌等.小麦叶面积指数变化的模拟[J].作物研究,1999,(1):13—14
    11.曹宏鑫,董玉红,王旭清等.不同产量水平小麦最适叶面积指数动态模拟模型研究[J].麦类作物学报,2006,26(3):128—131
    12.曹宏鑫,董玉红,欧阳竹等.不同产量水平小麦最适总茎数动态模拟研究[J].麦类作物学报,2008,28(2):243—248
    13.孙成明,庄横扬,杨连新等. FACE水稻叶面积指数的模拟研究[J].农业环境科学学报,2007,26(3):1003—1007
    14.孟亚利,曹卫星,柳新伟等.水稻茎蘖动态的模拟研究[J].南京农业大学学报,2003,26(2):1—6
    15.高亮之,金之庆,黄耀等.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992
    16. Bouman B M A, Van Laar H H. Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions [J]. Agricultural Systems,2006,87 (3):249-273
    17.刘铁梅.小麦光合生产与物质分配的模拟模型[D].南京:南京农业大学,2000
    18. Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat [J]. Field Crops Research,2006,97 (2-3):322-336
    19. Timsina J, Humphreys E. Performance of Ceres-Rice and Ceres-wheat models in rice-wheat systems:A review[J]. Agricultural Systems,2006,90 (1-3):5-31
    20.凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    21.郭绍铮,彭永欣,钱维朴等.江苏麦作科学[M].南京:江苏科学技术出版社,1994
    22.刁操铨.作物栽培学各论(南方本)[M].北京:中国农业出版社,1997:98—124
    23.王龙俊,郭文善,封超年.小麦高产优质栽培新技术[M].上海:上海科学技术出版社,2000
    24.苏祖芳,郭宏文,李永丰等.水稻群体叶面积动态类型的研究[M].中国农业科学,1994, 27(4):23—30
    25.高永刚,王飞,姚克敏.水稻干物质的数值模拟及类型区划[M].南京气象学院学报,1998,21(4):637—646
    26.李荣田,崔成焕,姜廷波等.水稻品种分蘖特性对产量影响分析[M].东北农业大学学报,1996,27(1):9—14
    27. Mahmood R. Thermal climate variations and potential modification of the cropping pattern in Bangladesh [J]. Theoretical and Applied Climatology.1998,61 (3-4):231-243
    28.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003
    29.孟亚利,曹卫星,周治国等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362—1367
    30.严美春,曹卫星,罗卫红等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述[J].应用生态学报,2000,11(3):355—359
    31.刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测[J].麦类作物学报,2000,20(3):29—34
    32.高亮之.农业系统学基础[M].江苏:江苏科学技术出版社,1993
    33. Zhu X, Healey R G, Aspinall R J. A knowledge-based systems approach to design of spatial decision support systems for environmental management[J]. Environmental Management,1998, 22 (1):35-48
    34. Yu Q, Liu J D, Zhang Y Q, et al. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors[J]. International Journal of Biometeorology, 2002,46 (4):185-191
    35.曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005
    36.周竹青.不同类型小麦品种(系)干物质积累和转运动态比较[J].作物杂志,2002,(1):16—19
    37.王志敏,赵明.作物栽培与生理学研究进展[M].北京:中国农业大学出版社,2003
    38.山东省农科院.高产小麦营养吸收特性的研究[J].土壤肥料,1979,(6):27—32
    39.田纪春,张忠义,梁作勤.高蛋白和低蛋白小麦品种的氮素吸收和运转分配差异的研究[J].作物学报,1994,20(1):76—83
    40. Grundy A C, Boatman N D, Froud W R J. Effects of herbicide and nitrogen fertilizer application on grain yield and quality of wheat and barely[J]. Journal of Agricultural Science,1996,126 (4): 379-385
    41. Makowski D, Wallach D, Meynard J M. Models of yield, grain protein and residual mineral nitrogen responses to applied nitrogen for winter wheat [J]. Agronomy Journal,1999,91 (3): 377-385
    42.张国平,张光恒.小麦氮素利用效率的基因型差异研究[J].植物营养与肥料学报,1996,2(4):331—336
    43. Foulkes M J, Sylvester-Bradley R, Scott R K. Evidence for differences between winter wheat cultivars in acquisition of soil on inter nitrogen and uptake and utilization of applied fertilizer nitrogen [J]. Journal of Agricultural Science,1998,130 (1):29-44
    44.童一平,李继云,李振声.不同小麦品种(系)吸收利用氮素效率的差异及其有关机理研究.Ⅱ.影响吸收效率的因素分析[J].西北植物学报,1999,19(3):393—401
    45.周顺利,张福锁,王兴仁.冬小麦不同营养品种对氮反应吸收与土壤硝酸盐耗竭的研究[J].中国农业科学,2002,35(6):667—672
    46. Dobermann A, Fairhurst T H. Rice:Nutrient Disorders & Nutrient Management[C]. Philippines: IRRI,2000
    47.中国农业科学院.中国稻作学[M].北京:农业出版社,1986
    48. Penning de Vries F W T, Jansen D M, Ten Berge H F M, et al. Simulation of ecophysiological processes of growth in several annual crops[M]. In:Penning de Vries F W T, van Laar H H eds. Simulation Mnongrahs. Wageningen, Netherlands:PUDOC,1982,271
    49.邹长明,秦道珠,徐明岗等.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南京农业大学学报,2002,25(4):6—10
    50.曹卫星,郭文善,王龙俊等.小麦品质生理生态及调优技术[M].北京:中国农业出版社2005
    51. Cassman K G, Dobermann A, Walters D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management [J]. AMBIO:A Journal of the Human Environment,2002,31 (2):132-139
    52.黄德明,俞仲林,朱德锋等.淮北地区高产小麦植株吸氮及土壤供氮特性[J].中国农业科学,1988,21(5):59—65
    53.张立言,张建平,李雁鸣等.高产冬小麦氮、磷、钾的积累和分配动态的研究.中国小麦栽培研究新进展[M].北京:农业出版社,1993,237—244
    54.张继林,孙元敏,郭绍铮等.高产小麦营养生理特性与高效施肥技术研究[J].中国农业科学,1988,21(4):39—45
    55.严力蛟,王兆骞,曹卫星等.水稻群体质量若干指标的模拟及其优化研究[J].生态学报,2000,20(4):678—684
    56.严力蛟,全为民.水稻生长动态模拟研究进展[J].生态学报,2002,22(7):1143—1152
    57.张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51—56
    58.邹应斌,唐秋澄,谢在希等.水稻苗情动态计算机模拟Ⅳ.水稻苗情动态模拟与模拟栽培[J].湖南农学院学报,1993,19(增刊),31—36
    59.曹宏鑫,董玉红,孙立荣等.作物模拟技术在小麦栽培中应用的研究[J].中国农业科学,2003,36(3):342—348
    60.汪永钦,王信理,刘荣花.冬小麦生长和产量形成与气象条件关系及其动态模拟的研究——以河南黄淮平原冬小麦中、低产地区为例[J].气象学报,1991,49(2):205—214
    61.张宾,赵明,董志强等.作物高产群体LAI动态模拟模型的建立与检验[J].作物学报,2007,33(4):612—619
    62. Pronk A A, Heuvelink E, Challa H. Dry mass production and leaf area development of filed-grown ornamental conifers:measurements and simulation [J]. Agricultural Systems,2003,78 (3): 337-353
    63. Ewert F, Porter J, Honermeier B. Use of AFRCWHEAT2 to predict the development of main stem and tillers in winter triticale and winter wheat in North East Germany [J]. European Journal of Agronomy,1996,5 (1-2):89-103
    64. Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture [J]. Remote Sensing of Environment,2002,81 (2-3):179-193
    1. 凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000
    2. 凌启鸿,张洪程,丁艳锋等.水稻高产技术的新发展——精确定量栽培[J].中国稻米,2005,(1):3—7
    3. 梁振兴,刘兴海.小麦产量形成的栽培技术原理[M].北京:北京农业大学出版社,1994
    4. 王龙俊,陈维新,唐明臻.小麦高产群体质量栽培的应用研究.Ⅰ.小麦高产群体质量的调控指标[J].江苏农业科学,1996,(1):5—9
    5. 田奇卓,于振文,潘庆民等.冬小麦超高产栽培群、个体发展动态指标的研究[J].作物学报,1998,24(6):859—864
    6. 汪得水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995
    7. 鲁如坤,谢建昌,蔡贵信等.土壤-植物营养学原理和施肥[J].北京:化学工业出版社,1998
    8. 张奇春,王光火.直播早稻优化氮肥施用研究[J].中国水稻科学,2002,16(4):346—350
    9. 赵决建,赵艳萍.水稻定时定量施肥研究[J].土壤通报,2002,33(4):288—292
    10. Flowers M, Weisz R, Heiniger R, et al. In-season optimization and site-specific nitrogen management for soft red winter wheat [J]. Agronomy Journal,2004,96 (1):124-134
    11. Timsina J, Singh U, Badaruddin M, et al. Cultivar, nitrogen, and water effects on productivity and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh [J]. Field Crops Research,2001,72 (2):143-161
    12.李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮素营养诊断及追肥推荐研究Ⅳ.冬小麦—夏玉米轮作制度下氮素诊断及追肥推荐的研究[J].植物营养与肥料学报,1997,3(4):357—362
    13.陈新平,李志宏,王兴仁等.土壤、植株快速测试推荐施肥技术体系的建立与应用[J].土壤肥料,1999,(2):6—10
    14.宋文冲,胡春胜,程一松等.作物氮素营养诊断方法研究进展[J].土壤通报,2006,37(2):369—372
    15.周鸣铮译,[美]Walsh L. M., Beaton J. E.主编.土壤测定与植物分析[M].北京:农业出版社,1982
    16.李志宏,刘宏斌,张云贵.叶绿素仪在氮肥推荐中的应用研究进展[J].植物营养与肥料学报,2006,12(1):125—132
    17. Fox R H, Piekielek W P, Macneal K M. Using a chlorophyll meter to predict nitrogen fertilizer needs of winter wheat [J]. Communications in Soil Science and Plant Analysis.1994,25 (3-4): 171-181
    18. Peng S, Garcia F V, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice [J]. Field Crops Research,1996,47 (2-3):243-252
    19. Scharf P C, Brouder S M, Hoeft R G. Chlorophyll meter readings can predict nitrogen need and yield response of corn in the north-central USA [J]. Agronomy Journal,2006,98(3):655-665
    20. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales [J]. Remote Sensing of Environment,1995,53 (3):199-211
    21. Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture [J]. Remote Sensing of Environment,2002,81 (2-3):179-193
    22.庄恒扬,曹卫星,任正龙.基于模拟的作物氮素管理决策研究[J].农业系统科学与综合研究, 2002,18(4):269—272
    23.黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究[D].长沙:湖南农业大学,2003
    24.吴建繁,贾小红,朱莉等.冬小麦氮素调控追肥技术的研究与应用[J].土壤通报,1998,29(4):168—170
    25.赵荣芳,陈新平,张福锁.基于养分平衡和土壤测试的冬小麦氮素优化管理方法研究[J].中国农学通报,2005,21(11):211—215
    26.徐恒永,赵振东,刘建军等.群体调控与氮肥运筹对强筋小麦济南17号产量和品质的影响[J].麦类作物学报,2002,22(1):56—62
    27. Alam M M, Ladha J K, Foyjunnessa, et al. Nutrient management for increased productivity of rice-wheat cropping system in Bangladesh [J]. Field Crops Research,2006,96(2-3):374-386
    28. Shukla A K, Ladha J K, Singh V K, et al. Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a system perspective [J]. Agronomy Journal,2004,96 (6):1606-1621
    29. Islam Z, Bagchi B, Hossain M. Adoption of leaf color chart for nitrogen use efficiency in rice: Impact assessment of a farmer-participatory experiment in West Bengal, India [J]. Field Crops Research,2007,103 (1):70-75
    30. Shukla A K, Ladha J K, Singh V K, et al. Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective [J]. Agronomy Journal,2004, 96 (6):1606-1621
    31.李志宏,刘宏斌,张福锁.应用叶绿素仪诊断冬小麦氮营养状况的研究[J].植物营养与肥料学报,2003,9(4):401—405
    32. Dobermann A, Witt C, Dawe D, et al. Site-specific nutrient management for intensive rice cropping systems in Asia [J]. Filed Crops Research,2002,74 (1):37-66
    33. Bongiovanni R G, Robledo C W, Lambert D M. Economics of site-specific nitrogen management for protein content in wheat [J]. Computers and Electronics in Agriculture.2007,58 (1):13-24
    34.唐延林,王秀珍,王福民等.农作物LAI和生物量的高光谱法测定[J].西北农林科技大学学报(自然科学版),2004,32(1):100—104
    35. Phillips S B, Keahey D A, Warren J G, et al. Estimating winter wheat tiller density using spectral reflectance sensors for early-spring, variable-rate nitrogen applications [J]. Agronomy Journal, 2004,96 (3):591-600
    36. Zhu Y, Yao X, Tian Y C, et al. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice[J]. International Journal of Applied Earth Observation and Geoinformation,2008,10 (1):1-10
    37.严定春,朱艳,曹卫星等.水稻群体生长指标动态的知识模型研究[J].中国农业科学,2005,38(1):38—44
    38.朱艳,曹卫星,周治国等.冬小麦生长适宜动态指标的知识模型[J].中国农业科学,2004,37(1):43—50
    39.严定春,朱艳,曹卫星等.水稻适宜养分指标动态的知识模型研究[J].植物营养与肥料学报,2005,11(5):590—596
    40.曹静,朱艳,姚霞等.小麦群体养分指标动态的知识模型[J].麦类作物学报,2005,25(3):47—52
    41.黄继茂.水稻高产定氮施肥(氮调)技术研究结果概述[J].中国农业科学,1985,(6):46—52
    42.王龙俊,陈维新,唐明臻.小麦高产群体质量栽培的应用研究.Ⅱ.小麦高产群体质量的调控技术[J].江苏农业科学,1996(2):12—15
    43. Houles V, Guerif M,Mary B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations [J]. European Journal of Agronomy,2007,27 (1):1-11
    44. Pampolino M F, Manguiat I J, Ramanathan S, et al. Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems [J]. Agricultural Systems, 2007,93 (1-3):1-24
    45. Bailey J S, Dils R A, Foy R H, et al. The diagnosis and recommendation integrated system(DRIS) for diagnosis the nutrient status of grassland swards:Ⅲ. Practical applications [J]. Plant and Soil, 2000,222 (1-2):255-262
    46. Wang G, Zhang Q C, Witt C, et al. Opportunities for yield increase and environmental benefits through site-specific nutrient management in rice systems of Zhejiang province, China [J]. Agricultural Systems,2007,94 (3):801-806
    47. Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationship with agricultural crop characteristics [J]. Remote Sensing of Environment,2000,71 (2):158-182
    48.杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214—218
    49.薛利红.基于冠层反射光谱的稻麦氮素营养与生长监测研究[D].南京:南京农业大学,2003
    50.王秀珍,黄敬峰,李云海等.水稻叶面积指数的多光谱遥感估算模型研究[J].遥感技术与应 用,2003,18(2):57—65
    51.王秀珍,黄敬峰,李云海等.水稻地上鲜生物量的高光普遥感估算模型研究[J].作物学报,2003,29(6):815—821
    52. Takahashi W, Nguyen C V, Kawaguchi S, et al. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies[J]. Plant Production Science,2000,3 (4):377-386
    53. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status [J]. Trends in Plant Science,1998,3 (4):151-156
    54.薛利红,罗卫红,曹卫星等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73—80
    55.黄耀,陈华.水稻群体动态预测与栽培决策[J].气象科学,1996,16(1):86—92
    56.金之庆,石春林,葛道阔等.基于RCSODS的直播水稻精确施氮模拟模型[J].作物学报,2003,29(3):353—359
    57. Porter J R, Jamiesom P D, Wilson D R. Comparison of wheat simulation models ARC-WHEAT, CERES-wheat and S WHEAT for non-limiting conditions of crop growth [J]. Field Crops Research,1993,33 (1-2):131-157
    58. Ritchie J T, Otter S. Description and performance of CERES-Wheat:A User-oriented wheat yield model[M]. USDA-ARS ARS-38,1985,159-175
    59. Ritchie J T, Alocijia E C, Llenhara G. IBSNAT/CERES rice model [J]. Agrortechnology Transter, 1986, (3):1-5
    1. 曹卫星.农业信息学[M].北京:中国农业出版社,2005
    2. 邝朴生,蒋文科,刘刚等.精确农业基础[M].北京:中国农业大学出版社,1999
    3. Sinclair R R, Seligman N G. Crop modeling, from infancy to maturity [J]. Agronomy Journal, 1996,88 (5):698-704
    4. 熊范纶.农业专家系统及开发工具[M].北京:清华大学出版社,1998
    5. 曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005
    6. Richardson C W. Weather simulation for crop management models [J]. Transactions of the ASAE-American Society of Agricultural Engineers,1985,28 (5):1602-1606
    7. 曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003
    8. 王一专.农作层次生产潜力估算与分析系统的建立[D].南京:南京农业大学,2003
    9. 李敏波译,[美]Robinson S., Nagel C等著.C#高级编程(第3版)[M].北京:清华大学出版社,2005
    10.赵春江,诸德辉,李鸿祥等.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42—49
    11.高亮之,金之庆,郑国清等.小麦栽培模拟优化决策系统(WCSODS) [J].江苏农业学报,2000,16(2):65—72
    12.吕新,魏亦农,李少昆.基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究[J].中国农业科学,2002,35(7):883—887
    13. Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model[J]. European Journal of Agronomy,2003,18 (3-4):235-265
    14.王卷乐,陈沈斌,廖顺宝.基于组件GIS的精准水稻种植信息系统的开发[J].地球信息科学,2004,6(2):27—30
    15.苏伟,聂宜民,于振文等.基于GIS的优质小麦变量施肥信息系统研究[J].农业工程学报,2005,21(7):94—98
    16. Rao M, Fan G, Thomas J, et al. A web-based GIS decision support system for managing and planning USDS's conservation reserve program (CRP) [J]. Environmental Modelling & Software, 2006,22 (9):1270-1280
    17.孙波,严浩,施建平等.基于组件式GIS的施肥专家决策支持系统开发和应用[J].农业工程学报,2006,22(4):75—79
    1. 汪懋华.“精细农业”的实践与农业科技创新[J].中国软科学,1999,(4):21—25
    2. Zhao C J. Progress of information technology in agriculture [M].北京:中国农业科学技术出版社,2007
    3. 曹卫星.农业信息学[M].北京:中国农业出版社,2005
    4. Sinclair R R, Seligman N G. Crop modeling, from infancy to maturity [J]. Agronomy Journal, 1996,88 (5):698-704
    5. 熊范纶.农业专家系统及开发工具[M].北京:清华大学出版社,1998
    6. 曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2005
    7. 山仑,康绍忠,吴普特.中国节水农业[M].北京:中国农业出版社,2004
    8. 朱庭芸.水稻优化灌溉原理及其应用[J].辽宁农业科学,1993,(6):29—33
    9. 李霞,康绍忠,粟晓玲.农作物优化灌溉制度及水资源分配模型的研究进展[J].西北农林科技大学学报(自然科学版),2005,33(12):148—152
    10.康绍忠,蔡焕杰.农业水管理学[M].北京:中国农业出版社,1996
    11.于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社,2006
    12.余松烈.中国小麦栽培理论与实践[M].上海:上海科学技术出版社,2006
    13.刘立军,王志琴,桑大志等.氮肥运筹对水稻产量及稻米品质的影响[J].扬州大学学报(农业与生命科学版),2002,23(3):46—50
    14.阙金华.水稻优质高产氮肥精量确定技术的研究[D].扬州:扬州大学,2003
    15.贺帆,黄见良,崔克辉等.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,2007,40(1):123—132
    16.曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003
    17.严美春.基于过程的小麦生育期和器官形成的机理模型[D].南京:南京农业大学,1999
    18.刘铁梅,曹卫星,罗卫红.小麦抽穗后生理发育时间的计算与生育期的预测[J].麦类作物学报,2000,20(3):29—34
    19.孟亚利,曹卫星,周治国等.基于生长过程的水稻阶段发育与物候期模拟模型[J].中国农业科学,2003,36(11):1362—1367
    20.黄继茂.水稻高产定氮施肥(氮调)技术研究结果概述[J].中国农业科学,1985,(6):46—52
    21.王龙俊,陈维新,唐明臻.小麦高产群体质量栽培的应用研究.Ⅱ.小麦高产群体质量的调控技术[J].江苏农业科学,1996(2):12—15
    22. Houles V, Guerif M, Mary B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations [J]. European Journal of Agronomy,2007,27 (1):1-11
    23. Pampolino M F, Manguiat I J, Ramanathan S, et al. Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems [J]. Agricultural Systems, 2007,93 (1-3):1-24
    24. Bailey J S, Dils R A, Foy R H, et al. The diagnosis and recommendation integrated system (DRIS) for diagnosis the nutrient status of grassland swards:III. Practical applications [J]. Plant and Soil, 2000,222 (1-2):255-262
    25. Wang G, Zhang Q C, Witt C, et al. Opportunities for yield increase and environmental benefits through site-specific nutrient management in rice systems of Zhejiang province, China [J]. Agricultural Systems,2007,94 (3):801-806
    26.周鸣铮译,[美]Walsh L. M., Beaton J. E.主编.土壤测定与植物分析[M].北京:农业出版社,1982
    27. Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationship with agricultural crop characteristics [J]. Remote Sensing of Environment,2000,71 (2):158-182
    28.杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报,1999,15(3):214—218
    29.薛利红.基于冠层反射光谱的稻麦氮素营养与生长监测研究[D].南京:南京农业大学,2003.
    30.王秀珍,黄敬峰,李云海等.水稻叶面积指数的多光谱遥感估算模型研究[J].遥感技术与应用,2003,18(2):57—65
    31.王秀珍,黄敬峰,李云海等.水稻地上鲜生物量的高光普遥感估算模型研究[J].作物学报, 2003,29(6):815—821
    32. Takahashi W, Nguyen C V, Kawaguchi S, et al. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies [J]. Plant Production Science,2000,3 (4):377-386
    33. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status [J]. Trends in Plant Science,1998,3 (4):151—156
    34.薛利红,罗卫红,曹卫星等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73—80
    35.黄耀,陈华.水稻群体动态预测与栽培决策[J].气象科学,1996,16(1):86—92
    36.金之庆,石春林,葛道阔等.基于RCSODS的直播水稻精确施氮模拟模型[J].作物学报,2003,29(3):353—359
    37. Porter J R, Jamiesom P D, Wilson D R. Comparison of wheat simulation models ARC-WHEAT, CERES-wheat and S WHEAT for non-limiting conditions of crop growth [J]. Field Crops Research,1993,33 (1-2):131-157
    38. Ritchie J T, Otter S. Description and performance of CERES-Wheat:A User-oriented wheat yield model [J]. USDA-ARS ARS-38,1985,159-175
    39. Ritchie J T, Alocijia E C, Llenhara G. IBSNAT/CERES rice model [J]. Agrortechnology Transter, 1986, (3):1-5
    40.朱艳,曹卫星,王其猛等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814—820
    41.曹静,刘小军,汤亮等.基于知识模型的网络化作物管理决策支持系统[J].南京农业大学学报,2007,30(3):21—26
    42.陈立平,赵春江,刘学馨等.精确农业智能决策支持平台的设计与实现[J].农业工程学报,2002,18(2):145—148
    43.王卷乐,陈沈斌,廖顺宝.基于组件GIS的精准水稻种植信息系统的开发[J].地球信息科学,2004,6(2):27—30
    44.苏伟,聂宜民,于振文等.基于GIS的优质小麦变量施肥信息系统研究[J].农业工程学报,2005,21(7):94—98
    45. Priya S, Shibasaki R. National spatial crop yield simulation using GIS-based crop production model [J]. Ecological Modelling,2001,136 (2-3):113-129
    46. Rao M, Fan G, Thomas J, et al. A web-based GIS decision support system for managing and planning USDS's conservation reserve program(CRP) [J]. Environmental Modelling & Software, 2006,22 (9):1270-1280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700