用户名: 密码: 验证码:
尿素与苯胺合成N,N'-二苯基脲的清洁生产工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N, N′-二苯基脲是一种重要的有机中间体,主要用于制备磺胺类药物和异氰酸酯等化学品。其传统合成方法以剧毒光气为直接或间接原料,易造成重大环境污染和生态危害,必将被淘汰。作为光气法替代工艺而开发的工业尿素法,以尿素和苯胺为原料,水为溶剂,盐酸为催化剂,N, N′-二苯基脲产率只有40%左右,废物产量大,排放大量苯胺废水和氯化氢废气,后处理困难,环境效益低。由于尿素价格低廉,又是重要的CO2资源化工业产品,因此,尿素法生产N, N′-二苯基脲具有较高的经济和环保开发潜能。然而,如何达到原料最大化利用、废物最小化或零排放,还有一些值得环保工作者深入研究的问题。
     本文以尿素和苯胺为原料,研究了在非水溶剂、非盐酸催化体系中合成N,N′-二苯基脲的工艺;在此基础上,进一步研究了无溶剂非催化合成N, N′-二苯基脲的清洁工艺及其强化方法,并对反应机理进行了探讨。主要研究内容和结果如下:
     (1)比较研究了在不同溶剂体系中和不同催化剂作用下尿素与苯胺合成N, N′-二苯基脲的产率,发现二甲苯为溶剂具有副反应少、产率较高的特点,乙酸锌和对甲苯磺酸-乙酸铅复合催化剂具有最好的催化活性。最佳工艺条件为:n(苯胺) : n(尿素) : n(二甲苯)= 3: 1: 2,乙酸锌和对甲苯磺酸-乙酸铅催化,144℃反应1.5 h, N, N′-二苯基脲产率分别为94.0%和92.9%。
     (2)研究了无溶剂非催化条件下,以尿素与苯胺合成N, N′-二苯基脲的清洁工艺,考察了物料比、温度、时间、搅拌速率等因素对产率的影响。产物的红外、核磁共振、质谱、紫外等分析结果表明,反应得到的产物是N, N′-二苯基脲。当苯胺与尿素摩尔比为5: 1时,180℃,反应1.5 h,N, N′-二苯基脲产率达到92.1%。
     (3)在无溶剂非催化合成N, N′-二苯基脲的过程中,强化加热、通氮移氨和减压移氨可以有效提高N, N′-二苯基脲的产率;同时,通过减压蒸发,可简单、有效的实现产物分离,还可进一步提高产率;反应介质苯胺循环利用,可提高较低温度条件下N, N′-二苯基脲的产率和原料的利用率。当苯胺与尿素摩尔比为5: 1时,180℃,反应1.5 h,减压蒸发分离产物,N, N′-二苯基脲产率可达99.1%。
     (4)研究了无溶剂非催化条件下,尿素与苯胺合成N, N′-二苯基脲的反应机理。液相色谱分析和验证实验结果表明,异氰酸和苯基脲是主要的反应中间体。反应历程为:尿素先受热分解,生成氨气和异氰酸;异氰酸与苯胺反应生成苯基脲;苯基脲进一步与苯胺发生亲核取代反应,生成N, N′-二苯基脲。
     (5)提出了尿素与苯胺反应合成N, N′-二苯基脲的清洁生产工艺,该工艺不加任何催化剂和溶剂,N, N′-二苯基脲的产率高,副产的氨气用于尿素工业生产,整个生产过程不排放有毒有害废物,实现了污染的源头控制和资源的高效利用。
N, N'-diphenylurea is an important organic intermediate, which mainly used for the synthesis of sulfa drugs, isocyanate and other chemicals. The traditional method for the preparation of N, N'-diphenylurea utilizes phosgene as a raw material directly or indirectly, which is toxic, corrosive, expensive, and restricted to employ. The industrial synthesis of N, N'-diphenylurea from urea and aniline uses water as solvent and hydrochloric acid as catalyst, giving only 40% yield of N, N'-diphenylurea, and dischargeing aniline waste water and hydrogen chloride waste gas, which are both difficult to be handled. As urea is a cheap material and an important industrial chemical synthesized from CO2, there is high economic and environmental potential in N, N'-diphenylurea synthesis from urea. But how to maximize the utilizing efficiency of raw materials and minimize the quantity of waste need further study.
     In this dissertation, a process of N, N'-diphenylurea catalytic synthesis from urea and aniline in organic solvents, using neither water nor hydrochloric acid, was investigated. Based on this , a clean process of N, N'-diphenylurea synthesis from urea and aniline without any catalysts and solvents was developed, the reaction mechanism was also mentioned and proved. The main contents studied and results obtained shows as follow:
     (1) The synthesis of N, N'-diphenylurea from urea and aniline catalyzed by various catalysts in a variety of solvents was investigated. It is found that xylene is the optimal solvent, zinc acetate and p-toluenesulfonic acid - lead acetate catalysts are the optimal catalysts. The yield of N, N'-diphenylurea reached 94.0% and 92.9% under the optimum reaction condition of temperature 144℃, aniline/urea/xylene ratio 3:1:2 (molar ratio), reaction time 1.5 h, catalyzed by zinc acetate and p-toluenesulfonic acid - lead acetate, respectively.
     (2) The clean process of N, N'-diphenylurea synthesis from urea and aniline without any solvents and catalysts was investigated, the various reaction conditions on the yield of N, N'-diphenylurea were also studied. The results of FT-IR, MS, NMR and UV analysis showed that the product of the developed process was N, N'-diphenylurea with high purity, the yield of N, N'-diphenylurea reached 92.1% under the optimum reaction condition of temperature 180℃, aniline/urea ratio 5:1 (molar ratio), reaction time 1.5 h.
     (3) Investigation showed that the yield of N, N'-diphenylurea could be further improved by fast reaction and ammonia removal through inputing N2 into reaction liquids or reducing pressure of reaction system. The coupling of reaction and separation can be easily achieved by vacuum filtration, resulting in the promotion of product yield. The yield of N, N'-diphenylurea and material utilizing ratio could be increased by recycle of the reactants (aniline), under the lower temperature. The yield of N, N'-diphenylurea reached 99.1% under the optimum reaction condition of temperature 180℃, aniline/urea ratio 5:1 (molar ratio), reaction time 1.5 h, product separating by vacuum evaporation.
     (4) The reaction mechanism was discussed by means of HPLC analysis and proving experiment, it has been ascertained that isocyanic acid and phenylurea are the major intermediates in the reaction. Based on the analysis of experimental resultes, the reaction might carry through the following pathway: phenylurea is obtained with aniline reacting with isocyanic acid from urea pyrolysis, and then reacts with aniline to produce N, N'-diphenylurea.
     (5) A clean production process for synthesizing N, N'-diphenylurea from urea and aniline was advanced at last, which exhibiting the following advantages: free fom catalyst and reaction solvent, high-yield of product, and pollution control from headstream by recycling of the reactants and resource utilizing of ammonia, which is used to manufacture urea.
引文
[1]王京华,许翩翩,张藩贤.硝基苯催化还原为苯氨基甲酸乙酯[J].分子催化, 1990, 4(3): 226-232.
    [2]许翩翩,张藩贤,蔡成龙.苯胺催化氧化羰基化为苯氨基甲酸乙酯[J].厦门大学学报, 1994, 33(5): 637-642.
    [3]石峰,邓友全,司马天龙,等.树脂担载金催化苯胺衍生物氧化羰化制氨基甲酸甲酯[J].高等学校化学学报, 2001, 22(7): 1219-1221.
    [4] Kim K D, Lee S M, Cho N S, Oh J S, Lee C W, Lee J S. Palladium-catalyzed N,N’-diphenyl Urea Synthesis from Nitrobenzene, Aniline and Carbon Monoxide, Part 3 Evidence of Carbamoyl Intermediate [J]. Journal of Molecular Catalysis, 1992, 75(1): L1-L6.
    [5]杨瑛,陆世维.硒催化硝基苯还原羰基化生成苯氨基甲酸酯[J].催化学报, 1999, 20(3): 224-226.
    [6]康武魁,姚洁,王公应,等.碳酸二甲酯胺解合成苯氨基甲酸甲酯催化研究[J].分子催化, 2003, 17(2): 136-139.
    [7]李其峰,王军威,董文生,等.苯胺与碳酸二甲酯反应合成苯氨基甲酸甲酯[J].催化学报, 2003, 24(8): 639-642.
    [8]王延吉,赵新强,李芳,等.二苯甲烷二异氰酸酯清洁合成过程研究I.苯氨基甲酸甲酯催化合成及其缩合反应[J].石油学报(石油加工), 1999, 15(6): 9-14.
    [9]张磊,袁存光,阕国和.二苯脲和甲醇合成苯氨基甲酸甲酯[J].石油化工. 2006, 35(11): 1048-1051.
    [10]王公应,赵艳敏,康涛,等.一种新的苯氨基甲酸酯的制备方法:中国, 200410022789.7[P]. 2006-01-14.
    [11]黄坤源,陈有仁,朱家骏,等.碳酸酯化合物的制备方法:中国, 94116022.X[P]. 1994-09-27.
    [12] Gao Junjie, Li Huiqun, Zhang Yi. Synthesis of Methyl N-Phenyl Carbamate from Dimethyl Carbonate and 1,3-Diphenyl Urea under Mild Conditions [J]. Chinese Chemical Letters, 2007, 18: 149-151.
    [13] Gao Junjie, Li Huiquan, Zhang Yi. A Non-phosgene Route for Synthesis of Methyl N-Phenyl Carbamate from Dimethyl Carbonate and N, N’-Diphenyl Urea Derived from CO2 [J]. Green Chemistry, 2007, 9: 572-576.
    [14]高俊杰. CO2反应耦合法合成异氰酸酯(MDI)清洁工艺及催化剂的研究[D].北京:中国科学院过程工程研究所, 2007.
    [15]张磊,袁存光,孙振忠.二苯脲与碳酸二甲酯合成苯氨基甲酸甲酯研究[J].合成技术及应用, 2006, 21(1): 27-29.
    [16]化学工业出版社组织编写.化工产品手册·农用化学品,第3版[M].北京:化学工业出版社. 1999.
    [17]薛燕,吴思忠,彭爱东.非对称取代脲的合成与应用[J].有机化学, 2002, 22(8): 529-535.
    [18]杨瑛,陆世维.硒催化取代硝基苯的羰基化合成不对称取代脲类除草剂[J].天然气化工, 2000, 25(5): 44-46.
    [19] Braz G, Lizgunova M, Chemeriskaya A, et al. Sulfanilnmide from diphenylurea [J]. Journal of Applied Chemistry, 1946, 19: 379.
    [20]李志裕,林克江,尤启冬,等.磺胺合成工艺的改进[J].中国现代应用药学, 1999, 16(5): 25.
    [21]唐培堃,刘振华. 2, 6-二氯苯胺的制备方法:中国, 95102807.3[P]. 1995-03-28.
    [22] Shantz E M. The identification of compound A from coconut milk as 1,3-diphenylurea [J]. Journal of the American Chemical Society , 1955, 77: 6351-6353.
    [23]谢荣春,林斌,叶孟兆,等.新型植物生长调节剂二苯脲的应用初探[J].种子, 1997, (2): 7-9.
    [24]谢荣春,叶孟兆,董雅芬.新型植物生长调节剂二苯脲的合成和鉴定[J].浙江农业大学学报, 2005, 21(2): 214-216.
    [25]王三根.细胞分裂素在植物抗逆和延衰中的作用[J].植物学通报, 2000, 17(2): 121-126.
    [26]朱晔荣,吕宪禹,田宝静,等.二苯脲延缓紫萍半叶状体衰老的作用[J].南开大学学报(自然科学版), 2004, 37(4): 90-94.
    [27]山西大学.植物生长调节剂及其制备方法:中国, 98104734.3[P].1998-01-28.
    [28]闵恩泽,吴巍.绿色化学与化工[M].北京:化学工业出版社, 2000: 39.
    [29] Dyson W L, Fox J E, McChesney J D. Short term metabolism of urea and purine cytokinins [J]. Plant Physiology and Biochemistry, 1972, 49: 506-513.
    [30]章思规主编.精细有机化学技术手册,上册[M].北京:科学出版社, 1991: 821.
    [31]樊能廷.有机合成事典[M].北京:北京理工大学出版社, 1992: 764-764.
    [32]吕宏初. 2, 6-二氯苯胺的合成新工艺[J].浙江化工, 2002, 33(2): 35-36.
    [33] Chakraboty D P, Mandal A K. Ethyl carbamate as an aminocarbonylating agent: modification of Gattermann’s amidation reaction [J]. Synthesis, 1981: 977.
    [34]张善言,樊希祥. N-芳基氨基甲酸乙酯的新合成法[J].化学试剂, 1991, 13(6): 365-36.
    [35] Reddy B M, Sreekanth P M, Reddy V R. Modified zirconia solid acid catalysts for organic synthesis and transformations [J]. Journal of molecular catalysis A: Chemical, 2005, 225: 71-78.
    [36] Monica G. L, Cenini S. The catalytic carbonylation at atmosphere pressue of phenyl azide to PhNCO and PhNHCOOEt [J]. Journal of organometallic chemistry, 1981, 216(2): 35-37.
    [37] Giannoccaro P, Giglio E D, Gargano M, et al. Rh3+ and Rh3+– diamine complexes intercalated inγ-titanium hydrogen phosphate. Synthesis, characterisation and catalytic activity towards aniline oxidative carbonylation processes [J]. Journal of Molecular Catalysis A: Chemical, 2000, 157(1): 131-141.
    [38]邓友全.硅胶担载离子液体催化剂的制备及其在由胺制二取代脲反应中的应用[J].催化学报, 2004, 25(8): 607-610.
    [39]石峰,邓友全,龚成科,等.树脂担载金催化剂催化氧化羰化胺制对称二脲[J].化学学报, 2001, 59(8): 1330-1334.
    [40] Oh J S, Lee S M, Yeo J K. Palladium-Catalyzed Synthesis of N,N’-Diphenylurea from Nitrobenzene, Aniline, and Carbon Monoxide [J]. Industrial and Engineering Chemistry Research. 1991, 30(7): 1456-1461.
    [41] Lee C W, Lee J S. Palladium-Catalyzed Synthesis of N,N’-Diphenylurea from Nitrobenzene, Aniline, and Carbon Monoxide: part 4 Ligand effects [J]. Journal of Molecular Catalysis, 1993, 81(1): 17-25.
    [42] Gasperini M, Ragaini F, Remondini C, et al. The palladium-phenanthroline catalyzed carbonylation of nitroarenes to diarylureas: Effect of chloride and diphenylphosphinic acid [J]. Journal of Organometallic Chemistry, 2005, 690(20): 4517-4529.
    [43]梅慧,梅付名,李光兴. Co(Ⅱ)Salen催化选择氧化还原羰基化合成N, N'-二苯基脲[J].现代化工, 2006, 26(9): 35-37.
    [44] Yuan Xinhua, Xu Hongxing, Ni Zhonghai, et al. Reaction of CO2 and CS2 with aniline catalyzed by AlCl3 under mild condition [J]. chemistry, 2003, 5(6): 50.
    [45] Munshi P, Heldebrant D J, McKoon E P. Formanilide and carbanilide from aniline and carbon dioxide [J].Tetrahedron Letters, 2003, 44(13): 2725–2727.
    [46]王军威,王心葵,亢茂清,等.一种生产苯基脲和或二苯基脲的方法:中国, 03108569.5[P]. 2003-09-10.
    [47]李伍林,黎涛.二苯脲合成工艺改进[J].江西农业学报, 2006, 18(4): 153-154.
    [48]王训遒,王斌. 2,6-二氯苯胺的合成研究[J].郑州大学学报(工学版), 2002, 23(4): 95-97.
    [49]赵艳敏.尿素醇解氨解催化剂与工艺研究[D].成都:中国科学院成都有机化学研究所. 2005. 43-47.
    [50]张天柱,石磊,贾小平.清洁生产导论[M].北京:高等教育出版社, 2006: 57-58.
    [51] Aresta M, Dibenedetto A. Key issues in Carbon Dioxide Utilizaton as a building block for Molecular Organic Compounds in the chemical industry. The 219th American Chemical Society National Meeting: CO2 Conversion and Utilizatio [C]. San Francisco, 2000, 54-68.
    [52]顾彦龙,彭家建,乔琨,等.室温离子液体及其在催化和合成中的应用[J].化学进展, 2003, 15(3): 222-241.
    [53] Schmitz R Y, Skoog F. The Use of Dimethylsulfoxide as a Solvent in the Tobacco Bioassay for Cytokinins [J]. Plant Physiol, 1970, 45: 537-538.
    [54] Mukaiyama T, Matsunaga T. On the thermal dissociation of organic compounds V5-8: The effect of the solvent (fatty acids) on the thermal dissociation of urea[J]. Journal of the American Chemical Society, 1953, 75: 6209-6211.
    [55]李其峰,王军威,董文生,等.苯胺与氨基甲酸甲酯反应合成苯氨基甲酸甲酯反应研究[J].高等学校化学学报, 2003, 24(7): 1277-1280.
    [56]袁新华,张丽芳,倪中海,等. GC/MS图谱中N, N′-二苯基脲的中性丢失[J].江苏大学学报(自然科学版), 2003, 24(2): 54-57.
    [57] Kondo T, Kotachi S, Tsuji K, et al. Novel Ruthenium-Complex-Catalyzed Synthesis ofUreas from Formamides and Amines [J]. Organometallics, 1997, 16(12): 2562-2570.
    [58]朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社, 2005. 18.
    [59]陈慎贵,陈德娟.液相法热解尿素合成氰尿酸[J].江苏化工, 1989, (4): 40-41.
    [60]彭德厚.由尿素合成三聚氰酸[J].化学工程师, 1994, 3(41): 49-50.
    [61]天津大学无机化学教研室编.无机化学,第2版,上册[M].北京:高等教育出版社, 1992: 56-57.
    [62]中国医药基团上海有机化学试剂公司编著.试剂手册,第3版[M].上海:上海科学技术出版社, 2002: 1342.
    [63] Hackl K A, Falk H. The Synthesis of N-Substituted Ureas II: Nucleophilic Substitution of Ureas at the Carbonyl Group [J]. Monatshefte für Chemic, 1992, 123(6): 607-615.
    [64] Hosseinzadeh R, Sarrafi Y, Mohadjerani M, et al. Copper-catalyzed arylation of phenylurea using KF/Al2O3 [J]. Tetrahedron Letters, 2008, 49: 840-843.
    [65]高鸿宾.有机化学,第3版[M].北京:高等教育出版社, 1999: 391-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700