用户名: 密码: 验证码:
航空γ能谱照射量率的正演问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在国内外航空伽玛能谱测量中,主要利用高能特征伽玛谱段照射量率反演地下放射性核素含量,通过测量资料反演地质体中矿体的形态尚讨论甚少。此外,对航空伽玛能谱测量中,高度影响与校正,也讨论不多。这在一定程度上影响了对于整个航空伽玛能谱测量工作的开展。
     本论文的主要目的是通过航空伽马能谱照射量率正演问题的研究,在理论与实验研究的基础上,建立起具有典型意义的辐射体上空的伽玛射线能量、照射量率的数理模型,为辐射体上方伽玛射线照射量率的正、反演提供理论依据。
     本文针对空中不同高度伽玛射线照射量率与大地辐射体中放射性元素含量之间的正演问题,从射线通过物质时所遵循的衰减规律入手,采用理论推导的方法,最终建立了点状、线状、带状、面状以及无限大体源等辐射体上方的伽玛照射量率随空间高度变化的数理模型。
     为了检验所建立的各种辐射体上方的照射量率变化的数学模型,采用蒙特卡罗数值模拟方法进行了检验。获取了具有典型意义的辐射体(点状源、线状源、条带状源和面状源等)不同高度伽玛射线的原始能谱成份与变化规律,以及特征能量光子照射量率理论计算的模型。
     本文研究的主要结论有:
     1、通过数理方程建模研究,建立起了具有典型意义的辐射体(点状源、线状源、带状源、面状源、无限大体源等)上方空中伽玛射线照射量率的数理模型。
     2、通过蒙特卡罗模拟,所得出的点状源、线状源的γ射线计数率随高度变化趋势与理论公式计算出的结果基本吻合,证实所建立的数理模型是正确可靠的。
     3、点状源的蒙特卡罗模拟和理论公式计算出的结果是,到90m高度时,γ射线计数率将衰减到10m高度时计数率的1%。
     4、线状源的蒙特卡罗模拟和理论公式计算出的结果是,到90m高度时,γ射线计数率将衰减到10m高度时计数率的7%。
     5、理论计算和蒙特卡罗模拟了各个辐射体(点源、线状源、带状源、面状源)上方γ射线相对计数率的随高度变化衰减的趋势曲线,可以得到到一致的结论是,所采集的航空γ能谱数据不仅受地面放射性核素含量、高度的影响,还受辐射体形状的影响。
     6、研究表明,所采集的航空γ能谱数据不仅受地面放射性核素含量、高度的影响,还受辐射体形状的影响。为此,在利用航空伽玛特征能谱照射量率反演地质介质中U、Th、K的含量时,不但要考虑高度、大气氡、宇宙射线等的影响,还要考虑辐射体形状的影响。
At present in both Chinese and foreign aviation gamma spectrometer, mainly uses in measuring high feature gamma spectra period of eminence inverse underground radionuclide content, through the measurement data of the form of geological ore is discussed. In addition, the aviation gamma spectrometer, high effect and measurement of calibration, is also discussed. This is a certain extent in the aviation gamma spectrometer measurement for work.
     The main purpose of this thesis is based on theoretical and experimental study and establish the typical significance of gamma ray radiation body of the mathematical model of eminence, gamma ray radiation body above the eminence attributions of theoretical basis.
     According to the different height gamma rays eminence in the body with the earth radiation between the content of radioactive elements are problems, from the rays through the following material attenuation rules of using theoretical derivation method, and finally establish the patch, linear, belt, planar body, infinite general source of gamma radiation body above eminence with space of mathematical model. In order to establish various radiators of inspection of eminence changes over the mathematical model, using the monte carlo simulation method was tested. For a typical significance of radiation (pointlike source, linear source, the ribbon source and shape etc) different height gamma rays of the original spectrum and variation, and the characteristics of photonic energy eminence of theoretic calculation model.
     The main conclusions of this study include:
     1, Through the mathematical equation modeling study, established a typical significance of radiation (linear source, planar sources, infinite source, the belt in the source) above the gamma rays eminence mathematical model.
     2, Through the monte carlo simulation computation, blob-shaped source, linear source of gamma rays with high count-rate trend and the results of theoretical formula calculate that is consistent with the establishment of mathematical model, we are correct and reliable.
     3, Blob-shaped had monte carlo simulation computation and source of the theoretical formula calculate, gamma rays to 90m high count-rate of high count-rate of about 10m count-rate 1%.
     4, Linear source after monte carlo simulation calculation and theoretical calculation formula of gamma rays, the result is high count-rate to 90m near-gamma gamma rate of about 10m high count-rate 7%.
     5, The theoretical calculation and monte carlo simulation each radiation (non-point source, belt, linear source and surface source (above) gamma-ray counting the relative rate of change with the trend of high attenuation curve, can get to the conclusion is consistent, the acquisition of the aviation gamma spectrometer data not only by the ground radionuclide content, high effect, but also by the shape of radiators.
     6, The acquisition of the aviation gamma spectrometer data not only by the ground radionuclide content, high effect, but also by the shape of radiators
     This work has different characteristics of air gamma radiation above the body energy eminence modeling, establish practical mathematical model of inverse u-shaped accurate geological medium, K content, Th.
引文
[1]复旦大学,清华大学,北京大学合编,原子核物理试验方法[M],原子能出版社,1985;
    [2]石玉春,吴燕玉,李秀季,放射性物探[M],原子能出版社,1986;
    [3]许淑艳,蒙特卡罗方法在试验核物理中的应用[M],原子能出版社,1985;
    [4]卢存恒,铀矿物探γ理论计算和应用[M],原子能出版社,1988;
    [5]曹利国,章晔,核地球物理勘察方法[M],原子能出版社,1988
    [6]方方,侯新生,马英杰等,γ射线低能谱测量在地质调查中的初步应用[J],物探与化探,2002.08;
    [7]张洪瑞,范正国,2000年来西方国家航空物探技术的若干进展[J],物探与化探,2007.02;
    [8]郭良德,西方国家航空物探技术的若干进展[J],物探与化探,2000.10;
    [9]张亦忠译,常用核辐射数据手册[M],原子能出版社,1990.07;
    [10]杨光庆,石青云,于百川,中国航空物探的现状和发展[J],地球物理学报,1994.10;
    [11]刘裕华,顾仁康,候振荣,航空放射性测量[J],物探与化探,2002.08;
    [12] Killeen P G. Mineral exploration trends and developments in 1998[J ] . Canadian Mining Journal ,1999 ,120 (1) :10—18.
    [13] Fountain D. Airborne Electromagnetic systems—50 years of development [J ] . Exploration Geophysics ,1998 ,29 (1) :1—11.
    [14] Hovgaard J ,Grasty R L. Reducing statistical noise in airborne gammaOray data through spectral component analysis[A] . In :Gubins A G ed. Proceedings of Exploration 97[C] . Toronto : GEO F/ X division of AG information systems Ltd ,1997 ,753—764.
    [15]郭良德.国外航空物探发展趋向[J ] .中国地质,1996 (6) .
    [16] IAEA - TECDOCC - 566 : The use of gamma ray data to deffinethe natural radiation environment [ R ] . Vienna : IAEA.1990.
    [17] IAEA. Technical reports series No 323 : Airborne gamma ray spec2trometer surveying international atomic energyagency [ R] . Vien2na : IAEA ,1991.
    [18]熊盛青.我国航空物探现状与展望[ J ].中国地质, 1999, ( 9)
    [19]费业泰,误差理论与数据处理[M],机械工业出版社,2005;
    [20]李星洪,辐射防护基础[M],原子能出版社,1982.07;
    [21]丁富荣,班勇,夏宗璜,辐射物理[M],北京大学出版社,2004;
    [22]电离辐射防护与辐射源安全基本标准,标准号:GB18871-2002.发布单位:国家质量监督检验检疫总局.批准单位:国家标准局.实施日期:2003年4月1日;
    [23]章晔,华荣州,石柏慎,放射性方法勘查[M],原子能出版社,1990;
    [24]郭余峰等,石油测井中的核物理基础[M],原子能出版社,1988;
    [25]“航空地球物理勘查技术系统”重大项目设立,中国科技产业,2007.4;
    [20]卢焱,戴丽君,王平,地面γ能谱测量影响因素初探,长春地质学院学报,Vol.24, No.1,1994.1;
    [26]汪名伟,冯必达编译,航空放射性测量数据的整理和解释,国外铀金地质,第4期,1989;
    [27]杨建军,吴汉宁,赵希刚等,航空能谱测量数据微弱信息处理方法研究,西北大学学报(自然科学版),Vol.36 No. 4,2006.8; {28]刘艳阳,张志勇,刘庆成,我国航空γ能谱测量概述,铀矿冶,Vol.26 No.2,2007.5;
    [29]范正国,于长春,航空伽马能谱地形改正性方法及应用[J],物探与化探,2005.02;
    [30]张锦由,放射性方法勘查实验[M],原子能出版社,1992.12;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700