用户名: 密码: 验证码:
舰船捷联惯性系统初始对准技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,捷联惯导系统越来越多的应用于舰船导航中。本文针对舰船应用的特点,对舰船捷联惯导系统在各种复杂情况下的初始对准技术以及双系统并行计算技术展开了研究。论文主要工作有:
     首先,详细的分析了基于反馈控制的罗经法对准以及基于最优估计的卡尔曼滤波法对准的原理及稳态误差,通过对捷联惯导罗经法对准和卡尔曼滤波法对准稳态误差比较研究。指出罗经法对准的一部分稳态误差,随着系统参数设置的变化而变化,文中称之为罗经法对准的参数效应误差。
     采用频域分析法对罗经法对准系统进行误差分析,推导各误差源与失准角的频域误差模型。结合船用捷联惯导系统的特点,分析了摇摆、升沉横荡,及陀螺低频振荡误差对罗经法对准的影响。提出了抑制陀螺低频振荡误差的参数设计方法。光纤陀螺静态实验验证了该设计方案的有效性。
     针对单轴旋转调制捷联惯导系统,分析了旋转基座器件的误差输入对失准角的影响形式,在此基础上分别从参数设计和转速设计的角度,设计了适合单轴旋转调制捷联系统的罗经法对准系统,并通过仿真实验验证。
     提出了航向大失准角的情况下的时变参数罗经法对准。分析了航向大失准角情况下罗经法对准收敛速度减慢的原因。通过分析多级罗经法对准中参数切换所产生的等效干扰,提出时变参数的方案。系泊实验结果证明,此种方法能够有效的提高航向大失准角下罗经法对准的对准速度。
     研究了多普勒计程仪(Doppler Velocity Log DVL)速度辅助的船用捷联惯导航行中罗经法对准技术。分析了航行中罗经法对准的误差输入,提出了匀速直航条件下DVL辅助的罗经法对准的实现方法,且进一步研究了DVL测速误差对航行中罗经法对准的影响。通过仿真验证了该方法的有效性以及误差分析的准确性。
     研究了航行中卡尔曼滤波组合对准,提出在船体匀速直航的条件下使用地理系上的DVL测速误差为状态变量的卡尔曼滤波器。指出DVL测速误差的可观测性会在三轴摇摆的作用下提升,有效的估计出DVL测速误差。提高船用捷联惯导航行中对准的航向对准精度以及速度和位置的重置精度。仿真实验结果验证了该算法的有效性。
     研究了捷联惯导系统双系统并行计算技术。提出了一种基于双系统的捷联航姿算法。使用一组捷联惯性组件(Inertial Measurement Unit IMU)同时计算航姿系统和惯导系统。利用惯导速度和多普勒计程仪速度进行综合计算,补偿载体的运动加速度,消除了运动加速度对航姿系统的影响。随后,提出了一种纬度未知情况下的双系统罗经对准算法。使用一套IMU同时计算两个参数不同的罗经对准系统。利用两系统的航向角输出进行综合计算,补偿了纬度未知所带来的影响。航行实验和系泊实验结果分别验证了这两种算法的有效性。
Nowadays, strapdown inertial navigation systems (SINS) are increasingly used in shipnavigation. In this paper,several researches about the alignment of Ship’s SINS have beenmade. Main works of this paper can be given as follows:
     First of all, steady state errors of gyrocompassing alignment and kalman filter alignmentare analyzed and compared. Results show that there is a special kind of errors within theoutput of gyrocompassing alignment. As these errors related to the changes of parameters, inthis paper, this phenomenon is called as parameter effect.
     Frequency domain analysis is used to study the affects of oscillation errors togyrocompassing alignment. As ship’s SINS are used in water, shakes and sways may cause alot of oscillation errors. Consider the reality of ship’s SINS, mathematical model betweensource of oscillation errors and the misalignments are established. The affect of three axissway and oscillation gyro errors are researched. Then, an approach of parameters designmethod for gyrocompassing alignment is proposed to restrain the affects of oscillation errors.Experiment results show that the proposed approach is effective.
     During rotation, gyroscope drift and accelerometer bias in local level frame are changingin to oscillation errors. Frequency domain characteristics of gyrocompassing alignment areused to analysis the affects of gyroscope drift and accelerometer bias in rotating base. Anapproach of SINS gyrocompassing alignment technique which applicable to single-axialrotation SINS is proposed. Simulation results show that the proposed approach is effective.
     An approach of SINS gyrocompassing alignment method on the basis of time-varyingparameters is described, that apples to the condition of large heading misalignment.Convergence rate of gyrocompassing alignment is more slowly in the case of large azimuthmisalignment. The solution to the problem is discussed, and the influence ofparameters-varying on traditional gyrocompassing alignment is analyzed. Mooring alignmentexperiment results show that the proposed approach is faster in alignment time in the case oflarge azimuth misalignment.
     Ship’s SINS gyrocompassing alignment in sail with aiding of Doppler velocity log (DVL)is studied and a DVL-aided SINS in-motion gyrocompassing alignment algorithm isdescribed. During the sail, Ship’s movement will cause some misalignment ingyrocompassing alignment. DVL velocity is used to compensate these errors and the accuracy of alignment in sail is increased. Then, the influences of DVL velocity errors on misalignmentare analyzed. Simulations are made to prove the analysis results.
     A ship’s SINS in-motion alignment algorithm of strapdown inertial navigation systemaided by DVL is described. DVL velocity errors in local level navigation frame are used in thekalman filter. Error model of DVL along axes on local level navigation frame is developedwhile the ship is sailing at a constant speed. Analysis shows that by using this error model inKalman filter, the observability of state variable can be improved by the angular motion of theship. Simulation results show that, the accuracy of alignment and the reset of velocity andlocation can be better improved.
     A double-system method is studied which is appled to SINS. First, an approach ofstrapdown gyrocompass system on the basis of double-system method is described. Oneinertial measurement unit (IMU) is used to support two different systems, a strapdown inertialnavigation system and a strapdown gyrocompass system at the same time. The velocity outputof SINS is used to optimize the DVL velocity. Then, the optimized velocity can be used tocompensate the influence of acceleration on the gyrocompass system. Finally, Base on thedouble-system method, a SINS alignment algorithm without latitude information is described.One IMU is used to support two different gyrocompassing alignment systems at the sametime. As parameter effect exists in gyrocompassing alignment, the misalignments of the twosystems will be different. The difference between their attitude outputs is used to compensatethe influence of latitude error on gyrocompassing alignment. Experiment results show theeffective of the two proposed algorithm.
引文
[1]以光衢.惯性导航原理.北京:航空工业出版社.1987
    [2] Wang X L, Guo L H. An intelligentized and fast calibration method of SINS on movingbase for planed missiles. Aerospace Science and Technology,2009,13(4–5),216-223P
    [3] Jorg F W, Gunther K. Applying the principle of integrated navigation systems toestimating the motion of large vehicles. Aerospace Science and Technology.2004,8(2):155-166P
    [4] Jorg F W, Thomas W. Integrating satellite and inertial navigation—conventional andnew fusion approaches.Control Engineering Practice.2003,11(5):543-550P
    [5] Yuanxin W; Xiaoping H; Meiping W; et al. Strapdown inertial navigation using dualquaternion algebra: error analysis. IEEE Transactions on Aerospace and ElectronicSystems.2006,42(1):259-266P
    [6]刘飞,马林.舰艇惯性导航技术现状及发展趋势.中国造船.2011,52(4):283-293.
    [7] Pan-Mook L; Bong-Huan J; Kihun K, et al. Simulation of an inertial acousticnavigation system with range aiding for an autonomous underwater vehicle. IEEEJournal of Oceanic Engineering.2007,32(2):327-345P
    [8]杨剑宏,施红兵,陆恺.舰载弹用捷联系统初始对准时陀螺误差的估计.中国惯性技术学报.1999,7(4):30-33页
    [9]高兴旺.捷联惯性导航系统的传递对准技术研究.哈尔滨工程大学硕士学位论文.2007
    [10]戴邵武,贺毅,徐胜红,等.舰载导弹捷联惯导系统原位标定技术研究.舰船电子工程.2011,31(9):47-79,59页
    [11]李娜,王新龙.舰载武器SINS非线性传递对准模型及滤波算法.鱼雷技术.2011,19(6):443-450页
    [12] Majeed S, Jiancheng F. Performance improvement of angular rate matching shipboardtransfer alignment.9th International Conference on Electronic Measurement&Instruments.2009:3760-3711P
    [13]万德钧,程向红,王宇.展望捷联式惯性技术在舰艇上的应用.舰船电子工程.2007,27(1):1-3,57页
    [14]袁保伦.四频激光陀螺旋转惯导系统研究.国防科技大学硕士学位论文.2007
    [15] Hays K M, Schmidt R G, Wilson W A, et al. A submarine navigator for the21thcentury.Position location and navigation symposium,2002:179-188P
    [16]时德刚,刘哗,邹建龙,等.光纤传感技术发展及军需分析.计算机测量与控制.2002,10(9):561-563页
    [17] Levinson E, Willcocks M. The next generation marine inertial navigation is herenow.IEEE Position and Navigation Symposium.1994:121-127P
    [18]曾杜林.光纤陀螺技术发展及军需分析.应用光学.2001,21(1):1-4页
    [19]高伯龙,李树堂.激光陀螺.长沙:国防科技大学出版社.1984
    [20] Yong Y, Ling-Juan M. Fiber-optic strapdown inertial system with sensing clustercontinuous rotation. IEEE Transactions on Aerospace and Electronic Systems.2004,40(4):1173–1178P
    [21]郭崇瑾.基于船用光纤陀螺捷联系统的传递对准技术研究.哈尔滨工程大学硕士学位论文.2009
    [22]黄德鸣,程禄.惯性导航系统.北京:国防工业出版社,1986
    [23]陈哲.捷联惯性系统原理.北京:宇航工业出版社.1987
    [24]赵琳,荣文婷,程旭红.惯导系统初始对准网络参数优化设计软件的实现.应用科技.2010,37(7):15-18页
    [25] Jurenka, Frank D, Leondes, et al. OptimumAlignment of an InertialAutonavigator.IEEE Transactions on Aerospace and Electronic Systems.1967,3(6):880–888P
    [26]蔡晓佳,黄继勋.船用光纤陀螺航姿系统动态对准.中国惯性技术学报.2007,15(2):143-146页
    [27]张鑫.船用光纤陀螺捷联惯性系统初始对准方法研究.哈尔滨工程大学硕士学位论文.2009
    [28]李建.扰动基座下光纤陀螺快速寻北技术研究.国防科技大学硕士学位论文.2007
    [29] You-Chol L, Joon L.An error compensation method for transfer alignment. IEEERegion10International Conference on Electrical and Electronic Technology.2001:850-855P
    [30] Feng S, Wei S. Mooring alignment for marine SINS using the digital filter.Measurement.2010,43(10):1489-1494P
    [31] Silson P M G. CoarseAlignment of a Ship's Strapdown InertialAttitude ReferenceSystem Using Velocity Loci. IEEE Transactions on Instrumentation and Measurement.2011,60(6):1930-1941P
    [32] Mingwei L, Fenfen X. A Fuzzy Adaptive GPS/INS Integrated Navigation Algorithm.Procedia Engineering.2011,15:660-664P
    [33] Shesheng G, Yongmin Z, Xueyuan Z, et al. Multi-sensor optimal data fusion forINS/GPS/SAR integrated navigation system. Aerospace Science and Technology.2009,13(4-5):232-237P
    [34]严恭敏,秦永元,马建萍.惯导/里程仪组合导航系统算法研究,计算机测量与控制.2006,14(8):1087-1089页
    [35] Meiping W, Yuanxin W, Xiaoping H, et al. Optimization-based alignment for inertialnavigation systems: Theory and algorithm. Aerospace Science and Technology,2011,15(1):1-17P
    [36] Yuanxin W, Xiaoping H, Dewen H, et al. Strapdown inertial navigation systemalgorithms based on dual quaternions. IEEE Transactions on Aerospace and ElectronicSystems.2005,41(1):110-132P
    [37] Dohyoung C, Jang G L, Chan G P, et al. Strapdown INS error model for multipositionalignment. IEEE Transactions on Aerospace and Electronic Systems.1996,32(4):1362-1366P
    [38]段江锋.光纤陀螺罗经研究.西北工业大学硕士学位论文.2005
    [39]陈小凤,关政军.船用光纤陀螺捷联航姿基准系统.大连海事大学学报.2005,31(1):26-28页
    [40]李亚梅.光纤陀螺测试与标定技术研究.哈尔滨工程大学硕士学位论文.2010
    [41] Heckman D W, Baretela L M. Improved Affordability of High Precision Submarine InertialNavigation by Insertion of Rapidly Developing Fiber Optic Gyro Technology. IEEEPLANS Position Location and Navigation Symposium.2000:404-410P
    [42] Morrow R B, Heckman D W. High precision IFOG insertion into the strategic submarinenavigation system. IEEE1998Position Location and Navigation Symposium.1998:332-338P
    [43]孙巧英.光纤陀螺捷联系统振动特性研究.哈尔滨工程大学硕士学位论文.2010
    [44]谷宏强.光纤陀螺捷联惯导系统初始对准技术研究.南京理工大学博士学位论文.2009
    [45]孙伟.调制型捷联惯性导航系统技术研究.哈尔滨工程大学博士学位论文.2011
    [46] Napolitano F, Gaiffe T, Cottreau, Y, ed. Phins-The first high performances inertialnavigation system based on fibre optic gyroscopes.9th Saint Petersburg InternationalConference on Integrated Navigation Systems2002:296-304P
    [47]郭静.光纤陀螺捷联系统运动基座对准方法研究.哈尔滨工程大学硕士学位论文.2010
    [48]程向红,万德钧,房建成.船用捷联惯导系统在系泊状态下的快速初始对准方法.船舶工程.1997,6:38-42页
    [49]何昆鹏,许德新,吴简彤,等.船用捷联惯性导航系统在系泊状态下快速初始对准与标定.哈尔滨工程大学学报.2008,29(9):944-950页
    [50] Jamshaid A, Muhammad U. A consistent and robust Kalman filter design for in-motionalignment of inertial navigation system. Measurement.2009,42(4):577-582P
    [51] Shaolin L, Ling X, Jiabin C. New techniques for initial alignment of strapdown inertialnavigation system. Journal of the Franklin Institute.2009,346(10):1021-1037P
    [52]钱伟行,刘建业,赖际舟,等.基于强跟踪滤波的旋转捷联惯导初始对准方法.中国惯性技术学报.2010,18(3):290-295页
    [53] CAI T J, Emeliantsev G I. Study on the rate azimuth platform inertial navigationsystem. Journal of Southeast University (English Edition).2005,21(1):29-32P
    [54]汪涛.基于转动的光纤陀螺捷联惯性导航系统初始对准研究.国防科技大学硕士学位论文.2006
    [55]赵琳,王鑫哲,程建华,等.基于抑制标度因数误差的捷联旋转监控方案研究.2011,30(12):35-39页
    [56]杨晓霞,孟浩然,王帅.激光捷联惯导系统的外场动态标定方法.中国惯性技术学报.2011,19(4):393-398页
    [57] Mamoun F. Abdel-Hafez. On the development of an inertial navigation error-budgetsystem. Journal of the Franklin Institute.2011,348(1):24-44P
    [58]吴盘龙,张科,李言俊.多小波在光纤陀螺信号滤波中的应用研究.测控技术.2005,24(7):60-62页
    [59]王立冬,张春熹.高精度光纤陀螺信号的在线建模与滤波.光电工程.2007,34(1):1-3,58页
    [60]朱奎宝,张春熹,宋凝芳.光纤陀螺角度随机游走对惯导系统影响.压电与声光.2007,29(3):292-294页
    [61]李家垒,许化龙,何婧.光纤陀螺随机漂移的实时滤波方法研究.宇航学报.2010,31(12):2717-2721页
    [62]李家垒,何婧,信东,等.光纤陀螺消噪方法研究.电光与控制.2010,17(4):69-73页
    [63]许文渊,张春熹,邬战军.提高光纤陀螺开机零偏稳定性的调制方法.北京航空航天大学学报.2010,36(5):580-583页
    [64] El-Sheimy N, Nassar S, Noureldin A. Wavelet de-noising for IMU alignment. IEEEAerospace and Electronic Systems Magazine.2004,19(10):32-39P
    [65]张鹏飞.二频机抖激光陀螺捷联惯导系统及其实时温度补偿方法的研究.国防科技大学博士学位论文.2006
    [66]吴磊,孙枫,程建华,等.光纤陀螺捷联系统振动误差补偿研究.传感器与微系统.2009,8(6):43-45,49页
    [67]闫钧宣,张科.激光陀螺温度误差补偿方法研究.计算机测量与控制.2011,19(6):1452-1454,1468页
    [68] Yanling H, Zhilan X, Baiya X. Estimation error of INS transfer alignment throughobservability analysis.20061st International Symposium on Systems and Control inAerospace and Astronautics.2006:553-558P
    [69] Arunasish A, Smita S, T.K. G. Improved self-alignment scheme for SINS usingaugmented measurement. Aerospace Science and Technology,2011,15(2):125-128P
    [70] Tae Y U, Jang G L, Seong-Taek P, et al. Noise covariances estimation for systems withbias states. IEEE Transactions on Aerospace and Electronic Systems.2000,36(1):226-233P
    [71] Woffinden, D C, Geller, D K. Observability Criteria for Angles-Only Navigation. IEEETransactions on Aerospace and Electronic Systems.2009,45(3):1194-1208P
    [72] Pedro B, Carlos S, Paulo O. On the observability of linear motion quantities innavigation systems. Systems&Control Letters.2011,60(2):101-110P
    [73]何鲲鹏.捷联惯导系统姿态角快速对准技术研究.哈尔滨工程大学硕士学位论文.2004
    [74]张爱军.水下潜器组合导航定位及数据融合技术研究.南京理工大学博士学位论文.2009
    [75] Myeong-Jong Y; Jang G L; Chan G P. Nonlinear robust observer design for strapdownINS in-flight alignment. IEEE Transactions on Aerospace and Electronic Systems.2004,40(3):797-807P
    [76] Rhee I, Abdel-Hafez M F, Speyer J L. Observability of an integrated GPS/INS duringmaneuvers. IEEE Transactions on Aerospace and Electronic Systems.2004,40(2):526-535P
    [77]王宇,程向红,吴峻.一种适用于光纤捷联罗经寻北的新算法.北京航空航天大学学报.2012,38(1):1-6页
    [78]严恭敏,秦永元,卫育新,等.一种适用于SINS动基座初始对准的新算法.系统工程与电子技术.2009,31(3):634-637页
    [79]严恭敏,严卫生,徐德民.逆向导航算法及其在捷联罗经动基座初始对准中的应用. Proceedings of the27th Chinese Control Conference.2008:724-729页
    [80]经张俊,程向红,王宇.捷联罗经的动基座自对准技术.中国惯性技术学报.2009,17(4):408-412,418页
    [81]严恭敏.捷联惯导系统动基座初始对准及其它相关问题研究.西北工业大学博士后研究工作报告.2008
    [82]丛丽.捷联式光纤陀螺罗经系统的研究与设计.哈尔滨工程大学硕士学位论文.2004
    [83]顾冬晴,秦永元.船用捷联惯导系统运动中对准的UKF设计.系统工程与电子技术.2006,28(8):1218-1220页
    [84]肖支才,王勇军,王义冬,等.舰船等速下舰载机捷联惯导粗对准方法研究.海军航空工程学院学报.2010,25(2):163-166页
    [85]孙枫,曹通.基于重力信息的惯性系粗对准精度分析.仪器仪表学报.2011,32(11):2409-2415页
    [86]张岩,吴文启,张晓强.静基座速率偏频激光陀螺捷联惯导系统快速高精度初始对准算法.系统工程与电子技术.2011,33(12):2706-2710页
    [87] Songyin C, Lei G. Multi-objective robust initial alignment algorithm for InertialNavigation System with multiple disturbances. Aerospace Science and Technology.2011
    [88] Pascoal A, Kaminer I, Oliveira P. Navigation system design using time-varyingcomplementary filters. IEEE Transactions on Aerospace and Electronic Systems.2000,36(4):1099-1114P
    [89] Jamshaid A, Jiancheng F. Realization of an autonomous integrated suite of strapdownastro-inertial navigation systems using unscented particle filtering. Computers&Mathematics with Applications.2009,57(2):169-183P
    [90] Einicke G A, Malos J T, Reid D C, et al. Riccati Equation and EM AlgorithmConvergence for Inertial Navigation Alignment. IEEE Transactions on SignalProcessing.2009,57(1):370-375P
    [91] Crassidis J L. Sigma-point Kalman filtering for integrated GPS and inertial navigation.IEEE Transactions on Aerospace and Electronic Systems.2006,42(2):750-756P
    [92] Jamshaid A, Jiancheng F. SINS/ANS integration or augmented performance navigationsolution using unscented Kalman filtering. Aerospace Science and Technology.2006,10(3):233-238P
    [93]龙瑞,秦永元,夏家和. CDKF在捷联惯导系统大失准角初始对准的应用.西北工业大学学报.2010,28(3):364-368页
    [94]赵文芳,赵伟,钱伟行,等. SUKF滤波在SINS大失准角初始对准中的应用研究.电光与控制.2008,15(9):84-86,90页
    [95] Julier S J. The scaled unscented transformation. Proceedings of the2002AmericanControl Conference.2002:4555-4559P
    [96] Dmitriyev S P, Stepanov O A, Shepel S V. Nonlinear filtering methods application inINS alignment. IEEE Transactions on Aerospace and Electronic Systems.1997,31(1):260-272P
    [97] Hong H S, Lee J G, Park C G. Performance improvement of in-flight alignment forautonomous vehicle under large initial heading error. IEE Proceedings Radar, Sonarand Navigation.2004,151(1):57-62P
    [98] Lin Z, Qi N, Wei G. A Comparison of Nonlinear Filtering Approaches for In-motionAlignment of SINS. International Conference on Mechatronics and Automation.2007:1310-1315P
    [99]丁国强,周卫东,郝燕玲.插值非线性滤波技术在大失准角传递对准中的应用研究.弹箭与制导学报.2008,30(4):163-168页
    [100]杨鹏翔,秦永元,严恭敏.捷联惯导系统简化非线性对准研究.系统仿真学报.2010,22(12):2817-2820页
    [101]周琪;杨鹏翔;秦永元.基于自抗扰控制技术的捷联罗经对准算法.控制与决策.2011,26(6):1386-1390页
    [102] Myeong-Jong Y, Jang G L, Heung-Won P. Comparison of SDINS in-flight alignmentusing equivalent error models. IEEE Transactions on Aerospace and ElectronicSystems.1999,35(3):1046-1054P
    [103] Jiang C F, De J W. A fast initial alignment method for strapdown inertial navigationsystem on stationary base. IEEE Transactions on Aerospace and Electronic Systems.1996,32(4):1501-1504P
    [104] Xinlong Wang. Fast alignment and calibration algorithms for inertial navigationsystem. Aerospace Science and Technology.2009,13(4-5):204-209P
    [105] Hyo-Sung A, Chang-Hee W. Fast alignment using rotation vector and adaptiveKalman filter. IEEE Transactions on Aerospace and Electronic Systems.2006,42(1):70-83P
    [106] Feng Sun, Wei Sun. Mooring alignment for marine SINS using the digital filter.2010,43(10):1489-1494P
    [107] Gao W, Zhang Y, Xu B, et al. Analyse of damping network effect on SINS.International Conference on Mechatronics and Automation.2009:2530-2536P
    [108]万德钧,房建成.惯性导航初始对准.东南大学出版社.1998
    [109]李兵军.基于光纤捷联式罗经系统的初始对准技术.哈尔滨工程大学硕士学位论文.2008
    [110]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.西北工业大学出版社.1998
    [111] Kwang H K; Jang G L; Chan G P. Adaptive Two-Stage Extended Kalman Filter for aFault-Tolerant INS-GPS Loosely Coupled System. IEEE Transactions on Aerospaceand Electronic Systems.2009,45(1):125-137P
    [112] Honghui Q, Moore, J B. Direct Kalman filtering approach for GPS/INS integration.IEEE Transactions on Aerospace and Electronic Systems.2002,38(2):687-693P
    [113]刘胜.最优估计.哈尔滨工程大学出版社.2005
    [114] Farhan A F, Kenneth J T. Extended Kalman filter synthesis for integrated globalpositioning/inertial navigation systems. Applied Mathematics and Computation.2000,115(2–3):213-227P
    [115] Jamshaid A, Muhammad U. Initial orientation of inertial navigation system realizedthrough nonlinear modeling and filtering. Measurement.2009,42(4):577-582P
    [116] Farhan A F. Non-linear mathematical model for integrated global positioning/inertialnavigation systems. Applied Mathematics and Computation.2000,115(2-3):191-212P
    [117]关劲,程建华,吴磊,等.船用平台式惯导系统状态转换技术的应用.2008,49(2):75-80页
    [118] Pecht E, Mintchev, M P. Observability Analysis for INS Alignment in HorizontalDrilling IEEE Transactions on Instrumentation and Measurement.2007,56(5):1935-1945P
    [119] Goshen-Meskin D, Bar-Itzhack, I Y. Observability analysis of piece-wise constantsystems. I: Theory. IEEE Transactions on Aerospace and Electronic Systems.1992,28(4):1056-1067P
    [120]胡寿松.自动控制原理.科学出版社.2007
    [121]张和杰,常国宾.旋转调制式捷联惯导误差分析.海军工程大学学报.2011,23(5):55-59页
    [122]李魁,徐烨烽,张仲毅,等.旋转惯导系统误差自补偿原理分析及试验验证.系统工程与电子技术.2011,33(10):2268-2271页
    [123]练军想.捷联惯导动基座对准新方法及导航误差抑制技术研究.国防科技大学博士学位论文.2007
    [124]朱利锋,鲍其莲,张炎华,等.船载炮的射击误差分析及消除方法.中国造船.2006,47(3):70-76页
    [125]王艳东,秦雪,徐仕会,等.系泊状态舰载捷联惯导初始对准算法设计.中国惯性技术学报.2009,17(2):136-139页
    [126]张环,汤霞清,郑佳兴.系泊状态下舰载捷联惯导系统自对准研究.装甲兵工程学院学报.2009,23(4):52-56页
    [127]刘必劲,孙昭晨,张志明,等.横浪作用下大型开敞式码头系泊船舶运动量研究.水运工程.2008,8:94-97页
    [128]李绪友.高精度数字闭环光纤陀螺的研究.哈尔滨工程大学博士学位论文.2002
    [129]张桂才.光纤陀螺原理与技术.国防工业出版社,2008
    [130]张秋昭,张书毕,侯东阳.光纤陀螺随机漂移辨识方法研究.传感器与微系统.2011,30(9):50-56页
    [131]王其,徐晓苏.旋转IMU在光纤捷联航姿系统中的应用.中国惯性技术学报.2007,15(3):265-368页
    [132] Zhang C B, Tian W F, Jin Z H. A novel method improving the alignment accuracy of astrapdown inertial navigation system on a stationary base. Measurement science andtechnology.2004,15:765-769P
    [133] Heung W P, Jang G L,; Chan G P. Covariance analysis of strapdown INS consideringgyrocompass characteristics. IEEE Transactions on Aerospace and Electronic Systems.1995,31(1):320-328P
    [134]王海涛.光纤陀螺捷联惯导系统罗经法初始对准研究.传感器与微系统.2011,30(10):53-55页
    [135] Yeon F J. Error analysis of analytic coarse alignment methods. IEEE Transactions onAerospace and Electronic Systems.1998,31(1):334-337P
    [136]尚松田,付梦印,刘彤.单轴旋转式捷联惯导系统转位方案.北京理工大学学报.2011,31(11):1318-1321页
    [137]柴卫华,沈晓蓉,张树侠.船用捷联惯导系统解析粗对准的误差分析.哈尔滨工程大学学报.1999,20(4):46-50页
    [138] Sun F, Sun W; Wu L. Coarse alignment based on IMU rotational motion for SurfaceShip.2010IEEE/ION Position Location and Navigation Symposium.2010:151-156P
    [139]张爱军,王昌明,何云峰.船用捷联惯导系统动态初始对准技术研究.船舶工程.2009,31(1):44-46页
    [140] Xiaoying K. INS algorithm using quaternion model for low cost IMU. Robotics andAutonomous Systems.2004,46(4):221-246P
    [141] Lin Z, Qi N, Wei G. A Comparison of Nonlinear Filtering Approaches for In-motionAlignment of SINS.2007International Conference on Mechatronics and Automation.2007:1310-1315P
    [142] Eun-Hwan S, El-Sheimy N. An unscented Kalman filter for in-motion alignmentoflow-cost IMUs.2004Position Location and Navigation Symposium.2004:273-279P
    [143] Yanling Hao, Zhilan Xiong, Zaigang Hu. Particle Filter for INS In-Motion Alignment.20061ST IEEE Conference on Industrial Electronics and Applications.2006:1-6P
    [144] Weed D, Broderick J, Love J, Ryno, T. GPS Align In Motion of civilian strapdownINS.2004Position Location and Navigation Symposium.2004:184-192P
    [145]卞鸿巍,金志华,马恒.船用平台式INS光学标校初始对准方法研究.系统仿真学报.2005,17(11):2759-2814页
    [146]高帅和,赵琳.不同GPS_SINS超紧组合框架的分析与等价性推导.中国惯性技术学报.2011,19(5):571-574页
    [147]赵思浩,陆明泉,冯振明.一种应用于GPS_低成本INS组合导航的自适应滤波算法.清华大学学报(自然科学版).2011,51(8):1027-1030页
    [148] Garcia R, Puig J, Ridao P, Cufi X. Augmented State Kalman Filtering for AUVNavigation.2002IEEE International Conference on Robotics and Automation.2002:4010-4015P
    [149] Vasconcelos J F, Silvestre C, Oliveira P, et al. Embedded UAV model and LASERaiding techniques for inertial navigation systems. Control Engineering Practice.2010,18(3):262-278P
    [150]严恭敏,严卫生,徐德民.一种在较大初始数学平台误差角下提高AUV导航精度的新方法.鱼雷技术.2009,17(2):20-24页
    [151] Miller P A, Farrell J A, Yuanyuan Z, et al. Autonomous Underwater VehicleNavigation. IEEE Journal of Oceanic Engineering.2010,35(3):663-678P
    [152]李亮. SINS/DVL组合导航技术研究.哈尔滨工程大学硕士学位论文.2009
    [153]孙星亮.多普勒测速技术_信号处理技术研究与实现.西北工业大学硕士学位论文.2005
    [154]刘雪宜.水下机器人多普勒测速声纳系统仿真.哈尔滨工程大学硕士学位论文.2006
    [155] Grenon G, An P E, Smith S M, Healey A J. Enhancement of the inertial navigationsystem for the Morpheus autonomous underwater vehicles. IEEE Journal of OceanicEngineering.2001,26(4):548-560P
    [156] Denbigh P N. Ship velocity determination by Doppler and correlation techniques. IEEProceedings of Communications, Radar and Signal Processing.1984,131(3):315-326P
    [157]任茂东.多普勒计程仪某些误差的分析.大连海运学院学报.1985,11(4):25-31页
    [158]曹洁,刘繁明,陈勤,等. AUV中SINS/DVL组合导航技术研究.中国航海.2004,2:55-59页
    [159]严恭敏,严卫生,徐德民,蒋浩.纬度未知条件下捷联惯导系统初始对准分析.
    航天控制.2008,26(2):31-34页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700