用户名: 密码: 验证码:
镁合金板料热拉深成形实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为目前实际应用中最轻的金属结构材料,在3C行业、汽车行业、国防、航空航天产品、人们日常的生活应用前景广泛。镁合金板料的冲压产品具有较好的力学性能和表面质量成为镁合金材料应用的一个趋势,而在冲压工艺中又以拉深工艺应用较广。由于拉深工艺过程是一个同时包含几何、材料、边界条件和力学等非线性条件于一体的极其复杂的过程,对镁合金拉深成形工艺的研究成为能否获得复杂镁合金塑性成形构件关键。
     本文针对目前镁合金板料拉深成形工艺研究现状与实际需求,对镁合金板料热拉深成形过程的关键技术进行了实验研究、理论研究、数值模拟及二次开发研究。研究结果对指导镁合金产品设计、缩短产品开发周期、减少材料消耗和保证产品质量等具有科学意义和重要的实际应用价值。
     主要内容如下:
     设计制造了一套能自动控制拉深温度、拉深速度的镁合金板料热拉深成形的实验装置,为实现镁合金板料热拉深成形件产业化生产装置提供了参考;并用其对运用前景广阔的AZ31B、ME20M镁合金板料进行了热拉深成形物理实验,得到了两种镁合金板料热拉深成形最优工艺参数,为提出优化的镁合金板料热拉深成形工艺方案提供了依据。
     利用光学金相显微镜对不同工艺参数下的AZ31B、ME20M镁合金板料热拉深成形圆筒件的金相组织结构进行了观察分析。结果表明:合理控制镁合金板料生产过程及镁合金板料热拉深成形过程工艺参数可以很好地控制镁合金板料拉深成形件金相组织结构的变化,使其具有较小晶粒组织,从而使镁合金拉深成形件具有良好的力学性能。
     通过对镁合金板料进行热拉伸力学物理实验,首次提出了一个适合于镁合金板料热成形的含非常应变软化因子的高温流变应力数学模型;利用BP神经网络预测了镁合金板料热成形高温流变应力,将其预测结果与提出的数学模型预测结果、热拉伸力学物理实验结果进行了比较,进一步验证了本文提出的镁合金板料热成形高温流变应力数学模型的科学性、精确性;并用FORTRAN语言编程,在ABAQUS中进行了用户材料子程序VUMAT二次开发,将提出的高温流变应力数学模型加入到了数值模拟软件ABAQUS中,实现了在ABAQUS中加入并调用新的材料模型,使建立的材料模型更接近实际,拓展了ABAQUS软件的应用范围,提高了模拟精度。
     合作设计制造了一套镁合金板料热拉深成形过程中凸凹模圆角处摩擦系数在线测量的实验装置,在综合考虑镁合金板料拉深成形过程中成形温度、压边力、润滑剂等因素的基础上,进行了镁合金板料热拉深成形凸凹模圆角处摩擦物理实验,分别提出了与成形工艺参数(成形温度、压边力)有关的凸凹模圆角处新的动态变化摩擦系数模型;并用FORTRAN语言编程,在ABAQUS中进行了用户子程序VFRIC二次开发,将提出的动态变化摩擦系数模型、修正的库仑摩擦模型相结合,加入到了数值模拟软件ABAQUS中,实现了在ABAQUS中加入真实摩擦边界条件的目的。
     最后在ABAQUS软件中,分别通过不同方式获得了镁合金板料热拉深成形材料模型、摩擦边界条件,对镁合金板料热拉深成形规律进行了数值模拟研究,并与物理实验结果相比较。研究结果表明:本论文作者提出的镁合金高温流变应力模型、热拉深成形过程凸凹模圆角处的动态摩擦系数模型具有较强的科学意义与工程实用价值;利用二次开发将二者加入到ABAQUS模拟软件中去的方法是完全可行的;本文的研究成果在镁合金板料拉深成形件、乃至其它塑性成形产品生产实际中起到重要的指导意义,大大降低生产成本。
As the lightest structural material presently in the practical applications, magnesium alloys have high potential in 3C、automobile、products of national defense industry and aerospace、people's everyday life.The stamping products of magnesium alloy sheet metal have became a trend in use of magnesium alloy as its better mechanical properties and superficial qualities,but the deep drawing technology is used more wider in stamping technology.Because deep drawing technology is a extremely complicated process which includes nonlinear conditions of geometry、material、boundary conditions and mechanics and so on,study on deep drawing technology of magnesium alloy sheet metal become the key whether complicated plastic forming products can be aquired.
     Pointing at the current research situation and actual requirements of deep drawing technology of magnesium alloy sheet metal,this paper carried out experimental research、theoretical research、numerical simulation and further development about the key technology during warm deep drawing of magnesium alloy sheet metal.The results have stronger scientific sense and important project application value in guiding the product design process of magnesium alloy, shortening the product development cycle,decreasing material consumption and guaranteeing product quality etc.
     The main contents include as follows:
     Design and construct a set of experimental installation of warm deep drawing of magnesium alloy sheet metal,which can control deep drawing temperature and velocity automaticly and supplys consults for realizing industrialized installation of magnesium alloy sheet metal products by warm deep drawing;Through the installation,experiments of warm deep drawing of AZ31B and ME20M were carded out to acquire the best parameters of technology,which supply basis to put forward optimal technology plan of magnesium alloy sheet metal warm deep drawing.
     Utilizing optical microscope of metallographic,the metallographic organizations of warm deep drawing cylinder parts of magnesium alloy sheet metal were observed and analyzed.The results indicates:controlling parameters of technology reasonably during production of magnesium alloy sheet metal and sheet metal deep drawing jointly can control variation of metallographic organization to ensure the magnesium alloy sheet metal deep drawing parts own good mechanical properties because of little grain structure.
     Through experimental studies on hot tensile of magnesium alloy sheet metal,a mathematical model of high temperature flow stress was put forward first which includes an inconstant strain softening factor suit to magnesium alloy sheet metal warm forming;BP neural network was also used to forecast high temperature flow stress of magnesium alloy sheet metal warm forming,the forecasting results of the mathematical model of high temperature flow stress and BP neural network and experimental results were compared to verify the science and accuracy of the mathematical model put forward by this paper;And the mathematical model was joined into ABAQUS through further development by user subroutine VUMAT using FORTRAN language,it realized an aim to join new material model into ABAQUS.
     Design and construct a set of experimental equipment for measuring friction coefficient on line at the round comer of punch and die during magnesium alloy sheet metal warm deep drawing cooperatlely,and did the experiment under considering forming temperature,blank holding force,lubricant and so on,dynamically changing friction coefficient models about forming temperature and blank holding force at the round comer of punch and die were put forward separately;And the friction coefficient models and a modified Coulomb friction law were joined into ABAQUS through further development by user subroutine VFRIC using FORTRAN language, it realized an aim to join actual friction boundary conditions into ABAQUS.
     Finally,through different methods to acquire material model and friction boundary conditions,numerical simulations of magnesium alloy sheet metal warm deep drawing were made in ABAQUS,and the results were compared with experimental results.It indicates:the mathematical model of magnesium alloy sheet metal high temperature flow stress and dynamically changing friction coefficient models at the round comer of punch and die during magnesium alloy sheet metal warm deep drawing put forward by this paper have stronger scientific sense and important project application value,and the way through further development to join them into ABAQUS is totally correct;the research results of this paper have done adequate preparations for guiding actually production of magnesium alloy deep drawing and other plastic forming products,decreasing production costs in practice greatly.
引文
[1]王文先,张金山,许并社.镁合金材料的应用及加工成型技术[J].太原理工大学学报 2001(11):599-603.
    [2]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术.2004(3):5-12
    [3]刘正.压铸镁合金在汽车工业中的应用和发展趋势[J].特种铸造及有色合金.1999(5):55-58
    [4]陈力乐.欧州镁压铸及其在汽车工业中的应用发展概况[D].第二届中国国际压铸会议(上海).2000(4):25-28
    [5]曾小勤,王渠东,吕宜振,丁文江,朱燕萍镁合金应用新进展[J].铸造.1998(5):39-43
    [6]Sakkinen D J.SAE Technical Paper 940779,SAE,Detroit,MI[J],1994:34-45
    [7]林高用,彭大暑,张辉等.AZ91D镁合金锭耐腐蚀性能研究[J].矿冶工程.2001.9.79-81.
    [8]Nussbaum Al.Semi-solid Forming of Aluminum and Magnesium[J].Light Metal Age.1996,54(5-6):6-22
    [9]余琨,黎文献,王日初等.变形镁合金的研究、开发及应用[J].中国有色金属学报.2003(04):277-288
    [10]I.J.Polmear.Recent Development in Light Alloys[J].Materials Trans.JIM,1996,37(1):12-31
    [11]井藤忠男,白井秀友.-z Y 木少 A P,4力7,卜合金七自动车部品入[J]。应用轻金属.1992(12):707-719
    [12]Cole G,Michigan D.In:Smith D Sed.Can Magnesium Achieve Its Potential For Large Volume Usage in Automotive Components.Magnesium the Light Weight Solution Automotive Sourcing Special Report[R],London:Automotive Sourcing U KLtd,1998.18
    [13]吴秀铭.中国镁合金工业50年[J].世界有色金属.1999(2 46):75-77
    [14]王建高.镁合金产业化基地落户青岛[J].科技日报(3版)2001-01-18
    [15]王建高.我国推进镁合金产业化进程[J].中国高校技术市场.2000(8):23-24
    [16]Pasternak L.Semi-Solid Production Processing of Magnesium Alloys Thixomolding[J].Proceeding of the Second International Conference on the Semi-Solid Processing of Composites.1992(6):159-169
    [17]蒋鹏,半固态成形在工业中的应用现状与前景[J].模具技术1998(5):1523
    [18]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工学院学报.2002.03
    [19]高敬.镁合金在运输系统中的应用[J].稀有金属快报.2002.11
    [20]Michael M Avedesian,Hugh Baker.ASM Speciality Handbook-Magnesium and Magnesium Alloys[M].Ohio:ASM International,1999.22
    [21]萨洛金C.镁合金板料冲压技术[M].北京:机械工业出版社,1958
    [22]马图哈,KH(Matucha Karl Heinz),丁道云.非铁合金的结构与性能[M].北京:科学出版社,1999
    [23]周海涛,马春江,曾小勤,等.变形镁合金材料的研究进展[J].材料导报,2003,11(17):16-18
    [24]Sebastian W,Stalmann A.Properties and Processing of Magnesium Wrought Products for Automotive pplications[J].Advanced Engineering Materials,2001,(12):969-974
    [25]王国军.变形镁合金生产工艺及质量控制[C].首届中国国际轻金属冶炼加工与装备会议文集,上海:2002,254-257.
    [26]《轻金属材料加工手册》编写组编.轻金属材料加工手册,下册[M].北京:冶金工业出版社.1980年
    [27]Naoki OSADA,Kazunori OHTOSHI,etc.The influence of the annealing temperature on uniaxial and biaxial deformation of tae AZ31 magnesium alloy sheet[J].Journal of Japan Institute of Light metals,2000,50(2):60-64
    [28]Juni chi Kaneko,Makoto Sugamata,et al.Effect of texture on the mechanical properties and formability of magnesium wrought materials[J].Journal of Japan Institute of Light metals,2000,64(2):141-147
    [29]Shuhei A,Hiroshi O,et al.Deep-drawability of cup on AZ31 magnesium alloy plate[J].Journal of Japan Institute of Light metals,2000,50(9):456-461
    [30]Doege E,Droder K.Sheet metal forming of magnesium wrought alloys formability and process technology[J].Journal of Material Processing Technology,2001,115:14-19
    [31]Kim W.J,Chung S W,et al.Superplasticity in thin magnesium sheets and deformation mechanism maps for magnesium allays at elevated temperatures[J].Acta Materialia,2001,49:3337-334
    [32]R.V.Allen.D.R.East.T.J.Johnson etc.Magnesium alloy sheet produced by twin roll casting[C].2001 TMS Annual Meeting,Feb 11-15,2001,New Orleans,Louisiana,U.S.A
    [33]D.Liang.C.B.Cowley.The Twin-roll strip Casting of magnesium[J].JOM,2004,vol.56,no.5.p.26-28
    [34]H.Watari,N.Koga,R.Paisarn.Formability of magnesium Alloy Sheets Manufactured by Semi-Solid Roll strip Casting[J],Materials Science Forum.2004,vol.449/452,p.181-184
    [35]H.Watari,T.Haga,K.Davey,etc.Production of Magnesium Alloy Sheets by Twin Roll Strip Casting[C].Proceedings of the 6th ESAFORM Conference on Material Forming,p327-p330(2003)
    [36]Shyong Lee,Yung-Hung Chen,Jian-Yih Wang.Isothermal sheet formability of magnesium alloy AZ31 and AZ61[J].Journal of Materials Processing Technology,2002
    [37]Fuh-Kuo Chen,Tyng-Bin Huang.Formability of stamping magnesium-alloy AZ31 sheets[J].Journal of Materials Processing Technology.2003
    [38]Tetsuo Naka,Fusahito Yoshida.Deep drawability of 5083 aluminium-magnesium alloy sheet under various conditions of temperature and forming speed[J].Journal of Materials Processing Technology,1999
    [39]S.Yoshihara,B.J.MacDonald,H.Nishimura etc.Optimization of magnesium alloy stamping with local heating and cooling using the finite element method[J].Journal of Materials Processing Technology,2004
    [40]S.Yoshihara,H.Yamamoto,K.Manabe etc.Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique[J].Journal of Materials Processing Technology.2003
    [41]E.Doege,K.Droder.Sheet metal forming of magnesium wrought alloys—formahility and process technology[J].Journal of Material Processing Technology,2004
    [42]张坤,王忠堂,张士宏等.镁合金AZ31B板料热拉深成形工艺研究[J].轻合金加工技术.Vol.31,2003(10):14-17
    [43]张青来,卢晨,丁文江.镁合金盒形件温拉深起皱原因分析及措施[J].金属成形工艺,Vol.22,2004(1):1-3,10
    [44]张凯锋,尹德良,吴德忠等.AZ31镁合金板的热拉深性能[J].中国有色金属学报.13(6),2003:1505-1509
    [45]罗亚军,杨曦,何丹农等.板料成形中的有限元数值模拟技术[J],金属成形工艺,Vol.18,2000(6):1-3,21
    [46]郑莹,吴勇国,李尚键等.板料成形数值模拟进展[J],塑性工程学报,Vol.3,1996(4):34-47
    [47]Harihaasudhan Palaniswamy,Gracious Ngaile,Taylan Altan.Finite element simulation of magnesium alloy sheet forming at e.elevated temperatures[J].2004
    [48]H.Takuda,T.yoshii,N.Hatta.Finite-element analysis of the formability of a magnesiumbased alloy AZ31 sheet[J].Journal of materials processing Technology,1999
    [49]变形镁合金及镁合金牌号和化学成分.中华人民共和国国家标准,GB/T 5153—2003代替GB/T 5153-1985
    [50]镁及镁合金板、带.中华人民共和国国家标准,GB/T 5154—2003代替GB/T 5154-1985
    [51]尹德良,张凯锋,吴德忠.AZ31镁合金非等温拉深性能研究[J].材料科学与工艺.2004(02):87-91
    [52]Luo A A.Recent magnesium alloy development for elevated temperature applications[J].International Materials Reviews,2004,49(1):13-30
    [53]袁广银.轿车用耐热镁合金的应用基础研究[D].上海:上海交通大学,2001
    [54]刘满平.Mg-Al-Ca合金微观组织、力学性能和蠕变性能研究[D].上海:上海交通大学,2004
    [55]Aghion E,Bronfin B,Eliezer D.The art of developing new magnesium alloys for high temperature applications[J].Materiais Science Forum,2003,419-422:407-418
    [56]林高用,张辉,郭武超,等.7075铝合金热压缩变形流变应力[J].中国有色金属学报,2001,11(3):412-415
    [57]Liu W J.A unified theoretical model for work-harding of polycrystalline metals[J].Acta Mater;1996,44(61):2337-2343
    [58]张艳,党紫九.影响流变应力曲线测试的因素[J].北京科技大学学报,1997,19(1):117-121
    [59]Roberts W,Ahlblom B.A nucleation criterion for dynamic recrystallization during hot working[J].Acta Metall 1978,26,801-813
    [60]Gouret S,Montheillet F.A model of continuous dynamic recrystallization[J].Acta Matex 2003,51:2685-2699
    [61]Siamak S,Ali K T.An investigation into the effect of carbon on the kinetics of dynamic restoration and flow behavior of carbon steel[J].Mechanics of Materials 2003,35:653-660
    [62]Estrin Y.Dislocation theory based constitutive modelling foundation and application[J].Journal of Materials Processing Technology,1998,80- 81:33-39
    [63]许勇顺,柳建韬,聂明,等.应变曲线数学模型的研究与应用[J].应用科学学报,1997,15(4):379-384
    [64]赵志业.金属塑性变形与轧制理论(第2版)[M].北京:冶金工业出版社,1980
    [65]林启权,张辉,彭大暑,等.热压缩2519铝合金流变应力特征[J].矿冶工程,2002,22(2):110-113
    [66]Sellars C M,et al.Hot workability[J].Int Metallurg Rev.1972,17:1-24
    [67]杨立斌,张辉,彭大暑,等.7075铝合金高温流变行为的研究[J].热加工工艺,2002(1):1-2,5
    [68]Rao K P,Hawholt E B.Development of constitutive relationships using compression testing of a medium cabon carbon steel[J].Transactions of the ASME Journal of Engmeermg M aterials and Technology,1992,114:116-123
    [69]Pu Z J,etal Development of constitutive relationships for the hot deformation of boron microalloying TiAI-Cr-Valloys[J].Materials Science and Engineering A,1995,192/193:780-787
    [70]Zhou M,Ciode M P.A constitutive model and its identification for the deformation characterized by dynamic is revovery[J].Journal of Engineering Materials and Technology,Transaction of the ASME,1997,119:138-142
    [71]Zhou M,Clode M P.Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation[J].Mechanics of Materials,1998,(27):63-76
    [72]Gamfalo F.An empirical relation defining the stress dependence of minimus creep rate in metals[J].Transactions American Institute of Mining and Metallurgical Engmeers,1963,227
    [73]Sherhy O D,Mil ler A K.Combining phenomenological and physics in describing the high temperature mechanical behavior of crystalline solids[J].ASME Journal of Engineering Materials and Technology 1979,101:387-393
    [74]ZhouM,Dunne F P E.Mechanisims-based constitutive equations for the superplastic behaviour of a titanium alloy[J].Journal of Strain Analysis for Engineering Design,1996,31(3):187-196
    [75]Beynon J H,Sellars C M.Modelling microstructure and its effects during multipass hot rolling[J].ISIJ International,1992,32(3):359-367
    [76]Cho S H,et al.The prediction of deformation resistance of A 16061 during hot deformation[J].J.Kor.Inst.Met.Mater.,1998,36(4):502-508
    [77]Laasraoui A,Jonas J J.Recrystallization of austenite after deformation at high temperatures and strain rates-analysis and modeling[J].Metallurgieal Transactions,1991,22A(1):151-160
    [78]Nedoma J On a coupled Stefan-like problem in thermo-visco-plastic rheology[J].Journal of Computational and Applied Mathematics,1997,84:45-80
    [79]黄明志,石德坷,金志浩.金属力学性能[M].西安:西安交通大学出版社,1986
    [80]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学,2003
    [81]L.Li,J.Zhou,J.Duszczyk.Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J].Journal of Materials Processing Technology,172(2006):372-380
    [82]C.Y.Wang,X.J.Wang,H.Chang,et al.Processing maps for hot working of ZK60magnesium alloy[J].Materials Science and Engineering,A 464(2007):52-58
    [83]N.Srinivasan,Y.V.R.K.Prasad,P.Rama Rao.Hot deformation behavior of Mg-3Al alloy-A study using processing map[J].Material Science and Engineering A,(2007):1-11
    [84]周开利,康耀红.神经网络模型及MATLAB仿真程序[M].北京:清华大学出版社.2004.
    [85]刘国平等.BP神经网络在带钢宽展预测中的应用[J].南昌大学学报,Vol.25,2003(3):25-28
    [86]庄茁,ABAQUS/Explicit有限元软件入门指南[M],北京:清华大学出版社,1998
    [87]庄茁,ABAQUS/Standard有限元软件入门指南[M],北京:清华大学出版社,1998
    [88]杨晓光,耿瑞.粘塑性材料结构的有限元分析方法[J],航空动力学报,1998,13(4):380-384
    [89]卢剑锋,庄茁,张帆.ABAQUS/Standard用户材料子程序实例[C].ABAQUS软件2003年度用户年会论文集,北京,2004
    [90]ABAQUS Company.ABAQUS Verdion 6.6 Documentation
    [91]郭正华,铝合金板温成形关键技术的研究,华中科技大学博士学位论文,2004
    [92]郭正华,李志刚,黄重九等.塑性成形过程摩擦测试的研究进展.塑性工程学报.2004,11(3):1-6
    [93]B.H.Lee,Y.T.Keum,R.H.Wagoner.Modeling of the friction caused by lubrication and surface roughness in sheet metal forming[J].Journal of Materials Processing Technology 130-131(2002),60-63.
    [94]S.Zhang,P.D.Hodgson,M.J.Cardew-Hall,S.Kalyana sundaram.A finite element simulation of micro-mechanical frictional behavior[J].Journal of Materials Processing Technology.134(2003)81-89.
    [95]B.Ma,A.K.Tieu,C.Lu,Z.Jiang.A finite-element simulation of asperity flattening in metal forming[J].Journal of Materials Processing Technology,130-131(2002)450-455
    [96]E.Doege,C.Kaminsky,A.Bagaviev.A new concept for the description of surface friction phenomena.Journal of Materials Processing Technology,94(1999)189±192.
    [97]J.M.Lanzon a,M.J.Cardew-Hall b,P.D.Hodgson.Characterising frictional behavior in sheet metal forming[J].Journal of Materials Processing Technology,80-81(1998)251-256.
    [98]S.Zhang,P.D.Hodgson,J.L.Duncan,etc.Effect of membrane stress on surface roughness changes in sheet forming.Wear 253(2002)610-617.
    [99]Andrzej Matuszak.Factors infuencing friction in steel sheet forming[J].Journal of Materials Processing Technology 106(2000)250±253.
    [100]S.S.Han.The influence of tool geometry on friction behavior in sheet metal forming.Journal of Materials Processing Technology,63(1997)129-133.
    [101]戴雄杰.摩擦学原理[M],上海:上海科学技术出版社,1984
    [102]王晓林,周贤宾.板料成形接触摩擦过程的有限元模拟技术研究[J],塑性工程学报,200(?)7(1):18-21
    [103]钟志华,(?)光耀.冲压成形CAE技术中接触摩擦计算的新方法[J],机械工程学报,2001,37(2):33-37
    [104]B.H.Lee,Y.T.Keum,R.H,Wagoner.Modeling of the friction caused by lubrication and surface roughness in sheet metal forming[J].Journal of Materials Processing Technology 130-131(2002)60-63
    [105]Yuan Zhang.Investigation of friction compe(?)based on velocity estimation method and high-accuracy laser.Graduate Department of Mechanical and Industrial Engineering University of Toronto,2002
    [106]Aleksander Czekanski.Novel nonlinear finite element analysis of dynamic contact problems using variational inequalities.Graduate Department of Mechanical and Industrial Engineering University of Toronto,2001
    [107]Bernand F.Boueri.On-line friction modeling,estimation and compensation for position control.A dissertation presented to the graduate school of the university of florida in partial fulfillment of the requirements for degree of doctor of philosophy.University of florida 2002
    [108]Lorenzo M.Smith.Solid finite elements for sheet metal forming simulation,A dissertation submitted to Michigan State University in partial fulfillment of the requirements for the degree of doctor of philosophy,Depart of materials science and mechanics,1999
    [109]熊火轮.计算机辅助板料成形分析模拟系统[D].北京:北京航空航天大学博士学位论文,1990
    [110]董湘怀.轴对称及三维金属板料成形过程的有限元模拟[D].华中理工大学博士学位论文.1991
    [111]吴勇国.板料成形数值模拟研究[D],武汉:华中理工大学,1995
    [112]柳玉起.板材成形塑性流动规律及起皱破裂回弹的数值研究[M].长春:吉林工业大学,1995
    [113]李广权.板料无模多点成形过程数值模拟研究[M].长春:吉林工业大学,1997
    [114]张凯峰.三维板壳成形过程的粘塑性有限元分析[C].中国机械工程学会锻压分会第六届学术年会,北京,1995
    [115]王忠金,王仲仁.板料粘性介质胀形过程应变速率变化的模拟研究[J].塑性工程学报,1999.6(3):46-48
    [116]王晓林,周贤宾.板料成形接触摩擦过程的有限元模拟技术研究[J].塑性工程学报,2000,7(1):18-21
    [117]王晓林,周贤宾.板料成形数值模拟接触搜索模型的研究[J].北京航天航空大学学报,2000.3.NO.3
    [118]蔡中义,李明哲,陈庆敏.大变形中摩擦接触问题的数值模拟及应用[J],应力力学学报,2002.6.NO.2##原图像不清晰
    [119]隋阿军,马正元.板料成形过程数值模拟中的接触分析[J].沈阳工业大学学报,2000.2.NO.1
    [120]孙希延,李泉永,杨连发.板料拉深成形数值模拟中动态接触的处理[J].模具工业,2002.NO.8
    [121]苏岚,王先进,唐荻,等.有限元法处理金属塑性成型过程的接触问题[J].塑性工程学报.2000.12.NO.4
    [122]李尧臣.金属板料冲压成形的有限元法模拟[J].力学学报,1995.27(3)351-364
    [123]汪晨.板料成形回弹的数值模拟及考虑回弹反向补偿的模具设计方法研究[D].上海:上海交通大学.1999
    [124]#12
    [125]Harihaasudhan Palaniswamy,Gracious Ngaile,Taylan Altan.Finite element simulation of magnesium alloy sheet forming at e.elevatcd temperatures[J].2004
    [126]H.Takuda,T.yoshii,N.Hatta.Finite-clement analysis of the formability of a magnesiumbased alloy AZ31 sheet[J].Journal of materials processing Technology.1999
    [127]Hibbit,Karlsson,Sorensen.ABAQUS/Explicit有限元软件入门指南(庄茁)[M].北京:清华大学出版社,1999
    [128]张庭芳,黄菊花,杨雪春,等.ME20M镁合金板料塑性成形性能实验研究[J].兵器材料与科学,2007,30(3):18-21
    [129]KEELER S P.Plastic instability and fracture in sheets stretched over rigid punches[J].Trans ASTM,1963,56(1):215-219
    [130]KEELER S P.Understanding sheet metal formability[J].Journal of Machinery Industry,1968,53(2):556-667
    [131]GOODWIN G M.Application of strain analysis on sheet metal forming problems in the press shop[R].Oxford:Clarendon Press.1972
    [132]HILL R.On discontinuous plastic states with special reference to localized necking in thin sheets[J].Journal of Mechanical and Physics of Soilds,1952,23(1):19-30.
    [133]SWIFT W.Plastic instability under plane stress[J].Journal of Mechanical and Physics of Solids,1952,23(1):1-18
    [134]LEVY S B.A comparison of empirical forming limit curves for low carbon steel with theoretical forming limit curves of ramaekers and bongaerts[R].Guidford:Portcullis Press,1972.
    [135]王辉,高霖,赵明琦.一种基于有限元仿真的板料成形极限预测方法[J].山东大学学报(工学版),2006,36(2):95-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700