用户名: 密码: 验证码:
炸药熔铸成型过程监测评价及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炸药熔铸成型是将炸药加热熔化,由一定的工艺处理后将熔融态炸药注入容器或模具(其中固相含量一般高达40%-70%),经过短暂流动逐渐冷却固化成具有一定形状、尺寸的成型方法,是当前国内外一种广泛使用的装药成型技术,主要适用于TNT单质炸药或以TNT为液相载体的混合炸药。
     熔铸过程伴随着十分复杂的物理变化过程,其中一个最重要和最受关注的变化就是物态变化,即熔融态炸药熔铸到模具中后,随着温度降低,液相炸药将逐渐结晶变成固体,而这一过程将在很大程度上决定熔铸成型体的质量特性,并进而影响装药的使用性能。长期以来,由于TNT结晶行为与形态的复杂性和缺乏能够有效监测结晶过程的可视化非破坏检测手段,对炸药熔铸结晶成型过程的认识仍主要依赖于传统的相变分析和热力学分析,以及对成型体最终质量检验推演获得的经验知识。对于深入分析成型过程、优化熔铸工艺和提高成型体质量而言,还迫切需要寻求精密、有效的在线非破坏检测方法以实现对熔铸炸药成型过程结晶与质量特性演化的深入观察研究。因此,本论文探索以超声、CT技术为主导,结合内部温度场测试技术,研究深入炸药熔铸成型过程的各种内部参数及其分布测量的监测评价方法,开展数值模拟和仿真,探讨浇铸成型机理及异常形成机制。
     研制并利用热电偶内置法研究了浇铸成型过程的温度分布,获得了熔铸炸药冷却凝固过程的温度变化曲线,显示出物质相变与温度拐点出现之间的关联。结果表明单质TNT炸药凝固降温过程中越靠近模具中心部位在凝固点温度保持时间越长,TNT/RDX混合炸药冷却过程在凝固点温度保持时间很短,在靠近中心部位才有明显的时间保持;熔铸成型中加冒口与不加冒口对温度动态变化的影响有明显不同,最明显区别是最终凝固的区域不同,加冒口熔铸成型的区域较不加冒口炸药熔铸成型的区域明显上移。
     设计多通道超声透射方法并在线监测了炸药凝固成型过程,得到了凝固成型过程的声衰减、声速和波形特征变化规律,其中波形和声速的变化与炸药固/液相界面物理特征和凝固速度密切相关,而声衰减的变化则与炸药结构变化(含气孔和裂纹)和炸药密度的高低密切相关。凝固速度随着凝固层的推进而逐渐减慢,并显现了炸药凝固后裂纹的产生与扩展导致声衰减值降低至稳定的现象以及纯TNT凝固过程不断形成的缩松导致衰减值快速降低的现象,表明了设计的超声透射技术及其炸药凝固特性与其声学特性的内在联系能有效地揭示炸药熔铸凝固成型规律并在线诊断出产品质量的优劣。
     利用x射线CT研究了熔铸炸药凝固成型结构,获得了熔铸TNT/RDX炸药成型过程中三维结构信息。结果表明炸药自然凝固呈现以模具中心轴线为中心,从模具壁开始由外及里的逐层凝固规律,且靠近模壁TNT为细小晶体,随着凝固的继续逐渐形成粗大结晶体,造成大量孔隙并导致成型炸药疏松,在保温、不补缩状态下凝固后细小缩孔率一般7%左右,但添加RDX固相颗粒后TNT炸药基本凝固成细小等轴晶,炸药密实性得到大幅提高,药柱底部与上部密度差一般小于2%;单质TNT结晶体取向与凝固过程中内部热应力的分布密切相关,呈现较为明显的取向特征,一种取向基本沿径向排列,另一种基本沿轴向排列,模具尺寸越大这种排列规律越明显;越靠近模壁部位缩孔越少、CT值越高,相应密度值越高,而越靠近中部则由于形成较密集的微缩孔,CT均值则降低越明显,相应密度值降低也越明显;TNT混合炸药(RHT-902和RHT-906)成型药柱中一般都存在气孔,气孔是在浇注到模具的过程产生的,且成型药柱内部会产生横向和纵向裂纹,其中纵向裂纹一般穿过中轴线,横向裂纹多数处于药柱中部,并证实裂纹的产生通常发生在炸药全部凝固后。
     研究了炸药熔铸过程温度、粘度、传热等参数的因素对浇铸的物质相变及其异常产生的影响,数值模拟了浇铸成型过程中的温度和应力分布以及以出现缩孔等异常情况,模拟结果表明:粘度降低药柱中的缩孔情况略有改善,固化过程中的应力略有减小;换热系数降低,药柱内部温度变化明显趋缓,可能产生缩孔的区域变小,产生热应力也略有减小;模具温度提高后对内部中心的质量无改进效果,温度变化的拐点有延后现象。
     在上述试验基础上探讨了炸药熔铸成型过程中裂纹、气孔、缩孔异常产生的基本问题,并分析了炸药熔铸凝固机制及影响因素、不同工艺条件以及RDX含量对TNT结晶形态、微细结构以及成型质量的影响,探讨了工艺优化措施,为进一步研究TNT/RDX熔铸成型结构与性能关系奠定一定的理论基础。
     综上所述,本文提供了一种综合的测量和观察炸药凝固成型过程的方法,较为系统地研究了凝固成型过程的一些机制问题以及不同物理量之间的内在联系,这些为炸药熔铸成型工艺改进和提高提供了重要的技术基础,并具有重要的实际指导意义。
Energetic materials (simply named explosives) casting is a widely used molded technique. In this way explosive is heated and melted with solid phase rate up to 40%-70%, then injected in mould using some treatment technology, and last solidified to cast products with some shape and dimension. It is mainly applied in TNT pure explosive or TNT liquid carrier mixed explosive.
     Explosive casting process involves many complicated physical changes, and phase change is the most important and attended change, which is liquid explosive solidification as temperature descends.This process can determine the casting quality characteristic at a large extent and accordingly affect the performance. For the complexity of crystallization, the understanding of explosive casting process mainly lies on the phase change and thermodynamics analysis.So it is urgent for on-line nondestructive test method to realize crystallization process and quality study. This paper studies test evaluation method of inner parameters and their distribution of explosive casting process based on ultrasonic and CT technique, and investigate the analysis method of abnormity through numerical simulation.
     The temperature distribution in the casting process was studied with thermocouple inner-laid method. The temperature change curves show that there is an association between phase change and temperature inflexion. The results indicate that the temperature at freezing point is held longer at closer center position for pure TNT while the holding time is very short for TNT/RDX mixed explosive and only obvious holding at center part during cooling process. The riser added will obviously affect the dynamic change of the temperature and the final solidification regions.
     The change rules of sound attenuation, sound velocity, and waveform character were obtained by on-line multichannel ultrasonic technique during explosive solidification process. Changes of waveform and sound velocity are related to solid and liquid phase interfacial character and solidification rate. And change of sound attenuation is related to explosive configuration such as pores and cracks and the density. The result shows that axis solidification rate is bigger than radius solidification rate of cylindrical casting explosive and solidification rate reduces with time. Acoustic data show that formation and growth of cracks induce ultrasonic amplitude rapid reduce then keeping stable, and shrinkages induce ultrasonic amplitude rapid reduce in TNT solidification process.The results show that acoustic characteristic has internal relation with explosive solidification characteristic and can online diagnose product quality.
     This paper studies cylindrical solidification structure of casting explosive with x-ray CT and obtains 3-D structure of crystallization in the melted TNT/RDX casting process.The results show that the solidification is from the outer to the inner along central axis line. Fine crystals and compact explosive are got near the wall of mould.Bulk crystals are formed along with solidification which induce many pores and porosity of casting products.Shrinkage rate is about 7% under heat preservation and no repair while density can be largely enhanced when RDX grain is added and isaxis crystal is formed.The density difference between upper and down is less than 2%.
     The crystallization tropism of pure TNT is relative with inner thermal stress and one is radial and another is axial. The shrinkage is less near mould wall and CT value is higher and density is bigger. The micro shrinkage is dense at central section. There are some pores produced during casting in TNT mixed explosive (RHT-902 or RHT-906) and longitudinal and transverse crack are brought at explosive pole. And the cracks are approved to be produced after entire solidification.
     The influence of temperature and viscosity and heat transfer on phase change of explosive casting is studied.Temperature and stress distribution and shrinkage etc. are simulated. The results show that reducing viscosity can decrease shrinkage and stress, and reducing heat transfer coefficient can make temperature change slower which reduced the area of shrinkage and thermal stress.Increasing mould temperature has no improvement effect on inner quality and the inflexion point of temperature change will cause time delay phenomena.
     The basic issues are discussed during explosive casting including crack, pore, shrinking hole based on above test.Casting mechanism and effect factor are analyzed and the infection of different techniques and RDX content for micro structure and quality are also studied.This can establish some theory basis for studying the relationship of structure and performance of TNT/RDX casting explosive.
     Above all, this paper provides an integrated measuring method of explosive casting and solidification process and studies mechanism of molded rules and inherent relation between different physical parameters. These provide important technology basis for explosive molded technology improvement and have important guiding significance.
引文
[1]周怀德.炸药精密装药技术.《强激光与粒子束》杂志社出版.1999.
    [2]孙国祥,陈鲁祥.B炸药的品种、组成和性能[J].火炸药,1989(1):15-21.
    [3]孙荣康,任特生,高怀琳.猛炸药的化学与工艺学(下册)[M].国防工业出版社.
    [4]王听.美国不敏感混合炸药的发展现状[J].火炸药学报.2007,30(2):78-80.
    [5]王亲会.DNTF基熔铸炸药的性能研究[J].火炸药学报.2003,26(3):57-59.
    [6]王亲会,张亦安,金大勇.DNTF炸药的能量及可熔铸性[J].火炸药学报.2004,27(4):14-16.
    [7]王亲会.一种新型熔铸炸药研究[J].含能材料.2004,12(1):46-47,55.
    [8]张金勇,胡双启,曹雄.两种新型装药工艺,工业安全与环保,2006,32(4).
    [9]陆明,周新利.RDX的TNT包覆钝感研究,火炸药学报,2006,29(6).
    [10]陆亮英.NL型粉状炸药螺旋凉药输送机.广西轻工业,2008,4.
    [11]李粤斌,韦锦初,李满源.HLC型乳化炸药全连续化自动化生产工艺与设备应用.爆破器材,32(1).
    [12]邵甲宇,张书华.改善膨化硝铵炸药流散性的技术途径.煤矿爆破,2007(4).
    [13]罗晓燕,范体国.铵锑炸药防结块工艺研究,湖北化工,2001(3).
    [14]刘钧,李树奇.TNT中杂质对装药质量的影响.火炸药学报,2006,29(3).
    [15]郭朋林朱兴虎.新型铸装炸药生产工艺.工程物理研究院科技年报,2004(1):426-427.
    [16]王淑萍.分步压装装药的安全性分析,2006,火炸药学报,29(2).
    [17]黄亨建,董海山,张明.B炸药的改性研究及其进展.含能材料,2001,9(4).
    [18]C L Lin, J D Miller, A new cone beam X-ray microtomography facility for 3D materials analysis of multiphase materials, in:Proc.2nd World Congr. on Industrial Process Tomography[C],Hannover,2001:98-106.
    [19]G.L. Dymova. P.V.Sevastyanov, Comparative Analysis of Mathematical Models for Thermal Stress and Deformation Generation in Solidfied Ingots[J], J. ENG PHYS.(USSR),Jan,1991:99.
    [20]Shi LIU,Runsheng YAN,Haigang WANG,et al.Applications of Electrical Capacitannce Tomography in Two Phase Flow Visualization[J].J. of Thermal Science.2004,13(2).
    [21]C.G.Xie,S.M.Huang,B.S.Hoyle,et al. Electrical capacitan tomography for flow imaging:system model for development of image reconstruction algorithms and design of primary sensors[J].IEE Proc.-G,1992,139:89-98.
    [22]王海刚.旋风分离器中气—固两相流数值计算与实验研究.中国科学院博士论文.北京,中国科学院工程热物理.
    [23]W Q Yang,M Byars,An Improved Normalisation Approach for Electrical Capacitance Tomography,1st World Congress on Industrial Process Tomography, Buxton,Great Manchester[C],April 14-17,1999.
    [24]M Bramanti,E A Salerno,A Tonazzini. An acoustic pyrometer system for tomographic thermal imaging in power plant boilers[J].IEEE Transactions on Instrumentation and Measurement.1999,45(1):44-48.
    [25]J Lu, Acoustic computer tomographic pyrometry for two-dimensional measurement of gases taking into account the effect of refraction of sound wave paths[J].Meas.Sci.& Technol.2000,11:396-405.
    [26]杨莉松,王桂英,徐至展.光学层析成像机理分析[J].激光与红外.1997,27(4):239-41.
    [27]曾志男,明海,光学相干层析成像技术[J].光电子技术与信息.1999,12(1):1-8.
    [28]郑莹娜,李扬,刘强等,光学层析成像空间阵列传感器研究[J].激光与光电子学进展.2001,10:35-40.
    [29]M.R. Fetterman, E.Tan,L. Ying, et al. Tomographic imaging of foam[J]. Optics Express,2000,7(5):186-197.
    [30]C P Gonatas, J S Leigh, A G Yodh, Magnetic Resonance Images of Coarsening Inside a Foam[J].Physical Review Letters.1995,75(3):573-576.
    [31]董峰,徐立军,刘小平等.用电阻层析成像技术实现两相流流型识别[J].仪器仪表学报.2001,22(3):416-417.
    [32]MAYI XIN, ZHENGZH1 CHU, XULING AN, et al. Application of electrical resistance tomography system monitor gas/liquid two phase flow in a horizontal pipe [J].Flow Meas Instrum.2001,12(2):259-265.
    [33]Dong Feng, Liuxiao Ping, Deng Xiang, et.al, Identification of two phase flow regimes in horizontal, inclined and vertical pipes[J].Mea. Sc. Technol,2001, 12(8):1069-1075.
    [34]Wang M, DORWARD A, VLAEV D, Measurements of gas/liquid mixing in a stirred vessel using electrical resistance tomography[J].Chenical Engineering Science.2000,77(1):93-98.
    [35]刘石,徐建中.粉粒体两相流的电容层析成像测量[J].工程热物理学报.2002,23(1):94-98.
    [36]谢代梁,王保梁,李海青等.电容层析成像流型可视化系统研究[J].浙江大学学报.2002,36(1):22-25.
    [37]G J Brown, Reilly D, et al. Development of an ultrasonic tomography system for application in pneumatic conveying[J],Sci & Technol.,1996,7(3): 396-405.
    [38]徐立军等,气/液两相泡状流体监测用透射模式超声层析成像系统研究[J],仪器仪表学报,1996,17(1):1-7.
    [39]刘石,王海刚,姜凡,循环流化床固体分布的层析成像测量[J],工程热物理学报,2001,22(5):645-648.
    [40]王保良,乐嘉华,黄志尧.多相流参数检测电容层析成像技术研究[J].石油化工自动化.1998,2:4-6.
    [41]周业明,李莉,胡志勇.有限元模拟预测铸钢件的宏观缩孔缺陷[J].铸造,2003,50(12):743-745.
    [42]Hou Shuping, Zhao Weimin, Ren Fuzhan. Progress in the micro-modeling of the casting solidification process[J].Journal of materials processing technology.,2002,123:361-370.
    [43]陈瑶,铸件凝固过程温度场、应力场数值模拟技术的研究,清华大学工学博士学位论文,1998:10-13.
    [44]马兆敏,沈炜良,李文娟.复杂铸件三维温度场有限元分析[J].广西工学院学报,2003,14(1):54-58.
    [45]ZHAO Haidong, Ohnaka Itsuo,Zhu Jindong. Modeling of mold filling of Al gravity casting and validation with X-ray in-situ observation[J].Applied Mathematical Modelling,2008,32:185-194.
    [46]R.W. Hamilton, D.See, S.Butler, et al. Multiscale modeling for the prediction of casting defects in investment cast aluminum alloys[J].Materials Science and Engineering,2003 A 343:290-300.
    [47]林家骗,朱世根等,铸钢件凝固过程三维温度场热应力场的数值模拟与缩孔的热裂判定[J],铸造,1993(10).
    [48]B.G Thomas, LV. Samarasekera, Application of Mathematical Heat Flow and Stress Models of Steel Casting to Investigate Panel Crack Formation, Modeling and Control of Casting and Welding Process, Metallurgical Society/AIME,1986.
    [49]T.Inoue, D.Y.Ju, Simulation of Solidfication and Visoplastic Stress during Vertical Semicontinues DC Casting of Al Alloy, International Journal of Plasticity,1992.
    [50]陈艳波,王建军,周俐.连铸结晶器钢水连续测温技术[J].安徽工业大学学报,2007,24(4):357-359,365.
    [51]郑赛晶,顾文博,张建平等.热电偶法测量卷烟内部动态温度[J].烟草科技,2006,1:5-9.
    [52]曾其勇.化爆材料动态切削温度的薄膜热电偶测量原理及传感器研制.大连理工大学博士学位论文,2005.
    [53]张伟斌.高聚物粘结炸药超声检测与评价技术及应用研究,四川大学硕士学位论文,2006.5
    [54]全国锅炉压力容器无损检测人员资格考核委员会编写组.超声波探伤.劳动部锅炉压力容器安安全杂志社.1995.
    [55]中国机械工程学会无损检测分会.超声波检测.机械工业出版社.2000.
    [56]张俊哲等著.无损检测技术及其应用.北京:科学出版社,1993.
    [57]李喜孟主编.无损检测.北京:机械工业出版社,2001.2
    [58]R Capriotti, E Dati etc. NDT Techniques for the Evaluation of Impact Damage on Aeronautical Structures. Proceedings of 15th World Conference on Non-Destructive Testing,2000.10
    [59]C Pecorari, X Gros etc. Assessment of Steels Ageing by Rayleigh Wave Velocity Measurements. Proceedings of 15th World Conference on Non-Destructive Testing,2000.10
    [60]Wolfram A, Karl Deutsch. Automated Ultrasonic Inspection. Proceedings of 15th World Conference on Non-Destructive Testing,2000.10
    [61]G.C.诺尔等.材料中微结构损伤的超声波图象测定.舰船力学情报,1990(10)
    [62]《美国无损检测手册》译审委员会.《美国无损检测手册》(超声卷),北京:世界图书出版公司,1996.5.
    [63]柴国墉,A.R.Greenberg,W.B.Krantz.超声监测技术在膜分离过程中的应用研究.膜科学与技术,2003,23(4):134-140.
    [64]Shant Kenderian, Tobias P.Berndt,Robert E,etc.Ultrasonic monitoring of dislocations during fatigue of pearlitic rail steel. Materials Science and Engineering A,2003(348):90-99.
    [65]Jeongguk Kim,Peter K.Liaw. Monitoring tensile damage evolution in Nextel 312/BlackglasTM composites.Materials Science and Engineering A, 2005(409):302-308.
    [66]H.K. Lee, K.M. Lee, Y.H.Kim, et al. Ultrasonic in-situ monitoring of setting process of high-performance concrete[J].Cement and Concrete Research. 2004(34):631-640.
    [67]W. Michaeli, C.Starke. Ultrasonic investigations of the thermoplastics injection moulding process[J].Polymer Testing.2005 (24):205-209.
    [68]I.Alig, H.Oehler, D. Lellinger, et al. Monitoring of film formation, curing and ageing of coatings by an ultrasonic reflection method[J].Progress in Organic Coatings.2007(58):200-208.
    [69]Elmira Kujundzic, A. Cristina Fonseca, Emily A. Evans, et al.Ultrasonic monitoring of earlystage biofilm growth on polymeric surfaces. Journal of Microbiological Methods.2007 (68):458-467.
    [70]Dieter Fischer, Karin Sahre, Mona Abdelrhim, et al. Process monitoring of polymers by in-line ATR-IR, NIR and Raman spectroscopy and ultrasonic measurements.C.R. Chimie.2006(9):1419-1424.
    [71]Pablo Resa, Toma's Bolumar,Luis Elvira, et al. Monitoring of lactic acid fermentation in culture broth using ultrasonic velocity. Journal of Food Engineering.2007 (78):1083-1091.
    [72]F. Camarena, J.A. Mart'inez-Mora, M. Ardid.Ultrasonic study of the complete dehydration process of orange peel. Postharvest Biology and Technology.2007 (43):115-120.
    [73]Ibrahim Gulseren, John N. Coupland.Ultrasonic velocity measurements in frozen model food solutions.Journal of Food Engineering.2007 (79): 1071-1078.
    [74]Cecile Alberola, Thomas Dederichs, Detlef Emeis, et al. Ultrasonic velocity measurements as a method for investigating phase transitions of monoglyceride emulsifier systems in pearlescent cosmetic creams.Journal of Colloid and Interface Science.2007 (307):500-508.
    [75]周世圆,徐春广,肖定国等.振动熔接焊状态的超声波在线检测方法研究.计量技术.2003(1):11-13.
    [76]张伟斌,田勇,温茂萍等.JOB-9003炸药热冲击损伤的超声波检测[J].含能材料,2004,12(2):85-88.
    [77]Zhang Weibin, etal. Research on Ultrasonic Testing for Mechanical Damage of Polymer Bonded Explosive.2005 IASPEP,Beijing.
    [78]张伟斌等.塑料粘结炸药试件应力状态的超声法测试技术[J].含能材料,2006,14(2):51-53.
    [79]田勇罗顺火张伟斌等.JOB-9003炸药“激热”冲击损伤破坏及超声特征.火炸药学报,2002(3):17-19.
    [80]田勇张伟斌郝莹等.炸药热冲击损伤破坏及超声波特性参量检测.火炸药学报,2000(4):13-15
    [81]田勇,张伟斌,温茂萍等.JOB-9003高聚物粘结炸药热冲击损伤破坏相关性研究[J].含能材料,2004,12(3):174-177.
    [82]田勇,张伟斌,李敬明等.采用超声波特性参量研究PBX炸药的热处理.含能材料,2006,14(1):53-55.
    [83]Zhanfeng Yang, Weibin Zhang, etal. Testing Application of Scanning Acoustic Microscope for Adhesive Characteristics of Explosive/Aluminum-Alloy Interface.17WCNDT, Oct.2008,China Shanghai
    [84]刘元朋张丰收.锥束计算机断层成像系统[M].北京:知识产权出版社,2008.
    [85]Withjack, E.M.,Computerised tomography for rock property determination and fluid flow visualization. Society of Petroleum Engineers Formation Evaluation,1988,696-704.
    [86]Klobes, P.,Riesemier, H.,Meyer, K.,Goebbels, J.,Rock porosity determination by combination of X-ray computerized tomography with mercury porosimerty. Fresenius[J].Journal of Analytical Chemistry, 1997,357:543-547.
    [87]Doi, N.,Kato,O.,Sakagawa,Y.,Akaku, K.,Uchida,T.,Characterisation of fracture and rock property of the Kakkonda granite bu FMI and other loggings[J].Journal of the Geothermal Research Society Japan,1998,20, p34.
    [88]Ohtani, T.,Nakashima, Y.,Muraoka, H.,Three dimensional miarolitic cavity distribution in the Kakkonda granite from borehole WD-la using X-ray computerized tomography[J].Engineering Geology,2000,56:1-9.
    [89]Wildenschild D, Hopmans JW, Waz CMP,Rivers ML, Rikard D, and Christensen BSB.Using X-ray computed tomography in hydrology:systems, resolution, and limitations[J].Journal of Hydrology,2002,267:285-297.
    [90]杨更社.岩石细观损伤力学特性及本构关系的CT识别[J].煤炭学报,2000,25(12):102-106.
    [91]任建喜,葛修润,蒲毅彬.岩石破坏全过程的CT细观损伤演化机理动态分析[J].西安公路交通大学学报,2000,20(4):12-15.
    [92]仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报,2002,10(1):93-97.
    [93]丁卫华,仵彦卿,蒲毅彬等.CT技术应用于岩石实验动态观测的新进展[J].冰川冻土,2000,3(9):218-222.
    [94]李廷春.三维裂隙扩展的CT试验及理论分析研究.中国科学院武汉岩土力学研究所博士学位论文,2005.
    [95]谢涛.基于CT实时观测的沥青混合料裂纹扩展行为研究.西南交通大学博士学位论文,2006.
    [96]崔中兴.基于CT实时观测的水-岩力学耦合机理研究.西安理工大学博士学位论文,2005.
    [97]William D.Carlson, Cambria Denison. Mechanisms of Porphyroblast Crystallization:Results from High Resolution Computed X-ray Tomography. Science.1992,257(5074):1236-1239.
    [98]Philip C.J. Donoghue, Stefan Bengtson, Xi-ping Dong, et al. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature. Vol 442,10 August 2006:680-683.
    [99]Brent Daniel Nielsen. Nondestructive Soil Testing using X-ray Computed Tomography. Montana State University Bozeman, Montana. November 2004.
    [100]Hiroyuki Toda, Tomomi Ohgaki and Kentaro Uesugi. In Situ High Resolution X-ray Tomography of Fracture Micromechanisms in Aluminium Foam. Industrial Application. SPring-8:133-134.
    [101]Richard A. Ketcham. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. Journal of Structural Geology. 2005,27:1217-1228.
    [102]Richard A. Ketcham, Gerardo J. Iturrino.Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution X-ray computed tomography. Journal of Hydrology.2005,302:92-106.
    [103]J.B.LeBret, M.G. Norton, D.F. Bahr. Examination of crystal defects with high-kV X-ray computed tomography. Materials Letters.2005,59:1113-1116.
    [104]M. Saadatfar, C.H.Arns, M.A. Knackstedt, T.Senden. Mechanical and transport properties of polymeric foams derived from 3D images.Colloids and Surfaces A:Physicochem. Eng. Aspects.2004,263:284-289.
    [105]Matthew Dennis Montminy. Complete Structural Characterization of Foams using 3D Images.A thesis submitted to the Department of Control Science and Dynamical Systems at the University of Minnesota.2001.5.
    [106]Matthew D.Montminy a, Allen R. Tannenbaum b, Christopher W. Macosko. The 3D structure of real polymer foam. Journal of Colloid and Interface Science.2004,280:202-211.
    [107]Abdelmajid Elmoutaouakkil, Luc Salvo,Eric Maire, Gilles Peix.2D and 3D Characterization of Metal Foams Research Using X-ray Tomography. Advanced Engineering Materials.2002,4(10):803-807.
    [108]R. A. Smith, M. J. Paulus, J. M.Branning, P.J. Phillips. X-ray Computed Tomography On a Cellular Ploysiloxane Under Compression. National security complex.2000,12.report No.:Y/DZ-2284.
    [109]D.Wildenschild, J.W. Hopmans, C.M.P Vaz, et al. Using X-ray computed tomography in hydrology:systems, resolutions, and limitations. Journal of Hydrology.2002,267:285-297.
    [110]Eyad Masad, Shadi Saadeh, Taleb Al-Rousan, et al. Computations of particle surface characteristics using optical and X-ray CT images. Computational Materials Science.2005,34:406-424.
    [111]M. Van Geet,T, G. Volckaert, S.Roels.The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture. Applied Clay Science.2005,29:73-87.
    [112]T.J.Chotard, Application of X-ray computed tomography to characterise the early hydration of calcium aluminate cement.Cement & Concrete Composites. 2003,25:145-152.
    [113]卢洪义,杨兴根,孙有田.固体火箭发动机内部缺陷高分辨率检测.推进技术.2003,24(1):90-92.
    [114]徐夏刚,赵歆波,张定华,敖波.一种工业CT的短裂纹群扩展检测新方法.CT理论与应用研究.2006,15(1):51-55.
    [115]陈蕴生,李宁,韩信等.非贯通裂隙介质裂隙扩展规律的CT试验研究.岩石力学与工程学报.2004,24(15):2665-2660.
    [116]王爱华,李华.CT技术在航天产品检测中的应用.航天控制.2001(2):11-13.42.
    [117]ZHANG Wei-bin, DAI Bin, TIAN Yong, HUANG Hui, et al. Experimental Study on Micron Crystal Defect of Explosive based on μVCT.Chinese Journal of Energetic Materials.2008,16(6):767.
    [118]ZHANG Wei-bin, HUANG Hui, TIAN Yong, etal. Structure Characterization and Performance Estimate for Thermal Solidified RDX Explosive by μCT. Chinese Journal of Energtic Materials.2009,17(4):499-500
    [119]ESI group.ProCAST user manual[DK].2008.
    [120]刘德润著.弹药装药工艺学[M].北京:北京工业学院,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700