用户名: 密码: 验证码:
软地面半履带气垫车姿态控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半履带式气垫车将气垫技术与半履带式行走机构有机结合在一起,可用于有效提高海滩、河流、沙漠、沼泽等地面松软地带车辆的通过性。该车辆在行驶过程中,由于车速的变化、载重的不均匀、路面的不平整以及围裙的泄漏等原因会造成车体出现俯仰和侧倾现象,使行驶阻力增大,造成总功率消耗增加,极端情况下甚至使行驶更加困难。因此,研究如何协调车辆行驶的功率消耗、驱动性能以及车辆运行时的姿态控制三者之间的关系对于提高车辆性能具有十分重要的意义。
     本文的研究工作是结合国家自然基金“软地面半履带气垫车载荷匹配及行驶姿态的控制研究”(项目号:50675135)进行的。针对半履带气垫车辆结构实现方案、气垫系统的特性试验、利用多气垫系统进行车身姿态调节时垫升系统的建模以及半履带气垫车姿态控制方案等问题,进行了较系统的研究。
     本文在回顾气垫车辆及其控制技术的研究现状和控制中存在的问题的基础上,建立了整车动力学模型和虚拟样机模型。在此基础上,设计制作了半履带气垫车的原理样机。通过对原理样机的气垫系统相关试验和相对应的流体力学仿真,进行了多气垫系统的特性研究,并建立了多气垫系统的正向特性和逆向特性的神经网络模型。
     本文结合集成控制和分层控制的思想,提出了同时考虑车辆功率消耗、行驶驱动控制和车身姿态控制的半履带气垫车姿态控制方案。首先提出了混合广义极限优化算法(HGEO)来求解前馈控制回路中的最优功率,得到的前馈控制广义力是可以保证车辆运行状态所需的基本目标广义力;在反馈控制回路中,利用模型预测控制器(MPC)来求解反馈控制目标广义力,使基本目标广义力根据车辆运行目标得到修正,进一步保证了车辆运行状态所需的修正目标广义力;在目标广义力分配模块中,将最终目标广义力通过序列二次规划(SQP)分配成目标驱动力矩和目标气垫压强;对于得到的目标气垫压强,通过气垫系统逆特性人工神经网络模型转换成所需的风机转速和各子气垫可变阀门开度值。针对典型工况进行的仿真结果表明,所建立的车辆姿态控制器具有较好的控制性能,同时也验证了控制框架中各模块的必要性。
     带非线性特性的气垫系统和车轮-土壤间的非线性作用引起了半履带气垫车辆纵向、侧向和垂向动力学之间的耦合,由此所带来的控制问题是亟待解决的车辆工程领域的技术难点之一。本文所提出的对于半履带气垫车辆车辆姿态的控制器较为合理的考虑了这些耦合关系,既融合了车辆动力学、土壤地面力学、试验研究、计算流体力学、虚拟样机技术、优化计算与先进控制理论应用,又兼顾了车辆功率消耗、行驶驱动控制和车身姿态控制,对工程技术领域和今后的非路面车辆控制系统的相关研究具有一定的参考价值。
The semi-track air-cushion vehicle (STACV), which effectively combines air cushion technology and semi-track walking mechanism, can be used to improve transportability of vehicles at soft terrain areas, such as beaches, rivers, deserts, swamps, etc. Due to the change of speed, the unbalance of load, the unevenness of road and the leakage of skirt, the vehicle body pitch and roll will increase during the STACV driving, which will indirectly increase the total power consumption, driving resistance and even difficult to travel. Therefore, the research of how to coordinate the relationship among the vehicle power consumption, driving performance and vehicle driving attitude control is of great value.
     Based on the National Natural Science Foundation of China (NSFC) entitled“Research on load distribution and driving attitude control of Semi-Track Air-Cushion Vehicle on soft ground”(No. 50675135), the study on the attitude control for the STACV on soft terrain is carried out, especially emphasized on the structure realization of the STACV, air cushion system performance test, modeling of multi air cushion system for vehicle body attitude control and attitude control scheme of the STACV.
     After reviewing the research status of air cushion vehicle and its control technology and the problems in controlling the vehicle, a full vehicle dynamics model and corresponding virtual prototype are establishment. Then, a prototy of the STACV is built up. Through the air cushion system related test on the prototype and the corresponding fluid dynamics simulation, the performance of multi air cushions system is studied using fluid dynamics simulation and forward and reverse characteristics of neural network models are built up for them.
     Combining the integrated control and hierarchical control method, a vehicle attitude control framework is proposed for the STACV by taking into account the vehicle power consumption, diring control and vehicle body attitude control together. In feedworward ontrol loop, the optimal power is sovled by using the new proposed hybrid generalized extremal optimization algorithm (HGEO) and the resulting generalized force vecetor for feedforward control is the basic object generalized force which can ensure the basic vehicle running status; in the feedback control loop, the model predictive controller (MPC) is used to solve the target generalized feedback force vector which is the modification of the basic object generalized force according to the vehicle running status and can further ensure the vehicle running target; in the generalized force distribution module, the ultimate target of the generalized force is assigned to the target dirving torques and the target air cushion pressures by sequential quadratic programming (SQP); the resulting object air cushion pressures is further converted into the requied fan rotational speed and variable orifices opening using the reverse neural network model of the air cushion system. The simulation results for typical operation conditions show that the established vehicle attitude controller has good control performance, and at the same time the necessity of each control module in the control framework is also validated.
     The nonlinear air cushion system and the interaction between wheels/semi-tracks and terrain cause the coupling among longitudinal, lateral and vertical dynamics of the STACV. The resulting control problem is one of the technical difficulties to be solved in vehicle engineering fields. The proposed vehicle attitude controller takes into account these coupling relationships, which not only combines vehicle dynamics, terrain mechanics, experimental study, computational fluid dynamics, virtual prototype technology, optimization and advanced control theory, but also balances the power consumption of the vehicle, driving and vehicle body attitude control. It has certain reference value for both the field of engineering thchnology and future off-road vehicle control system research.
引文
[1]白葆山,低压轮胎和轮胎气压调节装置可以提高轮式车辆的通过性[J],世界汽车, 1974, (7), 12-15.
    [2]曾志斌,谈军用越野汽车的越野能力[J],重型汽车, 2007, (4), 14-16.
    [3]刘国民,乔世,浮箱履带车辆转向阻力初探[J],水利电力机械, 1991, (4), 50-55.
    [4]徐宏南,橡胶履带全地形车的研制及市场前景分析[J],专用汽车, 1996, (3), 26-28.
    [5]于力,浮箱履带式行走装置性能的分析探讨[J],工程机械, 1996, 27(12), 11-15.
    [6]王军,程指勤,收获机应用防陷宽轮胎效果分析[J],现代化农业, 1993, (6), 39-40.
    [7]朱永孜,苏联装甲履带车辆发动机发展特点及分析[J],兵工学报, 1983, (2), 46-64.
    [8] Wikipedia SR-N1. http://en.wikipedia.org/wiki/SR.N1
    [9]陈秉聪,王昕,半履带式气垫车最佳功率匹配的研究[J],青岛大学学报(工程技术版), 1999, 14(2), 1-3.
    [10]罗哲,陈静,张跃革等,软地面半履带气垫车设计原则与分析[J],农业机械学报, 1999, 30(4), 5-8.
    [11] Z. Luo, F. Yu, B. C. Chen, Design of a novel semi-tracked air-cushion vehicle for soft terrain [J], International Journal of Vehicle Design, 2003, 31(1), 112-123.
    [12]庄继德,汽车通过性[M].吉林人民出版社: 1980.
    [13] W. BERTELSEN, The evolution of integrated lift, propulsion and control in the aeromobile air cushion vehicle(Integrated lift, propulsion and control in Aeromobile air cushion vehicle, considering ram wing and gimbal fan plenum chamber vehicles) [J], Canadian Aeronautics and Space Journal, 1969, 15, 124-125.
    [14] P. A. Sullivan, T. A. Graham, Scaling of cushion capacitance in air cushion vehicle model testing [J], Journal of Aircraft, 1989, 26(8), 787-789.
    [15] P. A. Sullivan, P. A. Charest, T. Ma, Heave stiffness of an air cushion vehicle bag-and-finger skirt [J], Journal of ship research, 1994, 38(4), 302-307.
    [16] J. Chung, P. A. Sullivan, T. Ma, Nonlinear heave dynamics of an air cushion vehicle bag and finger skirt [J], J Ship Research, 1999, 43(2), 79-94.
    [17] J. Chung, P. A. Sullivan, Linear Heave Dynamics of an Air Cushion Vehicle Bag-and-Finger Skirt [J], Transactions of the Japan Soceity for Aeronautical and Space Sciences, 2000, 43(140), 39-45.
    [18] J. Chung, Skirt-Material Damping Effects on Heave Dynamics of an Air-Cushion-Vehicle Bag-and-Finger Skirt [J], Canadian Aeronautics and Space Journal, 2002, 48(3), 201-212.
    [19] J. Chung, T. C. Jung, Optimization of an air cushion vehicle bag and finger skirt using genetic algorithms [J], Aerospace science and technology, 2004, 8(3), 219-229.
    [20] T. A. Graham, P. A. Sullivan, Pitch-Heave Dynamics of a Segmented Skirt Air Cushion [J], Journal of ship research, 2002, 46(2), 121-137.
    [21] J. Thilmany, A Few Inches Off the Ground [J], Mechanical Engineering, 2004, 126(2), 1-3.
    [22] R. Gran, G. Carpenter, R. W. Klein, Computer aided design of a control system for a hovercraft [C], 21st IEEE Conference on Decision and Control, Orlando, Florida, USA, 1982.
    [23] R. Hayashi, K. Osuka, T. Ono, Trajectory control of an air cushion vehicle [C], Proceedings of the IEEE/RSJ/GI International Conference on Advanced Robotic Systems and the Real World, Intelligent Robots and Systems, Munich, Germany, 1994.
    [24] E. Tunstel, S. Hockemeier, M. Jamshidi, Fuzzy control of a hovercraft platform [J], Engineering Applications of Artificial Intelligence, 1994, 7(5), 513-513.
    [25] I. Fantoni, R. Lozano, F. Mazenc, et al., Stabilization of a nonlinear underactuated hovercraft [C], Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA, 1999.
    [26] H. Sira-Ramirez, C. A. Ibanez, The control of the hovercraft system: a flatness based approach [C], Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, Alaska, USA, 2000.
    [27] H. Sira-Ramirez, Dynamic second-order sliding mode control of the hovercraft vessel [J], IEEE Transactions on Control Systems Technology, 2002, 10(6), 860-865.
    [28] K. Tanaka, M. Iwasaki, H. O. Wang, Stable switching fuzzy control and its application to a hovercraft type vehicle [C], The Ninth IEEE International Conference on Fuzzy Systems, San Antonio, TX, USA, 2000.
    [29] K. Tanaka, M. Iwasaki, H. O. Wang, Switching control of an R/C hovercraft: stabilization and smooth switching [J], IEEE Transactions on Systems, Man and Cybernetics, Part B, 2001, 31(6), 853-863.
    [30] H. Seguchi, T. Ohtsuka, Nonlinear receding horizon control of an RC hovercraft [C], Proceedings of the 2002 International Conference on Control Applications, Glasgow, Scotland, U.K., 2002.
    [31] Y. Soneda, T. Ohtsuka, Nonlinear moving horizon state estimation for a hovercraft with continuation/GMRES method [C], Proceedings of the 2002 International Conference on Control Applications, Glasgow, Scotland, U.K., 2002.
    [32] A. P. Aguiar, L. Cremean, J. P. Hespanha, Position tracking for a nonlinear underactuated hovercraft: controller design and experimental results [C], Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2003.
    [33] K. Okawa, S. Yuta, Motion control for vehicle with unknown operating properties-on-line data acquisition and motion planning [C], Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003.
    [34] T. Tanida, T. Ohtsuka, Preconditioned C/GMRES algorithm for nonlinear receding horizon control of hovercrafts connected by a string [C], Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2004.
    [35] D. R. Tyner, A. D. Lewis, Controllability of a hovercraft model (and two general results) [C], 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004.
    [36] D. B. Dacic, M. V. Subbotin, P. V. Kokotovic, Path-following Approach to Control Effort Reduction of Tracking Feedback Laws [C], Proceedings of the 44th IEEE Conference onDecision and Control, Seville, Spain, 2005.
    [37] D. B. Dacic, M. V. Subbotin, P. V. Kokotovic, Control Effort Reduction in Tracking Feedback Laws [J], IEEE Transactions on Automatic Control, 2006, 51(11), 1831-1837.
    [38] F. Ariaei, E. Jonckheere, LDV approach to circular trajectory tracking of the underactuated hovercraft model [C], Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006.
    [39] Y. Shimizu, T. Ohtsuka, M. Diehl, Nonlinear Receding Horizon Control of an Underactuated Hovercraft with a Multiple-Shooting-Based Algorithm [C], Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, Germany, 2006.
    [40] A. Azimi, B. W. Gordon, C. A. Rabbath, Dynamic Scheduling of Receding Horizon Controllers with Application to Multiple Unmanned Hovercraft Systems [C], Proceedings of the 2007 American Control Conference, New York City, USA, 2007.
    [41] J. R. Amyot, H. S. Fowler, An experiment on active control of air-cushion heave dynamics [C], 17 th Canadian Symposium on Air Cushion Technology, Ottawa, Canada, 1983.
    [42] A. J. Sφrensen, O. Egeland, Design of ride control system for surface effect ships using dissipative control [J], Automatica, 1995, 31(2), 183-199.
    [43] D. Bertin, S. Bittanti, S. M. Savaresi, Control of the wave induced vibrations in Air Cushion Catamarans [C], Proceedings of the 1997 IEEE International Conference on Control Applications, Hartford, CT, USA, 1997.
    [44] M. F. W. Ltd., F. W. Mcconnel, Improvements in or relating to Vehicles for use over Heavy or Water Logged Ground [P], Britain, A, 938664, 1963.
    [45] B. J. Henri, D. Louis, Perfectionnements aux véhiculesàroues [P], France, A, 1338368, 1963.
    [46] Daimler-Benz, Sattelschlepperertiges Kraftfahrzeug mit Luftkissen-Anh?ner zum Transport von Lasten, z. B. von Containern [P], Germany, A, 2063479, 1972.
    [47] W. F. Rockwell, Tractor-trailer with ground effect device [P], U. S. A., A, 3434560, 1969.
    [48] J. H. Mattson, C. W. Ottinger, Wheeled air cushion vehicle [P], U. S. A., A, 3805912, 1974.
    [49] W. B. Riley, Dynamic and static characteristics of air cushion vehicles [J], Naval engineers journal, 1995, 107(6), 93-94.
    [50] J. Y. Wong, Performance of the Air-Cushion-Surface-Contacting Hybrid Vehicle for Overland Operation [J], Proceedings of the Institution of Mechanical Engineers, 1972, 186, 50-72.
    [51] J. Y. Wong, On the Applications of Air Cushion Technology to Overland Transport [J], High Speed Ground Transportation Journal, 1972, 6(3), 371-390.
    [52] J. Y. Wong, On the Application of Air Cushion Technology to Off-Road Transport [J], Canadian Aeronautics and Space Journal, 1973, 19(1), 17-19.
    [53] H. Raheman, A laboratory investigation into the effects of pressurised air on the erosion of wet soils by air cushion vehicles [J], Journal of terramechanics, 1991, 28(1), 21-32.
    [54] H. Raheman, Feasibility of operating air cushion vehicle in wetland paddy field [J], Journal of terramechanics, 1991, 27(4), 321-330.
    [55] A. Rahman, A. K. M. Mohiuddin, A. F. Ismail, et al., Development of hybrid electrical air-cushion tracked vehicle for swamp peat [J], Journal of terramechanics, 2010, 47(1), 45-54.
    [56] A. Rahman, A. Mohiuddin, A. Hossain, et al., Integrated mechanics of hybrid electrical air-cushion tracked vehicle for swamp peat [J], International Journal of Heavy Vehicle Systems, 2011, 18(3), 227-244.
    [57] A. Rahman, A. Mohiuddin, A. Hossain, et al., A 1/4 SCALE HYBRID FULL-TRACKED AIR-CUSHION VEHICLE FOR SWAMP PEAT TERRAIN IN MALAYSIA [C], Proceedings of the International Conference on Mechanical Engineering 2007(ICME2007), Dhaka, Bangladesh, 2007.
    [58] A. Hossain, A. Rahman, A. Mohiuddin, Load distribution for an intelligent air-cushion track vehicle based on optimal power consumption [J], International Journal of Vehicle Systems Modelling and Testing, 2010, 5(2), 237-253.
    [59] A. Hossain, A. Rahman, A. Mohiuddin, et al., Power consumption prediction for an intelligent air-cushion track vehicle: fuzzy logic technique [J], Journal of Energy and Power Engineering, 2010, 4(5), 10-17.
    [60] A. Hossain, A. Rahman, A. Mohiuddin, Cushion pressure control system for an intelligent air-cushion track vehicle [J], Journal of Mechanical Science and Technology, 2011, 25(4), 1035-1041.
    [61] A. Hossain, A. Rahman, A. Mohiuddin, Fuzzy expert system for controlling swamp terrain intelligent air-cushion tracked vehicle [J], International Journal of Automotive Technology, 2011, 12(5), 745-753.
    [62] A. Hossain, A. Rahman, A. K. M. Mohiuddin, Fuzzy evaluation for an intelligent air-cushion tracked vehicle performance investigation [J], Journal of terramechanics, 2011, doi:10.1016/j.jterra.2011.08.002.
    [63]谢佑农,郑楠,气垫船三元囊指型围裙的成形原理[J],舰船科学技术, 1989, (2), 52-60.
    [64]郑楠,气垫船围裙连接件的试验和分析[J],舰船科学技术, 1990, (1), 19-24.
    [65]郑楠,丘鹰,全垫升气垫船性能的优化分析[J],舰船科学技术, 1993, (6), 14-21.
    [66]付明玉,张洪雨,施小成等,气垫船操纵性能理论分析[J],中国造船, 2006, 47(3), 14-21.
    [67]吕世海,刘春光,马涛,气垫船高速纵稳性与艏裙流体动力性能分析[J],船舶, 2006, (4), 6-11.
    [68]卢军,黄国樑,全垫升气垫船4自由度操纵性[J],上海交通大学学报, 2007, 41(2), 216-220.
    [69]卢军,黄国梁,全垫升气垫船的航向稳定性[J],上海交通大学学报, 2008, 42(6), 914-918.
    [70]王颖,吴翰声,马涛,基于对象模型的气垫船升沉自动控制专家系统[J],华东船舶工业学院学报, 1993, 7(3), 68-74.
    [71]吴翰声,马涛,基于对象模型的气垫船航行控制专家系统[J],中国造船, 1995, (3), 9-16.
    [72]吴翰声,马涛,气垫船升沉自动控制专家系统[J],舰船科学技术, 1995, (3), 12-18.
    [73]刘春光,马涛,基于SIMULINK的气垫船垫升推进控制系统仿真[J],船舶, 2005, (1), 22-24.
    [74]黄勇,边信黔,匡红波等,常规控制和模糊PID控制在全垫升气垫船航向控制中的应用[J],自动化技术与应用, 2005, 24(12), 36-38.
    [75]匡红波,施小成,田亚杰等,全垫升气垫船航迹保持的变结构模糊PID控制[J],自动化技术与应用, 2006, 25(8), 4-6.
    [76]付明玉,施小成,丁福光,气垫船航迹反步控制方法研究[J],哈尔滨工程大学学报, 2008, 29(3), 251-255.
    [77]王成龙,施小成,付明玉等,神经网络PID在全垫升气垫船航向控制中的应用[J],中国造船, 2008, 49(3), 35-40.
    [78] C. C. Wang, J. P. Su, Fuzzy Gain Scheduled Integral Control and Its Application to a Hovercraft Vessel with Uncertainties [C], Proceedings of the First International Conference on Innovative Computing, Information and Control, Beijing, China, 2006.
    [79]战凯,陈秉聪,陈德兴等,步行轮式气垫车的开发与应用[J],农业机械学报, 1990, 21(3), 90-93.
    [80]战凯,陈秉聪,步行轮式气垫车的稳定性,操纵性和行驶方向稳定性分析[J],吉林工业大学学报, 1991, 43-48.
    [81]杨文志,战凯,王杰等,步行轮式气垫车围裙—地面阻力特性分析[J],农业机械学报, 1993, 24(4), 6-10.
    [82]战凯,王杰,何定源,步行轮式气垫车行驶过程动态数字仿真研究[J],北京矿冶研究总院学报, 1993, 2(3), 25-37.
    [83]杨文志,陈德兴,张书军等,步行轮设计原则和方法[J],农业工程学报, 1994, 10(2), 142-146.
    [84]杨文志,罗哲,宁素俭等,步行轮及步行轮拖拉机试验[J],农业工程学报, 1994, 10(2), 147-152.
    [85]李强,宁素俭,杨文志等,步行轮式气垫车重量匹配和功率匹配[J],吉林工业大学学报, 1995, 25(3), 1-7.
    [86]战凯,软地面气垫车辆设计理论与设计计算[J],矿冶, 1995, 4(1), 17-25.
    [87]李强,陈吉清,藏学柏,步行轮式气垫车轮心波动问题的探讨[J],吉林工业大学学报, 1996, 26(4), 11-14.
    [88]李强,宁素俭,赵洪伟等,步行轮式气垫车系统力学模型的建立[J],农业机械学报, 1996, 27(3), 1-6.
    [89]陈吉清,宁素俭,杨文志等,步行轮式气垫行车行驶阻力研究[J],农业工程学报, 1997, 13(2), 110-114.
    [90]宁素俭,罗哲,刘大维等,步行轮式气垫车车轮及围裙转向阻力矩研究[J],农业工程学报, 1997, 13(2), 120-124.
    [91]宁素俭,杨文志,陈吉清等,步行轮式气垫车平顺性研究[J],农业工程学报, 1997, 13(2), 115-119.
    [92]杨文志,陈吉清,宁素俭等,步行轮式气垫车设计与研制[J],农业工程学报, 1997, 13(2), 105-109.
    [93]战凯,陈德兴,杨文志等,仿步行式气垫车辆转向时的运动性能和动力性能分析[J],有色金属, 1997, 49(1), 20-23.
    [94]李强,宁素俭,罗哲,步行轮式气垫车的需求功率匹配[J],农业工程学报, 1998, 14(1), 40-44.
    [95]刘英舜,吴小平,黄文良等,步行轮式气垫车功率优化的试验研究[J],试验技术与试验机, 1999, 39(3-4), 40-41.
    [96]宁素俭,陈吉清,罗哲,推拉式气垫平台行驶运动学[J],农业工程学报, 2000, 16(3), 12-14.
    [97]姚圣卓,张兰义,陈吉清等,推拉式气垫运载平台转向运动分析[J],农业机械学报, 2001, 32(3), 24-26.
    [98]姚圣卓,张兰义,陈吉清等,推拉式气垫运载平台的结构设计及行走机理[J],吉林工业大学自然科学学报, 2001, 31(1), 1-5.
    [99]张兰义,陈吉清,杨永海等,推拉式气垫运载平台液压系统的方案设计[J],农业机械学报, 2001, 32(4), 7-10.
    [100] Z. Luo, J. Chen, B. C. Chen, et al., Study of load distribution for a semi-tracked air-cushion vehicle [C], SAE paper, 1999-01-2788, 1999.
    [101]张跃革,罗哲,陈静等,软地面半履带式气垫车的功率分析[J],农业机械学报, 2000, 31(1), 26-29.
    [102]陈静,刘大维,罗哲等,半履带式气垫车最佳载荷分配比的研究[J],农业机械学报, 2001, 32(1), 5-8.
    [103]张延松,陈关龙,罗哲等,半履带式气垫车最佳工作状态的仿真研究[J],系统仿真学报, 2004, 16(8), 1711-1713.
    [104]何玮,刘昭度,姚圣卓等,气垫车辆风机系统设计与计算[J],风机技术, 2005, (3), 14-16.
    [105]何玮,马岳峰,刘昭度等,垫升车辆气垫流场分布仿真计算[J],液压气动与密封, 2005, (2), 26-28.
    [106]何玮,刘昭度,马岳峰等,气垫车辆静垫升稳定性分析[J],计算机仿真, 2006, 23(3), 204-206.
    [107]何玮,刘昭度,姚圣卓等,气垫车辆围裙结构设计与分析[J],机械工程学报, 2006, 42(B05), 235-238.
    [108] D. Karnopp, Active Damping in Road Vehicle Suspension Systems [J], Vehicle System Dynamics, 1983, 12(6), 291-311.
    [109] B. R. Davis, A. G. Thompson, Optimal Linear Active Suspensions with Integral Constraint [J], Vehicle System Dynamics, 1988, 17(6), 357-366.
    [110] A. G. Thompson, B. R. Davis, Optimal Linear Active Suspensions with Derivative Constraints and Output Feedback Control [J], Vehicle System Dynamics, 1988, 17(4), 179-192.
    [111] A. G. Thompson, B. R. Davis, Optimal Active Suspension Design Using a Frequency-shaping PID Filter [J], Vehicle System Dynamics, 1992, 21(1), 19-37.
    [112] A. B. Dunwoody, S. Froese, S. o. A. Engineers, Active roll control of a semi-trailer [C], SAE paper, 933045, 1993.
    [113] A. J. Truscott, Composite active suspension for automotive vehicles [J], Computing & Control Engineering Journal, 1994, 5(3), 149-154.
    [114] I. Cech, A Pitch-Plane Model of a Vehicle with Controlled Suspension [J], Vehicle System Dynamics, 1994, 23(1), 133-148.
    [115] S. M. El-Demerdash, A. M. Selim, D. A. Crolla, Vehicle Body Attitude Control Using an Electronically Controlled Active Suspension [C], SAE International Congress and Exposition,Detroit, Michigan, 1999.
    [116] R. Lin, D. Cebon, D. Cole, Optimal roll control of a single-unit lorry [J], Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1996, 210(14), 45-55.
    [117] R. C. Lin, D. Cebon, D. J. Cole, Active Roll Control of Articulated Vehicles [J], Vehicle System Dynamics, 1996, 26(1), 17-43.
    [118] J. Darling, T. Ross-Martin, A theoretical investigation of a prototype active roll control system [J], Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1997, 211(1), 3-12.
    [119] J. Darling, L. R. Hickson, An Experimental Study of a Prototype Active Anti-Roll Suspension System [J], Vehicle System Dynamics, 1998, 29(5), 309-329.
    [120] H.-J. Kim, Y.-P. Park, Hybrid attitude control in steering maneuver using ARC Hil setup [J], Control Engineering Practice, 2002, 10(12), 1339-1345.
    [121] D. J. M. Sampson, D. Cebon, Active Roll Control of Single Unit Heavy Road Vehicles [J], Vehicle System Dynamics, 2003, 40(4), 229-270.
    [122] D. Cao, S. Rakheja, C.-Y. Su, Pitch Attitude Control and Braking Performance Analysis of Heavy Vehicle with Interconnected Suspensions [C], SAE 2007 World Congress, Detriot, Michigan, 2007.
    [123] K. Hudha, Z. A. Kadir, M. R. Said, et al., Modelling, validation and roll moment rejection control of pneumatically actuated active roll control for improving vehicle lateral dynamics performance [J], International Journal of Engineering Systems Modelling and Simulation, 2009, 1(2), 122-136.
    [124] A. Sorniotti, A. Morgando, M. Velardocchia, Active roll control: system design and hardware-in-the-loop test bench [J], Vehicle System Dynamics, 2006, 44(sup1), 489-505.
    [125] J. Jo, S. You, J. Joeng, et al., Vehicle stability control system for enhancing steerabilty, lateral stability, and roll stability [J], International Journal of Automotive Technology, 2008, 9(5), 571-576.
    [126] J. Wang, S. Shen, Integrated vehicle ride and roll control via active suspensions [J], Vehicle System Dynamics, 2008, 46(sup1), 495-508.
    [127] H. Yu, L. Güvenc,ü. ?zgüner, Heavy duty vehicle rollover detection and active roll control [J], Vehicle System Dynamics, 2008, 46(6), 451-470.
    [128] Z. A. Kadir, K. Hudha, H. Jamaluddin, et al., Active roll control suspension system for improving dynamics performance of passenger vehicle [C], Proceedings of 2011 International Conference on Modelling, Identification and Control (ICMIC), Shanghai, China, 2011.
    [129]王昕,罗哲,陈秉聪等,半履带式气垫车的模糊控制系统[J],农业机械学报, 2000, 31(3), 24-26.
    [130] X. Wang, Z. Luo, B. Chen, et al., Study on automatic control system of a semi-tracked air-cushionvehicle [C], Proceedings of the IEEE International Vehicle Electronics Conference, Changchun, China, 1999.
    [131] Z. Luo, F. Yu, Load distribution control system design for a semi-track air-cushion vehicle [J],Journal of terramechanics, 2007, 44(4), 319-325.
    [132]许烁,罗哲,周科,基于功耗最优的半履带气垫车模糊PID控制仿真[J],上海交通大学学报, 2007, 41(6), 1026-1030.
    [133]许烁,罗哲,喻凡等,基于总功耗最小的半履带气垫车滑转率控制仿真[J],系统仿真学报, 2008, 20(16), 4244-4247.
    [134]许烁,周科,罗哲等,半履带气垫车滑转率控制仿真[J],上海交通大学学报, 2008, 42(6), 892-895.
    [135] S. Xu, Z. Luo, F. Yu, Study of fuel economy optimization for a semi-track air-cushion vehicle based on genetic algorithms and fuzzy control [C], 2008 IEEE Vehicle Power and Propulsion Conference (VPPC 2008), Harbin, China, 2008.
    [136] S. Xu, F. Yu, Study of Parameter Optimization and Control for a Semi-Track Air-Cushion Vehicle Based on Fuel Consumption Minimization [C], SAE paper,2008-01-2656, 2008.
    [137] D. Xie, Z. Luo, F. Yu, The computing of the optimal power consumption for semi-track air-cushion vehicle using hybrid generalized extremal optimization [J], Applied Mathematical Modelling, 2009, 33(6), 2831-2844.
    [138] J. H. Ginsberg, Advanced engineering dynamics [M]. 2nd ed. ed.; Cambridge University Press: 1998.
    [139] U. Kiencke, L. Nielsen, Automotive Control Systems: For Engine, Driveline, and Vehicle [M]. 2nd ed.; Springer-Verlag: Berlin, Heidelberg, 2000.
    [140] M. G. Bekker, Introduction to Terrain-Vehicle Systems [M]. University of Michigan Press: 1969.
    [141] J. Y. Wong, Theory of ground vehicles [M]. 3rd ed.; John wiley & Sons: Ottawa, Canada, 2001.
    [142] MSC, ADAMS Refefrence Manual Version 2005 [M]. MSC Inc.: 2005.
    [143]伍悦滨,朱蒙生,工程流体力学泵与风机[M].化学工业出版社: 2006.
    [144]杨铭,张文海,直流电动机输出功率的简易计算公式[J],微特电机, 2003, 31(1), 43-44.
    [145]余志生,汽车理论[M].机械工业出版社: 2000.
    [146]张跃革.半履带式气垫车结构设计及节能机理的研究[D].长春,吉林大学. 2000.
    [147] L. Yun, A. Bliault, Theory and Design of Air Cushion Craft [M]. John Wiley & Sons Inc.: New York, 2000.
    [148]陈家瑞,汽车构造(下册) [M].机械工业出版社: 2000.
    [149] R. A. Wallis, Axial flow fans and ducts [M]. Wiley New York etc.: 1983.
    [150] Fluent-Inc., FLUENT user's guide [M]. Fluent Inc.: 2006.
    [151]阎平凡,张长水,人工神经网络与模拟进化计算[M].清华大学出版社: 2005.
    [152] MathWorks, MATLAB user's guide [M]. MathWorks Inc.: 2007.
    [153] G. Roppenecker, H. Wallentowitz, Integration of Chassis and Traction Control Systems What is Possible–What makes Sense–What is under Development [J], Vehicle System Dynamics, 1993, 22(5), 283-298.
    [154] M. Nagai, Y. Hirano, S. Yamanaka, Integrated Control of Active Rear Wheel Steering and Direct Yaw Moment Control [J], Vehicle System Dynamics, 1997, 27(5), 357-370.
    [155] A. Hac, M. O. Bodie, Improvements in vehicle handling through integrated control of chassissystems [J], International Journal of Vehicle Autonomous Systems, 2002, 1(1), 83-110.
    [156] X. Shen, F. Yu, Study on vehicle chassis control integration based on vehicle dynamics and separate loop design approach [J], International Journal of Vehicle Autonomous Systems, 2007, 5(1), 95-118.
    [157]沈晓鸣.基于广义执行器—受控对象的车辆底盘集成控制的研究[D].上海交通大学. 2006.
    [158]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海交通大学. 2008.
    [159] X. M. Shen, F. Yu, Study on vehicle chassis control integration based on vehicle dynamics and separate loop design approach [J], International Journal of Vehicle Autonomous Systems, 2007, 5(1), 95-118.
    [160] S. Boettcher, A. G. Percus, Extremal optimization: Methods derived from co-evolution [C], Genetic and Evolutionary Computation Conference-GECCO-99, Orlando, FL, USA, 1999.
    [161] S. Boettcher, Extremal optimization: heuristics via coevolutionary avalanches [J], Computing in Science & Engineering, 2000, 2(6), 75-82.
    [162] S. Boettcher, A. Percus, Nature's way of optimizing [J], Artificial Intelligence, 2000, 119(1-2), 275-286.
    [163] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise [J], Physical review letters, 1987, 59(4), 381-384.
    [164] C. Tang, P. Bak, Critical exponents and scaling relations for self-organized critical phenomena [J], Physical review letters, 1988, 60(23), 2347-2350.
    [165] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality [J], Physical Review A, 1988, 38(1), 364-375.
    [166] P. Bak, K. Sneppen, Punctuated equilibrium and criticality in a simple model of evolution [J], Physical review letters, 1993, 71(24), 4083-4086.
    [167] M. Menai, M. Batouche, Efficient initial solution to extremal optimization algorithm for weighted MAXSAT problem [J], Developments in Applied Artificial Intelligence, 2003, 319-338.
    [168] S. Boettcher, A. G. Percus, Extremal optimization at the phase transition of the three-coloring problem [J], Physical Review E, 2004, 69(6), 066703.
    [169] S. Boettcher, Extremal optimization for Sherrington-Kirkpatrick spin glasses [J], The European Physical Journal B-Condensed Matter and Complex Systems, 2005, 46(4), 501-505.
    [170] I. Moser, T. Hendtlass, Solving problems with hidden dynamics-comparison of extremal optimization and ant colony system [C], 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 2006.
    [171] S. Boettcher, A. G. Percus, Optimization with extremal dynamics [J], Physical review letters, 2001, 86(23), 5211-5214.
    [172] F. L. De Sousa, V. Vlassov, F. M. Ramos, Generalized extremal optimization: an application in heat pipe design [J], Applied Mathematical Modelling, 2004, 28(10), 911-931.
    [173] T. Zhou, W. J. Bai, L. J. Cheng, et al., Continuous extremal optimization for Lennard-Jones clusters [J], Physical Review E, 2005, 72(1), 016702.
    [174] K. E. Melkemi, M. Batouche, S. Foufou, A multiagent system approach for image segmentation using genetic algorithms and extremal optimization heuristics [J], Pattern recognition letters, 2006, 27(11), 1230-1238.
    [175] M. Randall, A. Lewis, An extended extremal optimisation model for parallel architectures [C], Proceedings of the Second IEEE International Conference on e-Science and Grid Computing (e-Science'06), Amsterdam, The Netherlands, 2006.
    [176] K. Hamacher, Adaptive extremal optimization by detrended fluctuation analysis [J], Journal of Computational Physics, 2007, 227(2), 1500-1509.
    [177] M. R. Chen, Y. Z. Lu, G. Yang, Population-based extremal optimization with adaptive Lévy mutation for constrained optimization [J], Computational Intelligence and Security, 2007, 144-155.
    [178] M. R. Chen, Y. Z. Lu, A novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization [J], European Journal of Operational Research, 2008, 188(3), 637-651.
    [179] T. Kelleg z, B. Toklu, J. Wilson, Comparing efficiencies of genetic crossover operators for one machine total weighted tardiness problem [J], Applied Mathematics and Computation, 2008, 199(2), 590-598.
    [180] W. D. Chang, A multi-crossover genetic approach to multivariable PID controllers tuning [J], Expert systems with applications, 2007, 33(3), 620-626.
    [181] K. Deep, M. Thakur, A new crossover operator for real coded genetic algorithms [J], Applied Mathematics and Computation, 2007, 188(1), 895-911.
    [182] J. A. Joines, C. R. Houck, On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's [C], Proceedings of the First IEEE World Conference on Computational Intelligence, Orlando, FL, USA, 1994.
    [183] J. Richalet, A. Rault, J. Testud, et al., Model predictive heuristic control:Applications to industrial processes [J], Automatica, 1978, 14(5), 413-428.
    [184] C. R. Cutler, R. B. Hawkins, Constrained multivariable control of a hydrocracker reactor [C], Proceeding of the 1987 American Control Conference, Minneapolis, MN, USA, 1987.
    [185] D. Clarke, C. Mohtadi, P. Tuffs, Generalized predictive control--Part I. The basic algorithm [J], Automatica, 1987, 23(2), 137-148.
    [186] D. Clarke, C. Mohtadi, P. Tuffs, Generalized Predictive Control--Part II Extensions and interpretations [J], Automatica, 1987, 23(2), 149-160.
    [187] C. E. Garcia, M. Morari, Internal model control. A unifying review and some new results [J], Industrial & Engineering Chemistry Process Design and Development, 1982, 21(2), 308-323.
    [188] H. B. Kuntze, A. Jacubasch, J. Richalet, et al., On the predictive functional control of an elastic industrial robot [C], Proceedings of 25th Conference on Decision and Control, Athens, Greece, 1986.
    [189] P. D. Roberts, A brief overview of model predictive control [C], IEE Two-day Workshop on Model Predictive Control: Techniques and Applications, London, UK, 1999.
    [190] T. Ohtsuka, Continuation/GMRES method for fast algorithm of nonlinear receding horizon control [C], Proceedings of the 39th IEEE Conference on Decision and Control, Sydney,Australia, 2000.
    [191] H. Bang, C. Oh, Predictive control for the attitude maneuver of a flexible spacecraft [J], Aerospace science and technology, 2004, 8(5), 443-452.
    [192]φ. Hegrenaes, J. T. Gravdahl, P. Tφndel, Spacecraft attitude control using explicit model predictive control [J], Automatica, 2005, 41(12), 2107-2114.
    [193] D. DeHaan, M. Guay, A New Real-Time Method for Nonlinear Model Predictive Control [J], Lecture Notes in Control and Information Sciences, 2007, 358, 537-550.
    [194] J. Lee, N. Ricker, Extended Kalman filter based nonlinear model predictive control [J], Industrial & Engineering Chemistry Research, 1994, 33(6), 1530-1541.
    [195] N. Ricker, J. Lee, Nonlinear model predictive control of the Tennessee Eastman challenge process [J], Computers and Chemical Engineering, 1995, 19(9), 961-981.
    [196] Y. Hattori, K. Koibuchi, T. Yokoyama, Force and Moment Control with Nonlinear Optimum Distribution for Vehicle Dynamics [C], Proceeding of the 6th International Symposium on Advanced Vehicle Control, Hiroshima, 2002.
    [197] A. T. Van Zanten, R. Erhardt, G. Pfaff, et al., Control aspects of the Bosch-VDC [C], Proc. AVEC'96, Aachen, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700