用户名: 密码: 验证码:
阀控半主动减振器研究及整车应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车悬架是现代汽车上的重要总成之一,它是车架(或承载式车身)与车桥(或车轮)之间的一切传力装置的总称,其主要功用为:1)把路面作用于车轮上的垂直反力(支承力)、纵向反力(牵引力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架(或承载式车身)上;2)缓和由不平路面传给车体的冲击载荷,衰减冲击载荷引起的承载系统的振动;3)导向车身与车轮的运动,决定车轮定位;4)在汽车侧倾或俯仰时,悬架要能及时控制车身姿态,以保证汽车的正常行驶。因此,汽车悬架系统的设计必须满足行驶平顺性(Ride Comfort)和操纵稳定性(Handling Stability)的要求,然而车在行驶过程中,其平顺性和操纵稳定性对悬架参数的要求是不同的,从平顺性角度来考虑,需要悬架具有较软的特性,而从操纵稳定角度考虑,需要较硬的悬架。现代汽车正朝着安全、舒适、节能、环保、智能化的方向发展,人们对汽车的舒适性和整体品质的追求日益提升。智能悬架系统能同时兼顾车辆的舒适性和稳定性,并能适应变化的行驶工况和任意道路激励,是当前关注的热点。半主动悬架在车辆性能、能量消耗和成本上能保证较好的折中,因此,本文将通过试验与理论相结合的方法探索阀控半主动减振器的特性及其在车辆中的应用,以期提高车辆的平顺性、操纵稳定性和整体品质,主要研究以下内容:
     1)阀控半主动减振器特性研究。首先分析了被动减振器的工作原理,建立了考虑减振器阀系结构参数的被动减振器理论模型;然后研究阀控半主动减振器的结构与工作原理,并细致地研究了执行元件电磁阀的结构和工作原理;其次,在减振器示功机测试了阀控半主动减振器的外特性,探明了电压强度和速度对其对阀控半主动减振器外特性的影响规律:该阀控半主动减振器采用反比例控制,在同一速度下,电压越大,阻尼力越小,具有失效保护的功能,当电压强度相同时,速度越大,阻尼力越大;最后,基于试验测试佳果,以减振器活塞的速度、活塞离开平衡位置的位移和电磁阀的电压强度作为神经网络的输入,采用神经网络模型来逼近阀控半主动减振器的外特性,数值模拟效果表明该非参数模型与试验结果的一致性很好,能表达阀控半主动减振器的外特性,可用于动力学分析。
     2)建立车辆悬架性能的综合评价指标。首先系统地阐述和分析了悬架特性的评价方法;其次,建立了考虑左右车轮路面的相干性随机路面的四轮激励模型;然后,建立了用于车辆平顺性的7自由度模型,推导得到整车模型广义加速度、动载荷和动挠度的传递函数;最后采用无量纲化和综合加权的方法,建立用于动力学控制的7自由度车辆模型的评价指标。
     3)建立7自由度车辆的混合控制算法。应用Matlab/Simulink建立样车的7自由度车辆动力学模型。模型考虑了车辆的垂向振动,同时还能表达前后轴路面激励不同引起的车辆的俯仰运动和左右轮路面激励不同引起的侧倾运动,推导了基于Skyhook算法的混合控制算法,并将半主动算法集成于整车模型中;然后,在随机路面输入下优化反馈矩阵,最后应用数值模拟的手段对比研究了优化后的半主动模型与被动最优悬架的特性。相对于最优被动悬架,采用混合控制算法的7自由度车辆以36km/h的速度通过凹坑时,其垂向加速度、侧倾加速度和俯仰加速度的峰值均能降低30%以上,过凸块的仿真结果表明,采用混合控制的阀控半主动悬架性能也有了较大地提升,但是其效果会随着车速的升高而减弱,这需要进一步探索控制算法与激励频率的相关性。
     4)建立考虑27自由度车辆横向运动及纵向运动带来的侧倾和俯仰运动改进混合控制算法。应用Carsim建立样车的车辆动力学模型,采用Matlab与Carsim联合仿真的方法,建立了用于操稳工况的俯仰、侧倾的控制算法,利用双移线及紧急制动工况仿真验证控制算法的有效性,并通过联合仿真的手段获得最优的控制增益系数K、Kp然后,对某公司提供的试验车辆的悬架系统进行改装,用阀控半主动减振器代替原车的被动减振器,并为其匹配好传感器与控制器,然后将控制算法植入到实车电控系统中,并完成系统标定;最后,根据国标平顺性以及操纵稳定性的实验方法进行道路实车试验,并与原车进行比较,试验结果表明改装车的平顺性和操纵稳定性均有较大地改善。
     本文的主要贡献和创新点如下:
     1)获得阀控半主动减振器外特性规律,阐明其外特性机理,建立可用于动力学计算的阀控半主动减振器外特性非参数模型;
     2)采用无量纲化和综合加权的方法,建立用于动力学控制的7自由度车辆模型的评价指标;
     3)建立7自由度车辆的混合控制算法及考虑27自由度车辆横向运动及纵向运动带来的侧倾和俯仰运动的混合控制算法,开发并集成控制器,并进行道路实车试验。
A suspension is the most important assembly of a vehicle, which is a general term forall force transfer between the body and the tire. Its main functions are as follows.1)transfer the force and torque acting on the tire to the body, including vertical force,longitudinal force and lateral force;2) relax the impact loads passed from the uneven road,damping the vibration caused by the impact loads;3) guiding the movement of the body andthe wheels, decided wheel alignment;4) control the body posture when the car roll or pitch.Hence, the design of the suspension must match the requirements for ride and handlingcharacteristics of full vehicle. However, the ride and handling of the vehicle need differentsuspension performance. To have good ride, the suspension must be soft, but to have goodhandling, the suspension must be hard. Contemporary automotive design philosophy issafety, comfort, energy saving and environment protection. And the pursuit of comfort andthe overall quality of the car is rising. Smart suspension can considering both ride andhandling, and can adapt to different driving conditions and different roads, is the currentfocus of attention. A semi-active suspension can make a good tradeoff during performance,energy consumption and manufacture cost. Hence, this dissertation expores thecharacteristics of a semi-active suspension with adjustable valve in order to improve thevehicle ride comfort, handling and stability. The main research contents are as follows:
     1) The study of valve-controlled semi-active damper’s characteristics. First, theprinciple of the passive damper and a passive damper theory model considering thestructural parameters is presented and then, the structure and working principle of thevalve-controlled semi-active damper is presented and the structure and working principle ofthe actuator is also presented. Secondly, the external characteristics of valve-controlledsemi-active dampers was tested in the damper dynamometer machine, and the current andspeed showed their influences on the valve-controlled semi-active damper externalcharacteristic. The valve-controlled semi-active damper use inversely proportionalcontrol, at the same speed, the larger the current, the damping force is smaller, so we have a failsafe function, when the current is a constant, the greater the speed, the greater thedamping force. Finally, based on the results of the bench test, a neural network model isproposed to approximate the external characteristics of the valve-controlled semi-activedamper, the damper piston speed, piston displacement off the equilibrium position and thecurrent strength of the solenoid valve are the input of the neural network, numericalsimulation results show that the consistency of the non-parametric model match theexperimental results very well, so it can express the external characteristics valve-controlledsemi-active damper and can be used for dynamic analysis.
     2) A comprehensive evaluation index for the performance of the7DOF (degrees offreedom) vehicle is proposed. Firstly, this dissertation expounds and analyzes theevaluation methods of the suspension characteristics systematically. Secondly, it builds afour-wheel incentive model for the stochastic road which considers the coherent of bothsides of wheel/road. Then, it establishes a7DOF vehicle model for the vehicle ride comfort,from which it derives the generalized acceleration of the whole vehicle model, the transferfunctions for the dynamic load and dynamic deflection; finally, builds the evaluation indexof7DOF vehicle model for the dynamic control using dimensionless and general weightedmethods.
     3) The development of hybrid control algorithm of7DOF vehicle. This dissertationuses Matlab/Simulink to set up seven degree of freedom vehicle dynamics model. Themodel takes the vertical vibration of the vehicle into consideration, and at the same time itcan also express the pitching movement vehicle caused by different road excitation ofvehicle front-rear axle and the roll movement caused by different road excitation of right-leftvehicle wheels, and gets the derivation of the algorithm based on the Skyhook hybrid controlalgorithm, and puts the semi-active algorithm into the vehicle model. Then, it optimizesfeedback matrix in random road input and use numerical simulation method to study theoptimized semi-active model and the characteristics of optimal passive suspension. Acomparesion is presented between a passive vehicle and a vehicle with an adjustable vavleruns over a bump while the speed is36km/h, the peak value of vertical acceleration, rollacceleration and pitching acceleration all can be reduced more than30%. In other word,the semi-acive damper with adjustable valve can improve the vehicle performance significantly, but the effect will be decreased as speed increases. As a result, the correlationbetween control algorithm and the excitation frequency need to be explored in the further.
     4) An advanced hybrid control algorithm for27DOF vehicle was developed andvalidated, considering the roll and pitch movement aroused by lateral movement andlongitudinal motion. With a27DOF vehicle model based on Carsim, an advanced controlalgorithm of pitch and roll for handling and stability conditions was established via theco-simulation between Matlab and Carsim. The effectiveness of the control algorithm wasverified by simulations of double lane change and emergency braking, and the optimal gaincoefficient K and Kp was obtained by co-simulation method. After then, a valve-controlledsemi-active damper and the controller were integrated and assembled on the test vehicle andthe advanced hybrid control algorithm were validated via the real road test, whichdemonstrated that the handling and ride comfort has significant improved.Major Innovations of the Dissertation:
     1) The external characteristic of valve-controlled semi-active damper was obtained, thisdissertation clarifies its mechanism of external characteristics and establishes the externalcharacteristics non-parametric model of the valve controled semi-active damper which canbe used for dynamic analysis;
     2) An evaluation index of seven degree of freedom of vehicle model for dynamicscontrol was proposed based on nondimensional and comprehensive weighted method;
     3) A hybrid control algorithm of7DOF (degree of freedom) vehicle and a hybridcontrol algorithm for a27DOF vehicle considering the roll and pitch motions weredeveloped. And then, a valve-controlled semi-active damper and the controller wereintergrated and the advanced hybrid control algorithm is validated via the real road test.
引文
[1] CAO D P, SONG X B, AHMADIAN M. Editors’ Perspectives: Road VehicleSuspension Design, Dynamics, and Control [J]. Vehicle System Dynamics,2011,49:3-28
    [2] PAZOOKI A, RAKHEJA S, CAO D P. Modeling and Validation of Off-roadVehicle Ride Dynamics [J]. Mechanical Systems and Signal Processing,2012,28:679–695
    [3] GEORGIOU G, VERROS G, NATSIAVAS S. Multi-objective Optimization ofQuarter-car Models with a Passive or Semi-active Suspension System [J]. VehicleSystem Dynamics,2011,45(1):77-92
    [4] CREWS J H, MATTSON M G, BUCKNER G D. Multi-objective ControlOptimization for Semi-active Vehicle Suspensions [J]. Journal of Sound andVibration,2011,330:5502-5516
    [5]王望予.汽车设计(第四版)[M].机械工业出版社,2008,174-180
    [6] DAVE C,俞凡著.车辆动力学及其控制[M].人民交通出版社,2004,100-180
    [7]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术社,1991,219-237
    [8] GILLESPI T D著,赵六奇,金达锋译.车辆动力学基础[M].清华大学出版社,2008,164-174
    [9]陈家瑞.汽车构造(下册)[M].北京:机械工业出版社,2004,158-243
    [10]余志生.汽车理论[M].机械工业出版社,2009,130-240
    [11]李辉,顾亮,刘淡.车辆半主动悬挂控制理论的研究[J].汽车科技,2002,26-28
    [12]靳晓雄.汽车振动分析[M].同济大学出版社,2002,80-100
    [13]王海期.非线性振动[M].高等教育出版社,1992,30-130
    [14]张会明.车辆悬架系统减振控制的研究[J].华东交通大学学报,2004.2:87-90
    [15]李伟浩.汽车行驶平顺性评价方法[J].机电工程技术,2002,31(7):33-38
    [16]郭孔辉.悬架设计[C]//郭孔辉院士论文集.长春:吉林大学出版社,2005,33-100
    [17]何耀华.汽车试验学第1版[M].北京:人民交通出版社,2005,163-185
    [18] M.米奇克.汽车动力学B卷[M].人民交通出版社,1994,41-62
    [19]易北华,张改.半主动悬架系统特性及性能分析[J].中国测试技术,2007,33(4):61
    [20]钱瑜.汽车悬架分类及半主动悬架[J].江南学院学报,1999,14(4):12-14
    [21]方子帆,邓兆祥,郑玲等.汽车半主动悬架系统研究进展[J].重庆大学学报.2001,26(1):104-108
    [22]孙求理.主动悬架的发展和技术现状[J].世界汽车,1996,5-7
    [23]朱冰.半主动悬架的研究现状与发展趋势[J].城市车辆.2009:38
    [24]俞凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005,60-200
    [25]孙建民.车辆主动悬架系统控制技术研究[D].哈尔滨:哈尔滨工程学报,2003,5-20
    [26]李军,成思源,卢海峰.汽车主动悬架控制方法的现状与发展[J].渝州大学学报,1999,12-16
    [27]张洪欣.汽车系统动力学[M].上海:同济大学出版社,1996,50-150
    [28]俞德孚.车辆随机振动与悬架控制原理[M].北京:兵器工业出版社,1992,60-180
    [29] KARNOPP D C, CROSBY M J, HARWOOD R A. Vibration Control Using SemiActive Force Generators [J]. ASME Journal of Engineering for Industry,1974,96(2):619-626
    [30] Li H, ROGER M, GOODALL. Linear and non-linear skyhook damping controllaws for active railway suspensions[J]. Control Engineering Practice,1999,7(7):843-850
    [31]冀杰.汽车主动悬架几种控制策略的比较研究[J].机械科学与技术,2006,6:30-35
    [32]陈无畏.汽车悬架的主动控制研究及发展[J].安徽工学院学报.1993,12:81-84
    [33] CARTER, ANGELA K. Transient Motion Control of Passive and SemiactiveDamping for Vehicle Suspensions[D]. America: Virginia.1998,30-100.
    [34] MEHDI A. Dide evaluation of a class8truck with semiactive suspensions[J].Advanced Automotive Technologies.1993,52
    [35] SPENCER B F, SOONG T T. New Applications and Devlopment of active,semi-active and hybrid control techniques for seismic and non-seismic vibration[C]. Proceedings of International Post-SMIRT Conference Seismic Isolation, USA,1999,23-25.
    [36]王灵,黄文良.磁流变减振器在半主动振动控制中的应用[J].南京理工大学学报(自然科学版).2004,3:5-9
    [37]陈兵,曾鸣,尹忠俊.半主动悬架的模糊控制策略设计与仿真研究[[J].系统仿真学报,2008,20(2):420-424
    [38]王国丽,顾亮,孙逢春.车辆主动悬架技术的现状和发展趋势[J].兵工学报,2000,21(SP1):80-83
    [39]王世明,土孙安,李天石.半主动悬架及其控制[J].汽车技术,1999(12):13
    [40]刘少军,郭淑娟.高速ON/OFF电磁阀在汽车主动控制悬架系统中的应用[[J].中南工业大学学报,1996,27(3):331-334
    [41] HROVAT D. Survey of advanced suspension developments and related optimalcontrol applications [J]. Automatica,1997,33(10):1781-1817
    [42]李锐,余森.汽车磁流变悬架垂直振动控制与试验研究[J].中国机械工程,2008,19(17):2132-2138
    [43]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[D].南京:南京航空航天大学.2001,30-50
    [44] BOSSIS G, MATHIS C, MIMOUNI Z, et al. Magnetorheolgical suspensions [J].Euro physLett,1990,11(2):133-137
    [45] http://www.rheonetic.com.
    [46] VOLKOVAO, CUTILLAS S, CARLETTO P, BOSSIS G, CEBERS A,MEUNIER A. Flow induced structures in Magnetorheological Suspensions[J].Journal of Magnetism and Magnetic Materials,1999,201:66-69
    [47] HROVAT D. Application of Optimal Control to Advanced AutomotiveSuspension Design [J]. Trans.ASME,1993:328-342
    [48] KARNOPP D. Tilt control for gyro-stabilized two-wheeled vehicles [J].VehicleSystem Dynamics.2002:145-156.
    [49] MARGOLIS D L, TYLE J L, HROVAT D. Semi-active airbag secondarysuspension [J]. Heave mode dynamics of a tracked air custion vehicle withTransactions of the ASME Journal of Dynamic System, Measurement andcontrol,1997,119(4):399-407
    [50]宋永刚,张进秋,魏健.汽车悬架控制系统发展概述[J].专用汽车,2007,30-33.
    [51]张庙康,胡海岩.车辆悬架振动控制系统研究的进展[J].振动、测试与诊断,1997,(3):10-16.
    [52] MARGOLIS D L, TYLE J L, HROVAT D. Heave mode dynamics of a trackedair custion vehicle with semi-active airbag secondary suspension[J]. Transactionsof the ASME Journal of Dynamic System,Measurement and control,1997,119(4):399-407
    [53] Yong-San Y, HYUK K, Feedforword Neuro-Controlled Active Suspension UsingFrequency and Time Mixed Shape Performance [J].Index of Vehicle Design,1996,17(2):63-81
    [54] LOU, Z-ERVIN, R-D-FILISKO. A Preliminary Parametric Study ofElectrorheological Damper [J]. Trans. ASME, Journal of Fluid Engineering,1994,ll(6):570—577
    [55] http://www.delphiauto.com
    [56]吕振华,李世民.筒式液阻减振器动态特性模拟分析技术的发展[J].清华大学学报(自然科学版).2002,42(11):1532-1536
    [57] LANG H. Automotive dampers at high stroking frequency[D]. University ofMichigan,1977,50-150
    [58] CHRISTOPHER B, MEHDI A, STEVE S. Efficient empirical modeling of ahigh-performance damper for vehicle dynamics studies [J]. Vehicle SystemDynamics.2010,48(4):20-25
    [59] TALBOTT M. An experimentally validated physical model of ahigh-performance automotive monotube damper [J]. Master’s thesis, PurdueUniversity,2002,10-20
    [60] EMMONS S, BOGGS C, AHMADIAN M. Parametric modeling of ahighly-adjustable race damper[C]. ASME, International Mechanical EngineeringCongress and Exposition, Chicago, IL,2006
    [61] RAO M, GRUENBERG S, TORAB H, Measurement of dynamic properties ofdampers for NVH[C]. SAE Technical Papers,1999,840:1-6
    [62] KOWALSKI D, RAO M, BLOUH J, GRUENBERG S. Dynamic testing ofdampers under non-sinusoidal conditions [J]. Automobile Eng,2002,216:373–384
    [63] CAFFERTY S. Characterization of automotive dampers using higher orderfrequency response functions [J]. Automobile Eng.1997,211:181–203
    [64] YUNG V, Wavelet analysis of high-frequency damper behavior [J]. AutomobileEng.2005,219:977–988
    [65] KASTEEL R, CHENG-GUO W, LIXIN Q, Jin-Zhao L, WEN-ZHANG Z. A newdamper model with an application in vehicle dynamic studies[C]. SAE TechnicalPapers,2003
    [66] ZHOU W, CHEW C, HONG G. Inverse dynamics control for series damperactuator based on mr fluid damper[C]. IEEE/ASME International Conference onAdvanced Intelligent Mechatronics,2005:473-478
    [67] SAVARESI S, SILANi E, MONTIGLIO M. Identification of semi-physical andblack-box nonlinear models: The case of MR-dampers for vehicle control [M],2005:113–117
    [68]郑兰霞,江斌等.车辆悬架控制系统的发展及应用现状研究[J].农业装备与车辆工程,2006,3:10-15
    [69] REICHERT, B A J. Application of Magneto-Rheological Dampers for VehicleSeat Suspensions[J]. Virginia Polytechnic Institute and State University:Blacksburg, Virginia,1997,300-320
    [70] PARE C A. Experimental Evaluation of Semiactive Magneto-RheologicalSuspensions for Passenger Vehicles [J]. Virginia Polytechnic Institute and StateUniversity,1998,350-360
    [71] SIMON D E. Experimental Evaluation of Semiactive MagnetorheologicalPrimary Suspensions for Heavy Truck Applications [D]. Irginia PolytechnicInstitute and State University,1998,50-150
    [72] JELMADANY M M, ABDULJABBAR Z S, Linear Quadratic Gaussian Controlof a Quarter-Car Suspension [J]. Vehicle system dynamics,1999,32:479-497
    [73] GIUA A, MELAS M, SEATZU C. Design of a control law for amagneto-rheological suspension[C]. European Control Conference,2003,105-109
    [74] HU H X, LOH N K, CHEOK K C. Frequency-shaping optimal parameteric LQcontrol with application [J]. Signal Processing and System Control FactoryAutomation IECON Proceedings,1990,:142-147
    [75] RAY, LOURA R. Robust linear-optimal control laws for active suspensionsystems [J]. Advanced Automotive Technologies,1991,40:291-302
    [76] KRTOLICA R. Optimal active suspension control based on a half-car model [J].IEEE Transactions on Automatic Control,1992,37(4):528-532
    [77] YAMAGUCHI H, DOI S I, IWAMA N. Experimental study of systemoptimization for suppression of vehicle vibration [J]. Vehicle System Dynamics,1993,22:299-308
    [78] HAC A. Suspension optimization of a2-DOF vehicle model using a stochasticoptimal control technique [J]. Journal of Sound and Vibration,1985,100(3):343-357
    [79] THOMPSON A G. An active suspension with optimal linear state feedback [J].Vehicle System Dynamics,1976,5:187-203
    [80] HUNG F C, DENNIS A G. Self-tuning optimal control of an active suspension
    [C]. SAE paper1989,892485
    [81] SHAKED U, SOROKA E. On the stability of the continuous-time LQG optimalcontrol [J]. IEEE Transactions on Automatic Control,1985,30:1039-1043
    [82] HROVAT D. Application of optimal control to advanced automotive suspensiondesign [J]. Transactions of the ASME,1993,115:328-342
    [83] WILSON D A, SHARP R S, HASSAN S A. The application of linear optimalcontrol theory to the design of automobile suspension [J].Vehicle SystemDynamics,1986,15:105-118
    [84] KOK, J J. Active and semi-active control of suspension systems for commercialvehicles based on preview[C]. In American Control Conference,1997,5:2992-2996
    [85] RAMAN K M, JAYESH N A. Active Suspension Using Preview Information andModel Predictive Control [C]. In Proceedings of IEEE International Conferenceon Control Applications, New York,1997
    [86] KITCHING K J, CEBONI D, COLE D J. An Experimental Investigation ofPreview Control [J]. Vehicle system dynamics,1999,32:459-478
    [87] PROKOP G, SHARP R S. Performance Enhancement of Limited BandwidthActive Automotive Suspensions by Road Preview [C]. Control Theory andApplications.1995:300-310.
    [88] MASAYOSHI T, FUNG D H. Design of digital feedforward/preview controllersfor processes with predetermined feedback controllers [J]. Trans of the ASME,Journal of Dynamic Systems, Measurement and Control,1980,102:218-225
    [89] KIM C, KIM H. Effect of the Suspension Structure on Equivalent SuspensionParameters [J]. Proceedings of the Institution of Mechanical Engineers--partD-Journal ofAutomobile Engineering,1999,213(5):457-470
    [90] MARZBANRAD J, AHMADI Q ZOHOOR H. Stochastic optimal previewcontrol of a vehicle suspension[J]. Journal of Sound and Vibration,2004,275(3-5):973-990
    [91] BESINGER, F H, CEBON D, C D J. Experimental investigation into the use ofsemi-active dampers on heavy lorries [C]. In Proceedings of12th IAVSDsymposium,1991,20:57-71
    [92] SONG X. An Adaptive Semiactive Control Algorithm for MagnetorheologicalSuspension Systems [J]. Journal of Vibration and Acoustics,2005,127:493-502
    [93] SOHN H C. An adaptive LQG control for semi-active suspension systems [J].Int.J.Vehicle Design,2004.34(4):309-324
    [94] JUNICHI E. Development of the semi-active suspension system based on thesky-hook damper theory [J]. SAE paper1994,940863
    [95]孙建民,柳贡民,王芝秋.汽车主动悬架系统LMS自适应控制技术研究[J].哈尔滨工程大学学报,2003,24(5):530-533
    [96]丁科,侯朝祯.车辆主动悬架的自适应控制研究[[J].北京理工大学学报,2001,21(6):706-709
    [97]姚嘉伶,蔡伟义,陈宁.汽车半主动悬架系统发展状况[J].汽车工程,2006,28(3):276-280
    [98]郑玲,邓兆祥,李以农.汽车半主动悬架的模型参考自适应控制[J].中国公路学报,2005,18(2):99-102
    [99]继富,顾亮,侯朝祯.履带式车辆半主动悬挂的自适应控制[J].兵工学,2004,25(4):389-393
    [100]喻凡,郭孔辉.自适应悬架对车辆性能改进的潜力[J].中国机械工程,1998,20(6):193-196
    [101]陈龙,袁传义,江浩斌等.汽车主动悬架与电动助力转向系统的模糊自适应集成控制[J].汽车工程,2007,29(1):8-12
    [102] TITLI A, ROUKIEH S, DAYRE E. Three control approaches for the design of carsemi-active suspension (optimal control, variable structure control, fuzzycontrol)[C].32nd IEEE CDC,1993:60-70
    [103] SON H Y. A robust controller design for performance improvement of asemi-active suspension systems [C]. In IEEE International Symposium onIndustrial Electronics,2001,20-25.
    [104] OHSAKU S. Nonlinear H∞control for semi-active suspension [J]. JSAE Review,1999,20:447-452
    [105] SAMMIER D, SENAME O, DUGARD L. Skyhook and H∞Control ofSemi-active Suspensions Some Practical Aspects [J]. Vehicle system dynamics,2003,39(4):279-308
    [106] YOKOYAMA M, HEDRICK J K, TOYAMA S. A model following sliding modecontroller for semi-active suspension systems with MR dampers [C]. InProceedings of the American control conference,2001,4:2652-2657
    [107] LAI C Y, LIAO W H. Vibration Control of a Suspension System via aMagnetorheological Fluid Damper [J]. Vehicle system dynamics,2002(8):527-547
    [108]郑玲,邓兆祥,李以农.汽车半主动悬架的滑模变结构控制[J].振动工程学报,2003.16(4):457-462
    [109] KASHANI R, STRELOW J E. Fuzzy Logic Active and Semi-Active Control ofOff-Road Vehicle Suspensions [J]. Vehicle system dynamics,1999,32:409-420
    [110] NICOLAS C F. Application of Fuzzy Logic Control to the Design of Semi-ActiveSuspension Systems [C]. Proceedings of the Sixth IEEE International Conferenceon Fuzzy Systems,1997,2:987-993
    [111] SCHURTER K C, ROSCHKE P N. Neuro-fuzzy control of structures usingmagnetorheological dampers[C]. In American Control Conference.2001
    [112] QIDONG W. Research on the intelligence control for automotive Semi-activesuspensions using the multibody model[C]. In Proceedings of the3rdWorldCongress on Intelligent Control and Automation.2000
    [113]陈家瑞.汽车构造[M],人民交通出版社,1995
    [114]布迪纳斯编,岳珠峰等译,罗氏应力应变公式手册[M],科学出版社,2005
    [115]刘少军,郭淑娟.高速ON/OFF电磁阀在汽车主动控制悬架系统中的应用[[J].中南工业大学学报,1996,27(3):331-334
    [116]周开利.神经网络模型及其MATLAB仿真程序设计[M].清华大学出版社,2005,69-90
    [117]涂建维,瞿伟廉等. MR智能阻尼器试验研究及径向基网络模型[J].武汉理工大学学报,2003,25(1):44-46
    [118]夏品奇.基于系统识别理论的磁流变阻尼器模型[J].工程力学,2003,20(3):115-119
    [119]周建兴. MATLAB从入门到精通[M].人民邮电出版社,2008
    [120]吕振华,李世民,筒式液阻减振器动态特性模拟分析技术的发展[J].清华大学学报(自然科学版),2002,42(11):1532-1536
    [121]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J],农业机械学报,2004,35:46-53
    [122]赵珩,卢仕富.路面对四轮汽车输入的时域模型[J].汽车工程,1999,21(2):112-117.
    [123]陈杰平,陈无畏,祝辉.基于Matlab/Simulink的随机路面建模与不平度仿真[J],农业机械学报,2010,41(3):77-82
    [124]潘双夏,陈助碧,冯培恩. M-File S-函数在时域路面不平度建模中的应用[J],中国工程机械学报,2006,4(4):379-384
    [125]余淼.汽车磁流变半主动悬架控制系统研究[D].重庆大学光电工程学院,2003
    [126] HAIPING H. Survey of Advanced Suspension Developments and RelatedOptimal Control Applications.2005,283:981–996
    [127] RICCARDO C, OLGA D, GIOVANNA F. A Soft Computing Approach to FuzzySky-Hook [J]. IEEE Transactions on Control Systems Technology,2003,11(6):786-798
    [128]刘树博.基于新型优化算法的主动悬架鲁棒输出反馈控制研究[D].吉林大学机械科学与工程学院,2010
    [129] SAVARESI S M, SPELTA C. Mixed Sky-Hook and ADD: Approaching theFilering Limits of a Semi-active Suspension [J]. Transactions of ASME,2007,129:382-392.
    [130] SAVARESI S M, SPELTA C. A Single-Sensor Control Strategy forSemi-Active Suspensions [J]. IEEE Transactions on Control Systems Technology2009,17(1):143-152
    [131]中华人民共和国国家标准. GB/T5902—86[S].汽车平顺性脉输入行驶试验方法,1986
    [132]中华人民共和国国家标准. GB/T12534—90[S].汽车道路试验方法通则,1990
    [133]中华人民共和国国家标准. GB/T13047—91[S].汽车操纵稳定性指标限值与评价方法,1991
    [134]中华人民共和国国家标准. GB/T6323.6—94[S].汽车操纵稳定性试验方法蛇行试验,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700