用户名: 密码: 验证码:
轮毂电机驱动电动汽车联合制动的模糊自整定PID控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境的综合问题使得汽车产业亟需做出相应的转变,而这种转变究其根源就是改变传统汽车对石油等不可持续能源的绝对依赖。电动汽车以其清洁、节能的特点,在新能源汽车中占有了无与伦比的优势地位。它在行驶过程中,不消耗石油燃料,能量转换效率比传统汽车高一倍多,没有任何排放污染、热辐射低、噪声小,同时电动汽车的结构简单,维护与保养方便,体积小巧,可以缓解城市交通拥挤的现状。因此,电动汽车是未来汽车工业发展的主要方向,电动汽车的研发与应用将开创汽车产业发展的新格局。
     传统汽车普遍采用的是液压制动系统,由于电动汽车的电机能够进行能量回收,因而在电动汽车上采用电机制动与液压制动相结合的联合制动方式可以有效的对汽车制动时的能量进行回收。本文针对轮毂电机驱动的电动汽车,在总结了国内外研究成果的基础上,结合智能理论,提出了基于制动力分配和液压制动与电机防抱死制动相结合的联合制动模糊自整定PID控制策略。该控制策略考虑了在不同制动模式下车辆的制动稳定性、制动效率以及制动能量的回收,对液压制动和电机再生制动进行了合理的协调,很好实现了电动汽车的制动防抱死控制。该控制方法比逻辑门限值控制方法波动小,具有较好的舒适性;相比单纯的PID控制,其参数整定简单,适应性强。
     本文针对四轮毂电机独立驱动电动汽车的电液联合制动控制系统进行了研究,对前后轮制动力做了合理的分配,每个轮的制动力由电机再生制动力和液压制动力共同组成,根据路面系数以及制动强度进行合理的分配和协调。采用纯电机进行防抱死控制,液压制动作为补充的总体ABS控制方法,这种控制方法既保证了制动能量的回收又保证了在不同工况下制动的稳定性。在防抱死控制策略上采用了模糊自整定PID控制方法,通过路面识别系统识别的路面系数被传输给模糊控制器,模糊控制器再根据其内部设定的模糊规则对PID各参数进行实时的调节,使车辆滑移率在不同工况下都能够保持在最佳滑移率附近,实现车辆制动防抱死的实时高效。
     本文在AMESim中搭建了15自由度整车模型,并通过Interface与Simulink中建立的控制方法相连接,进行了联合仿真分析。仿真的结果表明,本文建立的控制方法、控制模型能够很好地实现对本文研究车辆的制动防抱死控制。
     通过对实验室原有的传统汽车ESP硬件在环试验台进行重新设计和改造,建立了基于dSPACE的硬件在环实时仿真试验平台,对模糊自整定PID控制联合制动防抱死系统进行了硬件在环仿真试验。
     根据以上所述思路,本文主要针对以下几个方面进行了研究:
     一、整车系统动力学模型构建。构建了车辆的轮胎仿真模型、电池模型、轮毂电机模型、液压制动模块模型、空气动力学模型等,通过建立的车辆各部分模型以及整车数学模型,提出了车辆动力学模型的总体方案。在AMESim软件中建立了十五自由度的整车模型,作为进行ABS仿真的车辆动力学模型,为Simulink中的控制系统提供信号输入以及接受控制系统的反馈信息,实现本文研究的四轮毂电机独立驱动电动汽车的ABS仿真。
     二、电液联合制动的制动力分配策略。介绍了制动力分配理论,对电液联合制动的制动力分配进行了相关研究,提出了本文的制动力分配策略;给出了一种路面识别算法并对制动模式的判断方法进行了说明。
     三、模糊自整定PID控制策略研究。给出了模糊控制的理论基础,介绍了模糊控制器的原理、设计方法以及模糊控制理论在系统中的运行流程;对PID控制原理及参数整定等作了阐述;介绍了三种典型的模糊-PID控制方法。详细阐述了本文模糊自整定PID控制方法的设计过程及相关参数设置。
     四、离线仿真与分析。给出了在AMESim中建立的十五自由度整车模型和液压制动模型。建立了基于逻辑门限值方法的纯电机防抱死制动控制系统并进行了仿真;针对本文研究的模糊自整定PID控制电液联合制动进行了冰路面、雪地、干沥青路面和湿沥青路面等不同路面系数下的仿真。在对接路面方面,进行了湿沥青路面到压实雪地的制动防抱死仿真。仿真结果表明,设计的控制方法能够很好地实现车辆的联合制动防抱死控制功能。
     通过对逻辑门限制方法与本文研究的控制方法的仿真结果的分析可以得出,本文研究的控制方法较前者在电液联合制动方面有较大的优势,在防抱死制动时,车辆系统的波动也较前者小很多,可以充分有效地利用电机进行防抱死控制,并能够对制动能量进行回收。
     五、硬件在环仿真试验研究。通过对课题组原有传统车辆ESP硬件在环测试仿真系统进行重新设计与改造,搭建了基于dSPACE的电动汽车联合制动硬件在环仿真试验台,并进行了轮毂电机驱动电动汽车制动防抱死试验研究。结果表明,设计的控制策略能够根据车辆的实时状态,对路面系数进行判断,估算出当前的最佳滑移率,控制液压制动力和电机制动力的分配,保证滑移率在当前路面系数下保持在最佳滑移率附近。同时,在设计的控制策略下,制动防抱死系统响应速度快,系统波动小。
     本文提出的控制算法能够快速有效地对防抱死制动进行控制,并通过离线仿真与硬件在环仿真试验验证了该控制方法,为进一步研究轮毂电机驱动电动汽车电子稳定性集成控制奠定了基础。
Due to the energy and environment problem, the automobile industry needs to makechange urgently, which is to reduce or remove the dependence on unsustainable energy.Electric vehicle with clean, energy-saving features, has incomparable advantage in newenergy vehicles. It also has the advantages of simple structure, convenient maintenance,small size, alleviating the traffic pressure. Therefore, electric vehicle is the main direction ofautomobile industry, the research and development of electric vehicles will initiate the newpattern of the development in automobile industry.
     The traditional automotives commonly use hydraulic braking system, as electric motoris capable of recycling energy, many vehicles use the composite brake system:motorregenerative braking combined with traditional hydraulic braking. In this article, a vehiclewith four electric wheels was studied. By summarizing the research results at home andabroad, a composite ABS Control Strategy of fuzzy self-adjusting PID for electric-wheelvehicle was proposed on the basis of intelligent control theory. The control strategyconsidered the vehicle braking stability, braking efficiency as well as the braking energyrecovery on different braking mode. It coordinated the hydraulic braking and the motorregenerative braking, achieved a good anti-lock braking control effect. The control method isbetter than the logic threshold control because of its smaller fluctuation, which can be morecomfortable; Comparing with PID control, its parameter setting is simpler, and it also has astronger adaptability.
     A composite ABS control system for four-wheel independent drive electric vehicles wasstudied, the front and rear wheel braking force was distributed reasonably, and the brakingforce on each wheel was combined with motor braking force and hydraulic braking force.According to the road coefficient and braking strength, The braking force can be distributedand coordinated. A method of pure motor ABS with the help of hydraulic braking force was proposed, this control method can not only ensure the braking energy recovery and guaranteethe braking stability in different conditions. By using the fuzzy self-adjusting PID controlmethod, the road coefficient identification system transmits the road coefficient to the fuzzylogic controller, and the latter adjusts the PID parameters through its internal set of fuzzyrules in real time, so that the vehicle slip ratio under different working conditions is able tomaintain the optimal slip ratio and the anti-lock braking system can achieve high efficiencyin real time.
     Based on the research and control method above, a vehicle model with15degrees offreedom was constructed in AMESim, it was connected with the control method in Simulinkthrough the Interface. A co-simulation analysis was given, and the results shows that thecontrol method mentioned above can well realize the anti-lock braking control of theresearch object in this article.
     By redesigning and transforming the traditional automobile ESP test platform, ahardware in the loop test bench based on dSPACE simulation platform was built, thecomposite ABS Control Strategy of fuzzy self-adjusting PID for electric-wheel vehicle wastested on it.
     According to the theories above, the article discussed the following issues:
     1. The establishment of the vehicle dynamic model. The vehicle tire model, batterymodel, motor model, hydraulic braking model, aerodynamic model were established. Basedon these models, the whole vehicle dynamic model of15degrees of freedom wasconstructed in AMESim. It provides signal input and receives the control feedbackinformation from Simulink, realizes the ABS co-simulation for four-wheel independent driveelectric vehicles.
     2. The braking force distribution strategy for electro-hydraulic brake. The braking forcedistribution theory was introduced, and the braking force distribution method of this articlewas proposed; a road coefficient recognition algorithm was given and the judging methodof braking mode was described.
     3. Research on the fuzzy self-adjusting PID control strategy. The fuzzy control theory,the principle of the fuzzy controller, the design method and its operation process were introduced; the principle of PID control and its adjustment of parameter were described;three kinds of typical fuzzy-PID control method were elaborated; the design process of thefuzzy self-adjusting PID control strategy and its parameter setting were described in detail.
     4. The off-line simulation and analysis. The simulation model established in AMESimand Simulink was given. A series of simulation were made under different road coefficient.The simulation results show that, the control method can achieve the anti-lock brakingcontrol effectively.
     5. Experimental study on hardware in the loop simulation. By redesigning andtransforming the traditional automobile ESP test platform, a hardware in the loop test benchbased on dSPACE simulation platform was established, and the composite ABS ControlStrategy of fuzzy self-adjusting PID for electric-wheel vehicle was tesed on it. The resultsshow that, the control strategy can judge the road coefficient and estimate the optimal slipratio according to the vehicle real time status, control the distribution of hydraulic brakingforce and motor braking force, guarantee the slip ratio kept with the optimal slip ratio in thecurrent road coefficient. In the same time, under the control strategy designed, the anti-lockbraking system has faster response speed and smaller fluctuation.
     The control algorithm proposed in this article can achieve the composite ABS controlrapidly and effectively. The control strategy was tested by off-line simulation and hardwarein the loop simulation. It can laid a foundation for integrated control of electronic stabilitywith electric wheel vehicle in fuzzy logic control area.
引文
[1] World Energy Council.2010Survey of Energy Resources[R].2010.
    [2] World Energy Council. World Energy Insight2010[R].2010.
    [3]陈清泉.电动车的现状和趋势[J].Machine Building&Automation, Feb2003,(1):1-4,19.
    [4]国务院发展研究中心课题组.电动汽车:我国汽车产业升级与升级的突破口[J].发展研究,2009,(4)专稿.
    [5]付翔.中国电动汽车产业法阵动力系统研究[D].武汉:武汉理工大学,2008.
    [6]程魁玉.电动汽车行业发展环境分析[D].天津:天津大学,2004.
    [7] WAKEFIELD E H,叶云屏,孙逢春译.电动汽车发展史[M].北京:北京理工大学出版社,1997.
    [8] CAIMS E J. A new mandate of energy conversion: zero emission (electric)vehicles[J]. Power Sources Symposium,1992. IEEE35th International,1992:310-313.
    [9]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2005.
    [10] HORI Y, MEMBER S. Future vehicle driven by electricity and Control—research on four‐wheel‐motored“UOT electric march”[J]. IndustrialElectronics, IEEE Transactions on,2004,51(5):954-962.
    [11]胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2002.
    [12]曹秉刚,张传伟,白志峰等.电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,38(l):l-5.
    [13]顾云青,张立军.电动汽车电动轮驱动系统开发现状与趋势[J].汽车研究与开发,2004,(12).
    [14]崔胜民.现代汽车系统控制技术[M].北京:北京大学出版社,2008.
    [15]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[D].北京:北京理工大学,2002.
    [16]张缓缓.采用电动轮驱动的电动汽车转矩协调控制研究[D].长春:吉林大学,2008.
    [17]宋佑川.新一代电动汽车中电动轮设计方法研究[D].武汉:华中科技大学,2004.
    [18] Shiro Matsugaura, Kiyomoto Kawakami, Hiroshi Shimuzu. Evaluation ofperformance for the in-wheel driving system for the new concept electricvehicle ‘KAZ’[J]. EVS-19, Korea, Oct.2002.
    [19] Hiroshi Shimizu, junji Honda, Colby Bland. Concepts in electric vehicleDesign [J].IEEE Trans,1997, Vol.44:14-18.
    [20]杨胜明.直驱式轮毂马达之趋势与应用[R].淡江大学机电控制实验室.2003
    [21]葛英辉.轮式驱动电动车控制系统的研究[D].杭州:浙江大学,2004.
    [22]刘俊.电动汽车电动轮驱动技术仿真研究[D].长春:吉林大学,2005.
    [23] SAE Standard, Anti-Lock Brake System Review[S]. SAE J2246, June1992.
    [24]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [25]郭孔辉,丁海涛.汽车ABS混合仿真试验台的开发与研究[J].中国机械工程,2000,11(12):1417-1421.
    [26]宋传学,周云山,李幼德.防抱制动系统控制算法的仿真研究[J].汽车工程,1998,20(1):24-030.
    [27]唐国元.车辆防抱制动系统及制动稳定性控制策略的仿真研究[D].武汉:华中科技大学,2005.
    [28]李果.车辆防抱死制动控制理论与应用[M].北京:国防工业出版社,2009.
    [29]刘国福.基于滑移率的车辆防抱死制动系统的研究[D].武汉:国防科技大学,2007.
    [30] Han-Shue Tan, Yuen-Kwok Chin. Vehicle Antilock Braking and TractionControl[C]: A Theoretical Study. International Journal of System Science,1992,23(3):351-365
    [31] Yuen-Kwok Chin, William C. Lin, David M. Sidlosky, David S.Rule.SLIDING-MODE ABS WHEEL-SLIP CONTROL[C].American ControlConference,1992:1-8.
    [32] Wookug Hwang, Byung-su Song. Road condition Monitering system UsingTire-road Friction Estimation[J]. Proceedings of AVEC2000, Ann Arbor,Miehigan,2000,437-442.
    [33] Th. Bach, H. Schmitt, W. Schwanke, et al.“ROADRUNNER”-Real-timesimulation in anti-lock brake system development[C].SAE paper950758.
    [34] Helmut Fennel, Sascha Mahr, Rudiger Schleysing. Transputer-basedreal-time simulator-a high performance tool for ABS and TCSdevelopment[C].SAE paper920643.
    [35]谭刚平,赵龙庆.汽车ABS逻辑门限值控制策略研究[J].西南林学院学报,2006,8(26):83-85.
    [36]司利增.汽车防滑控制系统ABS与ASR[M].北京:人民交通出版社,1999.
    [37]王伟达.汽车ABS/ASR/DYC集成系统控制方法研究[D].北京:北京航空航天大学,2008.
    [38]李建勋,张春化.速度分段在ABS逻辑门限值控制法中的研究与应用[J].汽车技术,2004(11):5-8.
    [39]吴昭润,曹华,彭美春等.汽车防抱制动系统三种控制方法的分析[J].汽车研究与开发,2003(6):47-50.
    [40] Ahmad Mirzaei, Mehdi Moallem. Design of an Optimal Fuzzy Controller forAntilock Braking Systems[J]. IEEE TRANSACTIONS ON VEHICULARTECHNOLOGY,2006,(55):1725-1730.
    [41]杨旭东.基于最优的汽车防抱死制动系统控制方法研究[D].西安:西北工业大学,2004.
    [42]李文娟,赵梦莹,等.汽车ABS自寻最优控制器的模拟研究[J].伺服控制,2010,(02):45-48.
    [43] Hanmin Lee, Gildong Kim, Sunghwan Park. A Study on Optimal Braking ControlUsing Adhesion Coefficient[C]. The7th International Conference on PowerElectronics,2007:343-346.
    [44]李建华.基于ESC控制系统的ABS控制策略研究及试验[D].长春:吉林大学,2010.
    [45] DengfengYang, Zhihua Feng, Desheng Ma.Developmentof Anti-lock BrakeSystem in Virtual Environment[C].IEEE International Conference,2004.
    [46]裴锦华.汽车ESP控制系统研究[D].重庆:重庆大学,2005.
    [47]胡启国,任龙.车辆ABS参数自调节模糊PID控制方法[J].重庆交通大学学报(自然科学版),2012,31(2):344-348.
    [48] Juan A. Cabrera, Antonio Ortiz. A Fuzzy Logic Control for Antilock BrakingSystem Integrated in the IMMa Tire Test Bench[J]. IEEE TRANSACTIONS ONVEHICULAR TECHNOLOGY, VOL.54, NO.6, NOVEMBER.2005.
    [49] Chih-Min Lin,Chun-Fei Hsu. Self-Learning Fuzzy Sliding-Mode Control forAntilock Braking Systems[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMSTECHNOLOGY, VOL.11, NO.2, MARCH2003.
    [50] Y. Lee and S. H. Zak.Designing a genetic neural fuzzy anti-lock brake systemcontroller[J]. IEEE Trans. on Evolutionary Computation, vol.6, no.2:198-211, April,2002.
    [51]潘开广.汽车防抱死制动系统模糊控制策略研究[D].长沙:长沙理工大学,2007.
    [52]穆效江,陈阳舟.滑模变结构控制理论研究综述[J].控制工程,2007,(14):1-5.
    [53]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,(24):407-418.
    [54]刘金馄.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [55]赵向东.汽车牵引力控制系统控制算法的研究及仿真分析[D].长春:吉林大学,2004.
    [56]张昌凡.滑模变结构的职能控制理论与应用研究[D].长沙:湖南大学,2001.
    [57] Zijian Zhang,Guoqiong Xu. The application of fuzzy logic in regenerativebraking of EV[J]. Second International Conference on IntelligentHuman-Machine Systems and Cybernetics,2010:124-128.
    [58] ZHANG Jing-ming,REN Dian-bo,SONG Bao-yu. The Research of RegenerativeBraking Control Strategy for Advanced Braking Force Distribution[J].Fifth International Conference on Natural Computation,2009:458-462.
    [59]谭元文,刘溧.电动汽车再生制动系统的结构与控制策略研究[J].北京汽车,2007,(2):15-18.
    [60]余卓平,张元才,徐乐.复合制动系统制动力协调分配方法仿真研究[J].汽车技术,2008,(5):1-4.
    [61]吕奉阳.纯电动客车再生制动与气压制动协调控制策略研究[D].长春:吉林大学,2009.
    [62]任飞.电动汽车能量回馈制动系统的研制[D].北京:北京交通大学,2009.
    [63] Gao Y M,Chen L H and Ehsani M.Investigation of of the Effectiveness ofRegenerative Braking for EV and HEV[C].SAE1999-01-2910.
    [64] S R Cikanek.Electric Vehicle Braking System[C].Proceedings of the14thInternational Electric Vehicle Symposium,Orlando,Florida,USA,1997.
    [65] PANAGIOTIDIS M,DELAGRAMMATIKAS G AND ASSANIS D.Development and Use of aRegenerative Braking Model for a Parallel Hybrid Electric Vehicle[J].SAEpaper,2000(01):0995.
    [66] Jungwook Kim, Sungyeon Ko, Gaeun Lee. Development of Co-operative ControlAlgorithm for Parallel HEV with Electric Booster Brake during RegenerativeBraking[C]. IEEE Vehicle Power and Propulsion Conference, VPPC2011:1-5.
    [67]王鹏宇,王庆年,胡安平,于远彬.基于Simulink_AMESim联合仿真的混合动力客车再生制动系统分析[J].吉林大学学报(工学版),2008,(38):8-11.
    [68]曹建波,曹秉刚,王军平等基于RBF神经网络调节的电动车驱动和再生制动滑模控制[J].吉林大学学报(工学版),2009,(39-4):1019-1024.
    [69]李舒欣,曹秉刚,白志峰,王宝瑛.电动汽车再生制动的模糊控制实验研究[J].电气技术,2006,(1):52-54.
    [70]何仁,陈庆樟.用双开关磁阻电机的汽车能量再生制动技术[J].吉林大学学报(工学版),2009,(39-5):1137-1141.
    [71]陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程,2008,(30-4):301-304.
    [72]张昌利,张亚军,闫茂德,汪贵平.双能量源纯电动汽车再生制动模糊控制与仿真[J].系统仿真学报,2011,(23-2):233-238.
    [73]李玉芳,林逸,何洪文,陈陆华.电动汽车再生制动控制算法研究[J].汽车工程,2007,(29-11):1059-1062.
    [74]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报(信息与管理工程版),2005,(27-1):116-120.
    [75]李谨,邓卫华. AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004,(26-5):61-64.
    [76]江玲玲,张俊俊.基于AMESim与Matlab\Simulink联合仿真技术的接口与应用研究[J].流体传动与控制,2007,(22):26-27.
    [77]胡安平.基于AMESim-Simulink联合仿真的再生制动系统研究[D].长春:吉林大学,2008.
    [78]付永领等. AMESim系统建模和仿真—从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [79]章湛.基于AMESim对并联液压制动能量再生系统的建模与仿真研究[D].北京:北京交通大学,2010.
    [80] Ji Wang, Chuanxue Song, Liqiang Jin. Modeling and Simulation of AutomotiveFour channel Hydraulic ABS Based on AMESim and Simulink/Stateflow[J]. IEEEThe2nd International Workshop on Intelligent Systems and Applications(ISA2010), Wuhan, vol(I):514-517, May2010.
    [81]杨武双.基于AMESim对并联液压制动能量再生系统的建模与仿真研究[D].长沙:湖南大学,2008.
    [82]袁忠诚,卢荡,郭孔辉. Unitire与Magic Formula稳态模型的对比研究[J].汽车技术,2006,(2):7‐11.
    [83]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [84] Hans B. Pacejka. Tyre and Vehicle Dynamics[M]. Professor Emeritus DelftUniversity of Technology Consultant TNO Automotive Helmond TheNetherlands,2006.
    [85]张缓缓,王庆年,靳立强.四轮独立驱动电机特性对车辆直线行驶稳定性影响的研究[C].2007年APC联合学术年会论文,2007,APC2007-045:218-222.
    [86]柯勇,陶以彬,钟国基.新型电动车用轮毂电机的稳态研究[J].微特电机,2009,5:15-17.
    [87] H.C.Lovatt,V.S.Ramsden,B.C.Mecrow. Design of an in-wheel motor for asolar-powered electric vehicle[C].8th International Conference onElectrical Machines and Drives,1997:234-238.
    [88] K.Cakir,A.Sabanovic. In-wheel Motor Design for Electric Vehicles[C].9thIEEE International Workshop on Advanced Motion Control,2006:613-618.
    [89]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [90]余志生.汽车理论(第4版)[M].北京:机械工业出版社,2007.
    [91]王望予.汽车设计(第4版)[M].北京:机械工业出版社,2006.
    [92]张立军,朱博,贾云雷.依ECE法规进行汽车制动力分配新方法[J].辽宁工程技术大学学报,2005,(24-2):276-279.
    [93] Lynn R. Gantt, Donald E. Perkins,Robert J. Alley etc.Regenerative BrakeEnergy Analysis for the VTrex Plug-in Hybrid Electric Vehicle[C].2011IEEE Vehicle Power and Propulsion Conference, VPPC,2011.
    [94] Zhang jingming, Song baoyu, Niu xiaojing. Optimization of ParallelRegenerative Braking Control Strategy[C]. IEEE Vehicle Power andPropulsion Conference (VPPC),2008, Harbin, China.
    [95] Qinghe Liu, Zechang Sun. Study on Electro-Hydraulic Parallel Brake[C].IEEEVehicle Power and Propulsion Conference (VPPC),2008,Harbin,China.
    [96]赵国柱.电动汽车再生制动稳定性研究[D].南京:南京航空航天大学,2006.
    [97]吕奉阳.纯电动客车再生制动与气压制动协调控制策略研究[D].长春:吉林大学,2009.
    [98] M.米奇克,陈荫三,余强译.汽车动力学(第4版)[M].北京:清华大学出版社,2009.
    [99]徐海东.电动汽车再生制动能量高效回收控制策略研究[D].济南:山东大学,2007.
    [100]唐鹏.电动汽车制动能量回收的分析与研究[D].合肥:合肥工业大学,2007.
    [101]肖琨.复合制动系统制动力分配算法研究[J].北京汽车,2009,(2):42-46.
    [102]刘博.基于纯电动汽车制动能量回收系统的研究与实现[D].北京:清华大学,2004.
    [103]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学,2008.
    [104]武钟财.基于扩展卡尔曼滤波的路面附着系数估计算法研究[D].长春:吉林大学,2008.
    [105] KAZEMI R,KABGANIAN M,ZAARE M R M. A new sliding mode con‐troller forfour‐wheel anti‐lock braking system(ABS)[M],SAE Paper2000:01‐1639.
    [106]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141‐145.
    [107]张厚忠,陈辛波.基于路面识别电液复合制动整车联合仿真[J].汽车技术,2008,9:13-16.
    [108]潘辉,李礼夫.基于路面识别的汽车ABS滑模控制方法的研究[J]现代制造工程,2011,2:43-47.
    [109]李劲松,骆剑亮,张惜辉. ABS路面识别的仿真分析[J].拖拉机与农用运输车,2009,(36-5):46-48.
    [110]赵玲.基于自调整模糊控制的汽车ABS路面识别[J]机械设计与制造,2011,8:186-187.
    [111]王英范,宁国宝,余卓平.乘用车驾驶员制动意图识别参数的选择[J].汽车工程,2011,(33-3):213-216.
    [112]李寿涛,郭立书,徐辉.基于模糊逻辑的驾驶员紧急制动意图识别[J].仪器仪表学报,2009,(30-6):218-221.
    [113]孙逸神.基于模糊逻辑的制动意图离线识别方法研究[J].北京汽车,2009,(6):21-23.
    [114]张元才.基于制动意图的电动汽车复合制动系统制动力分配策略研究[J].汽车工程,2009,(31-3):245-249.
    [115]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,1999.
    [116] Li Fa-Zong, Hu Ru-Fu, Yao Huan-Xin.The Performance of Automobile AntilockBrake System Based on Fuzzy Robust Control[C].2010InternationalConference on Intelligent Computation Technology and Automation, ICICTA2010:870-873.
    [117]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [118]张化光,孟祥萍.智能控制基础理论及应用[M].北京:机械工业出版社,2005.
    [119]杨炜.基于混合智能技术的注塑成型工艺优化的研究[D].浙江:浙江大学,2005.
    [120]许力.智能控制与智能系统[M].北京:机械工业出版社,2007.
    [121]李晓丹.模糊PID控制器的设计研究[D].天津:天津大学,2005.
    [122]林浩.模糊PID控制器仿真研究[D].贵阳:贵州大学,2005.
    [123]胡启国,任龙.车辆ABS参数自调节模糊PID控制仿真[J].重庆交通大学学报(自然科学版),2012,(31-2):344-348.
    [124]鲍翔英.汽车ABS的模糊预测控制策略研究[D].武汉:武汉理工大学,2006.
    [125]潘广开.汽车防抱死制动系统模糊控制策略研究[M].长沙:长沙理工大学,2007.
    [126]刘倩.汽车防抱死制动系统(ABS)模糊控制方法的研究[D].长春:吉林大学,2008.
    [127] KHATUN P, BINGHAM C M. Application of fuzzy control algorithms forelectric vehicle antilock braking/traction control systems[J].Vehicular Technology, IEEE Transactions on,2003,52(5):1356‐1364.
    [128] CHEN F W, LIAO T L. Nonlinear linearization controller and geneticalgorithm-based fuzzy logic controller for ABS systems and theircomparison[M]. Int. J. Vehicle Design.2000:334‐349.
    [129]愈琳琳.复合PID-模糊控制在ABS中的应用研究[D].重庆:重庆大学,2011.
    [130]张国立,张辉,孔倩.模糊数学基础及应用[M].北京:化学工业出版社,2011.
    [131]赵明旺,王杰.智能控制[M].武汉:华中科技大学出版社,2010.
    [132]李国勇.智能预测控制及其MATLAB实现[M].北京:电子工业出版社,2010.
    [133]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [134]郭阳宽.过程控制工程及仿真——基于MATLAB/Simulink[M].北京:北京电子工业出版社,2009.
    [135]李舒欣,曹秉刚,白志峰等.电动汽车再生制动的模糊PI控制实验研究[J].电气技术,2006,(1):52-54.
    [136]夏良梁.基于模糊控制的再生制动系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2010.
    [137]左婷.模糊PID控制中模糊控制规则的获取方法[D].长春:东北师范大学,2010.
    [138]张德江.计算机控制系统[M].北京:机械工业出版社,2007.
    [139]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [140]李士勇.模糊控制[M].哈尔滨:哈尔滨工业大学出版社,2011.
    [141]靳立强,王庆年,岳巍强,宋传学.基于四轮独立驱动电动汽车的动力学仿真模型[J].系统仿真学报,Vol.17, No.12,2005.
    [142] Manfred Mitschke, Henning Wallentowitz(著)陈荫三,余强(译).汽车动力学[M].北京:清华大学出版社,2009.
    [143]张亚军,杨盼盼.纯电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报,2010,(32-15):90-94.
    [144]朱冰,赵健,李静等.面向牵引力控制系统的AMESim与MATLAB联合仿真平台[J].吉林大学学报(工学版),2008,(38):23-27.
    [145]张继红.纯电动汽车电液制动系统再生制动控制策略研究[D].长春:吉林大学,2011.
    [146]陶润,张红,付德春等.基于AMESim的ABS液压系统的建模与仿真[J].广东交通职业技术学院学报,2010,(9-1):46-48.
    [147]李以农,谢敏松,米林.基于AMESim的汽车ESP液压系统建模[J].计算机辅助工程,2010,(19-2):36-40.
    [148]高伟,姚进,史延枫.基于AMESim的汽车液压制动系统HBS仿真研究[J].Hydraulics Pneumatics&Seals,No.2.2009.
    [149]谢彬.汽车电动助力转向系统硬件在环仿真[M].武汉:华中科技大学,2008.
    [150]祁永宁.4WS车辆直接横摆力矩控制与硬件在环仿真系统[M].南京:东南大学,2005.
    [151] William Monsma. Application of Hardware-In-The-Loop Simulation toChassis Control Software Verification[C].SAE Paper2009-01-0445.
    [152] Takeshi Ohba, Ichiro Takema, Yukimasa Minami, et al. Application of HILSimulations for the Development of Vehicle Stability AssistSystem[C].SAE Paper2002-01-0816.
    [153] H.Hanselmann. Hardware-in-the-Loop Simulation as a Standard Approach forDevelopment,Customization,and Production Test[C].SAE Paper930207.
    [154] Kenji Hagiwara, Satoshi Terayama, Yahei Takeda, et al. The Developmentand Utilization of Hardware-in-the-loop Simulation for the Developmentof an Automatic Transmission Control System[C].SAE Paper2002-01-1255.
    [155] Syed Nabi, Mahesh Balike, Jace Allen, et al. An Overview ofHardware-In-the-Loop Testing Systems at Visteon[C].SAE paper2004-01-1240.
    [156]朱德军.车辆VSC的控制算法和硬件实现研究[D].南京:东南大学,2005.
    [157]赵亚明,马旭东. Simulink/RTW下xPC Target的S函数驱动模块开发[J].机械工程与自动化,2007,(3):50-52.
    [158]谢晗,吴光强,邱绪云.基于xPC目标的实时仿真技术及实现.微计算机信息[J].2006,22(12):200-202.
    [159]金晓华.基于dSPACE半实物仿真的电机测试平台研究[D].南京:东南大学,2006.
    [160]张晋东.基于dSPACE的混合动力汽车AMT电机控制系统[D].长春:吉林大学,2004.
    [161]恒润科技关于dSPACE控制系统的集成开发平台相关资料.
    [162]丁海涛,郭孔辉,张建伟,付浩,吕济明.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用[J].汽车工程,2006,28(4):346-350.
    [163]恒润科技dSPACE培训教程.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700