用户名: 密码: 验证码:
80型轮式装载机结构系统动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文结合“十二五”国家科技支撑计划课题“面向节能与安全的集成智能化工程机械装备研发”(课题编号:2013BAF07B04),依据轮式装载机实际工作情况,建立与其真实结构相符合的11自由度振动系统模型,结合虚拟激励法分析影响轮式装载机结构系统动力特性的主要因素。
     轮式装载机是铲土运输机械的一种,广泛应用于矿山、建筑、农业、水利等大型工程领域,具有操作便利快捷,机动灵活,易于使用与维修等特点,是重要的工程机械设备之-
     就现有我国轮式装载机的设计与研发趋势来看,生产与研发主要集中在3-5吨级机型上,其中尤以5吨级机型最为集中,但随着市场需求形势的变化,工程机械设备的发展日趋大型化,而且,为了提高工程作业效率,对轮式装载机的行驶速度与作业时的整车稳定性也提出了要求。轮式装载机的工作环境通常比较恶劣,路面条件较差,而轮式装载机自身的特点又使得车架与驱动桥之间采用螺栓固定连接,无弹性悬架设备,因而对于中长距离行驶及转场行驶工况,整车结构无法有效的缓冲和衰减高速行驶带来的冲击和振动,影响驾驶员的身心健康,降低装载机零部件的工作可靠性和使用寿命,成为制约轮式装载机向高速化、高效化发展的重要因素。因此,有必要对大型轮式装载机结构系统动力特性进行系统与深入的研究,找到影响其结构系统动力特性的相关因素,既能够有效改善驾驶员的操作舒适度,保持运载货物的完整性,又能够为日后装载机的发展与改进提供一定的理论依据。
     本文基于试验实测数据,建立工作装置悬置弹性等效模型并根据实际工况对其动态特性进行分析,分析主要弹性减振组件的力学特性,建立与实际结构相符合的轮式装载机空间11自由度系统振动模型,使用虚拟激励法对轮式装载机结构系统动力特性进行系统研究,分析影响轮式装载机结构系统动力特性的主要因素,着重考虑外部激励变化,系统各响应量的变化规律,为提高轮式装载机的结构系统动力特性提供了理论依据,亦可作为机型改进与部件升级的理论参考。
     本文根据80型轮式装载机技术数据建立其工作装置与前车架的刚—弹耦合模型,对80型轮式装载机工作装置正载与偏载工况的作业循环进行仿真,求得正载与不同偏载位置时,工作装置各关键铰点的受力,得出了偏载作用位置对不同铰点受力影响的变化规律。仿真结果表明,工作装置中受力最大的铰点是动臂与前车架铰接点,偏载工况下,这一铰点受力情况更为严峻。通过仿真分析得到作用于工作装置动臂油缸与铲斗油缸上的力,这是分析动臂油缸与铲斗油缸动态工作特性的基础。
     本文对80型轮式装载机工作装置油缸的动态工作特性进行了研究,通过试验获得80型轮式装载机一个铲装循环工作油泵出口压力和动臂油缸以及铲斗油缸的有杆腔与无杆腔压力特性,建立开启与关闭行驶稳定系统两种不同工作状态下油缸的力学模型,得到其刚度系数和阻尼系数的通用表达式,基于试验实测数据研究工作装置动臂油缸和铲斗油缸的动态特性,得出了不同工况下动臂油缸和铲斗油缸的刚度系数与阻尼系数曲线,分析系统各参数对油缸的动态特性的影响。
     本文建立轮式装载机弹性减振组件—座椅、橡胶减振器和轮胎的动力学模型,根据实际工况分析影响减振组件动力特性的各项因素。研究结果表明空气悬挂式轮式装载机座椅,在充气压力相同的情况下,可有效保持座椅高度与动力特性的稳定。本文还分析了正载与偏载工况下轮胎的载荷与力学特性,结果表明,在同等工作条件下,轮胎在充气压力为0.39MPa时刚度与阻尼特性最优,结构系统动力特性研究的结果也验证了这一结论。
     本文系统介绍了虚拟激励法的理论基础,分析采用虚拟激励法研究轮式装载机结构系统动力特性的可行性、准确性与有效性。根据轮式装载机实际结构与工作特点,建立80型轮式装载机整车11自由度系统振动参数化模型,在精确确定各项结构参数的基础上,针对不同工况对80型轮式装载机进行系统动力特性研究,得到人体座椅系统垂血加速度、铲斗质心垂直加速度、车轮及工作装置关键铰点的相对动载等响应量的功率谱密度曲线,确定影响轮式装载机结构系统动力特性的各项因素以及各项因素对各响应量的影响程度,并应用人体对振动主观感受的国家标准作为评价指标,根据驾驶员主观感觉的舒适性程度给出工况组合及参数选择的建议。
     论文研究表明,本文所采用的参数化振动模型建立方法与虚拟激励仿真方法可适用于不同机型的轮式装载机,具有通用性,拓展了轮式装载机结构系统动力分析模型与仿真方法的应用范围,对轮式装载机的设计与改进具有一定的帮助作用,为未来轮式装载机结构系统动力特性研究具有一定的指导意义。
Based on "twelfth five-year" national science and technology support plan project "energy saving and safety oriented integrated intelligent engineering machinery and equipment research and development"(project number:2013BAF07B04), paper set up the11degrees of freedom vibration system model according to the wheel loader actual work situation and its real structure conform and combined with the pseudo-excitation method analysis the main factors influencing the dynamic characteristics of wheel loader structure system.
     Wheel loader is a kind of shoveling transport machinery, widely used in mining, construction, agriculture, water conservancy and other large engineering field, is convenient and quick to operate, flexible, easy to use and repair etc, is one of the important engineering machinery and equipment.
     According to existing wheel loader design and research and development trend in our country, the production and research and development focuses on models for3to5ton, notably the5t model is most concentrated, but with the change of market demand situation, the development of engineering machinery and equipment has become increasingly large, and, in order to improve project efficiency, speed of wheel loader when working with vehicle stability is proposed. Wheel loader working environment is generally poor, poor road conditions, and its own characteristics and makes the frame and wheel loader adopts bolt connection between drive axle, inelastic suspension device, thus for long distances and transitions in the condition of the vehicle structure can effectively buffer the impact of the high speed and attenuation and vibration, and influence the driver's physical and mental health, reduce the work reliability and service life of the loader parts, wheel loader constraints become to high speed, efficiency, the development of the important factors. Therefore, it is necessary for large power system with the features of wheel loader structure system in-depth research, to find, the factors which influence the dynamic characteristics of the structural system related both to effectively improve the driver's operation comfort, keep carrying the integrity of the goods, can also for the future development and improvement of the loader to provide certain theoretical basis.
     In this paper, based on the test data, the establishment of working device suspended elastic equivalent model and according to the actual working condition to analyze its dynamic characteristics, analysis the mechanics characteristic of main elastic damping components to establish consistent with the actual structure of the wheel loader11degrees of freedom vibration system model, using structural system dynamic characteristics of wheel loader virtual excitation method carries on the system research, analysis the main factors influencing the dynamic characteristics of wheel loader structure system, focusing on external incentives change, change regulation of the system response, in order to improve the structure of the wheel loader system provides theory basis for dynamic characteristics, also as a model to improve and upgrade parts of theoretical reference.
     According to the work device of the type80wheel loader set up the technical data and the former frame just-elastic coupling model, the model80wheel loader working device and front frame is load and partial load condition of the whole operation cycle simulation, are obtained with different partial load, the stress of the working device's key hinge point, deflection is obtained on the impact of load position on the different hinge point stress change rule. Work device of the simulation results show that the largest stress of the hinge point is movable arm and front frame hinged point, partial load conditions, the hinge point stress distribution is more serious. Function is obtained by the simulation analysis to the work unit movable arm oil cylinder and the turning force on the cylinder, it is analysis of movable arm oil cylinder with turning cylinder dynamic operating characteristics.
     In this paper, the type80wheel loader working device of oil cylinder dynamic working characteristics are studied, through the test measurement type80wheel loader a spade work circulation pump outlet pressure and movable arm oil cylinder and turn the bucket cylinder rod and rodless cavity pressure, get the working pump outlet pressure and movable arm oil cylinder with turning cylinder rod and rodless cavity pressure change characteristic curve, to establish open and close the driving stability system two kinds of oil cylinder under different working condition of mechanical model, its general expressions of stiffness coefficient and damping coefficient, the measured data based on test research unit movable arm oil cylinder and turning dynamic characteristic of the oil cylinder, the movable arm oil cylinder under different working conditions is obtained and turning cylinder stiffness coefficient and damping coefficient curve, dynamic characteristics analysis of various parameters on the oil cylinder system. Theoretical analysis of test data was applied to the research method of combining practice and theory, to improve the authenticity and the credibility of the findings.
     For wheel loader elastic damping components-seat, rubber shock absorber and tire dynamics model, according to the actual working condition analysis of factors influencing the dynamic characteristics of the damping components each. Research results show that air hanging wheel loader seat, in the air under the same pressure, which can effectively keep the seat height and stability of the dynamic characteristics. This paper also analyzed the tire load and partial load condition is the load and the mechanical properties of the results show that under the same working condition, the tires in inflation pressure of0.39MPa when the optimum stiffness and damping properties, structure of system dynamic simulation results also prove the conclusion.
     System is introduced in this paper the theoretical basis for the pseudo-excitation method, analysis of wheel loader virtual excitation method is used to research dynamic characteristics of the structural system feasibility, accuracy and validity. Wheel loader based on the actual structure and the working characteristics, the establishment of model80wheel loader vehicle11degrees of freedom vibration system parametric model, the accurate determination on the basis of the simulation parameters, according to different working condition of type80wheel loader system dynamic simulation, get the response power spectral density curve, determine influence the dynamic characteristics of wheel loader structure system in all kinds of factors and the influence degree of various factors on the corresponding amount, and according to the driver's subjective feelings of comfort degree combination condition and parameters selection Suggestions are given.
     Thesis study, this paper USES the parametric vibration simulation modeling method and pseudo-excitation method can be applied to different models of wheel loader, the versatility, expand the wheel loader system structure dynamic analysis model and simulation method, the application scope of the design of wheel loader and improvement has certain help, the dynamic characteristics of wheel loader structure system for the future research has certain guiding significance.
引文
[1]张智铁.国外矿山机械发展趋势[J].矿山机械,1992,(1):4-10.
    [2]陈家丽.国外轮式装载机新技术与新结构及其发展[J].建筑机械化,2002,(1):17-19.
    [3]梁树英.国外新型环保轮式装载机产品[J].工程机械与维修,2004,(7):108-111.
    [4]潘洪章.我国工程机械的发展趋势[J].甘肃科技,2004,11:15-20.
    [5]秦四成.国内装载机技术进步的思考[J].工程机械,2010,41(5):48-50.
    [6]秦宇,蔡敢为,郑战光等.轮式装载机行驶中振动对物料完整性的影响[J].机械设计与制造,2009,(5):211-213.
    [7]季广中,皇甫艺,赵继云.轮式装载机行驶中仰俯振动的分析及处理[J].矿山机械,2002,(9):39-40.
    [8]刘杰,林慕义,孙大刚.轮式装载机行驶稳定系统减振性能分析[J].农业机械学报,2007,10:182-185.
    [9]柴光远,田满洲,周炯.小型装载机工作装置驱动缸的载荷计算[J].起重运输机械,2007,(5):15-17.
    [10]李富柱,邢艳芳,戴雪芬.基于液压传动的装载机工作装置的分析[J].机械制造与研究,2007,36(5):60-63.
    [11]邵应清.装载机工作装置动态仿真建模新方法[J].江苏理工大学学报(自然科学版)2000,21(6):69-72.
    [12]申文清,郝爱云,朱志辉.基于MATLAB的装载机连杆机构优化设计[J].煤矿机械,2006,27(4):544-545.
    [13]王吉昌,赵耀虹.装载机反转连杆机构工作装置的Pro/E仿真研究[J].工程机械与自动化,2007,(6):56-57.
    [14]刘御卿,余建平.装载机工作装置力分析的电算程序设计[J].工程机械,1992,(4):8-12.
    [15]郁录平,杨长征.装载机机架铰点受力分析[J].设计计算,2006,(9):62-65.
    [16]张纯宇,谢水威.装载机立式与卧式工作装置动力学特征分析[J].技术分析,2000,119(2):11-14.
    [17]李新平,霍族亮,于仁萍等.丛于Matlab/Simulink的液压缸建模与仿真[J].煤矿机械, 2005,(7):49-51.
    [18]司爱国,王国彪,徐进勇等.轮式装载机行驶稳定系统开发[J].矿山机械,2004,(12):12-18.
    [19]司爱国,王聪兴,周志鸿等.轮式装载机振动的应对措施[J].华北水利水电学院学报,2006,27(2):63-65.
    [20]周志鸿,郑利霞,司爱国.装载机工作装置油气减振系统固有频率与衰减效果分析[J].冶金设备,2006,(12):9-13.
    [21]郑利霞,司爱国,周志鸿等.装载机工作装置油气减振系统建模与仿真[J].冶金设备,2006,159(5):1-4.
    [22]刘杰,杨振声,韩斌慧.轮式装载机行驶稳定系统刚度特性分析[J].机床与液压,2008,36(9):260-262.
    [23]I. Hostens, K. Deprez. H. Ramon. An improved design of air suspension for seats of mobile agricultural machines[J]. Journal of sound and vibration,2004,276:141-156.
    [24]G.J. Steina, P. Mucka, T.P. Gunston. Modelling and simulation of locomotive driver's seat vertical suspension vibration isolation system[J]. International journal of industrial ergonomics, 2008,38:384-395.
    [25]刘文华,张子达等.装载机动力减振的新方法[J].矿山机械,1995,(8):7-9.
    [26]孙大刚.橡胶减振缓冲装置在工程机械中的应用[J].工程机械,1994(5):14-18.
    [27]许庆彬,田沁元,朱维娟.工程机械轮胎使用类型及所配车型[J].科技资讯,2003,23(14):37-38.
    [28]叶民镇,刘大起.工程机械轮胎压力最优值的理论分析及试验确定[J].南京建筑工程学院学报,1997,43(4):41-45.
    [29]葛剑敏,刘春辉,郑联珠.轮胎垂直滚动动态刚度和阻尼的研究[J].轮胎工业,2000,20(12):707-709.
    [30]季学武,高义民,裘熙定等.轮胎动刚度和阻尼特性的研究[J].汽车工程,1994,16(5):315-320.
    [31]陈步达,江浩斌,周孔亢.农用运输车行驶平顺性的模拟计算与分析[J].农业机械学报,1997,28(4):23-26.
    [32]刘婷,朱中华,姜武华.基于ADAMS的商务车平顺性仿真[J].客车技术,2005,(5):32-35.
    [33]倪晋尚,阮米庆.车辆的平顺性优化及仿真试验[J].现代机械,2006,(2):8-10.
    [34]沈铁军.时域内双轴载重汽车行驶平顺性建模仿真与实验研究[D]:吉林大学,2006.
    [35]孙海涛,陈关龙.汽车动力学模型综述[J].客车技术,2006,(6):3-7.
    [36]秦玉英.汽车行驶平顺性建模与仿真的新方法研究及应用[D]:吉林大学,2009.
    [37]A. G. Thompson, C. E. M. Pearce. RMS values for force, stroke and deflection in a quarter-car model active suspension with preview[J]. Vehicle System Dynamics,2003,39(1):57-75.
    [38]A. G. Thompson, CE. M. Pearce. Performance index for a preview active suspension applied to a quarter-car model[J]. Vehicle System Dynamics,2001,35(1):55-66.
    [39]I. Youn, A. Hac. Semi-active suspension with adaptive capability[J]. Journal of sound and vibration,1995,180(3):475-492.
    [40]J. Code D. Fundermental issues in suspension design for heavy road vehicles[J]. Vehicle System Dynamics,2001,35(4-5):319-360.
    [41]李志强,马吉胜,王兴贵等.一种履带车辆试验路路面谱的测定方法[J].河北工业大学学报,2006,35(1):62-65.
    [42]徐延海.随机路面谱的计算机模拟[J].农业机械学报,2007,38(1):33-36.
    [43]赵云,董炳武.获取路面谱的一种新方法[J].福州大学学报(自然科学版),1998,26(4):62-66.
    [44]林茂成,赵济海.BB7031-1987车辆振动输入—路面平度表示方法[M].北京:中国标准出版社,1987.
    [45]Michelherger P, Palkovics L, Bokor J. Robust design of active suspension system[J]. Vehicle Design,1993,14(2):145-165.
    [46]A. M. A. Soliman. Effect of road roughness on the vehicle ride comfort and rolling resistance: proceedings of the SAE paper,2006[C].
    [47]李杰,秦玉英,赵旗等.虚拟激励法及其在汽车随机振动应用中的探讨[J].汽车技术,2007,(7):24-27.
    [48]张洪信,尹玉川,牟红波.主动悬架改善重型车辆性能的仿真研究[J].青岛大学学报,2003,18(2):1-4.
    [49]崔航.基于微粒群算法的汽车行驶平顺性参数优化[D]:吉林大学,2007.
    [50]樊兴华,黄席樾,刘光波.九自由度汽车舒适性仿真[J].重庆大学学报,2002,23(4):127-132.
    [51]杨波,王学林,胡于进等.基于柔性模型的多轴汽车平顺性的仿真研究[J].汽车工程,2003,25(5):481-486.
    [52]姜丽丽.基于傅里叶反变换的路面随机激励时域建模与仿真[D]:吉林大学,2007.
    [53]于学华.汽车平顺性技术理论与实践研究[D]:东北林业大学,2002.
    [54]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [55]石洪峰.时域内平衡悬架牵引车行驶平顺性仿真及试验研究[D]:吉林大学,2005.
    [56]陶向华,黄晓明.人—车—路相互作用三质量车辆模型分析[J].交通运输工程学报,2004,4(3):11-15.
    [57]王开云,蔡成标,徐志胜.丛于频域方法的轨道随机振动特性及试验验证分析[J].机械工程学报,2005,41(11):149-152.
    [58]王铁,张国忠,周淑文.路面不平度影响下的汽车驱动桥动载荷[J].东北大学学报(自然科学版),2003,24(1):50-53.
    [59]易当祥,吕国志,张弛.随机路面激励下车载无人机的载荷响应与仿真[J].飞机设计,2004,(3).
    [60]邹晓华,张立军,卷春娇.车辆悬架系统振动仿真[J].辽宁工学院学报,2004,24(2).
    [61]郭兴旺,邹家祥.对机械振动系统的六种动态响应分析方法的评述[J].振动与冲击,1996,15(2).
    [62]杨波.计及车架弹性的多轴重型越野车整车动态性能研究[D]:华中科技大学,2004.
    [63]尼格姆(何成慧,周鉴如,陈文良等译).随机振动概论[M].上海:上海交通大学出版社,1985.
    [64]纽兰(方同译).随机振动与谱分析概论[M].北京:机械工业出版社,1980.
    [65]庄表中,陈乃立,高瞻.非线性随机振动理论及其应用[M].杭州:浙江大学出版社,1986.
    [66]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-94.
    [67]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动,1990,10(4):38-46.
    [68]林家浩.多相位输入结构随机响应[J].振动工程学报,1992,5(1):73-77.
    [69]Zhao Y Q, Zhang G Y. Handling safety simulation of driver-vehicle closed-loop system with evolutionary random road input[[J]. Vehicle System Dynamics,2000,33(3):169-181.
    [70]荆岫岩,林家浩,季晓东.水工建筑物随机地震响应分析的虚拟激励法[J].东北电力技术,1998,(12):5-9.
    [71]李强,周济.重型越野车的非平稳随机激励系统优化设计方法[J].机械强度,1998,20(1):45-52.
    [72]张仕民,李强.汽车悬架系统优化设计的复合遗传算法[J].机械科学与技术,2000,19(4):571-576.
    [73]张亚辉,林家浩.飞行物体受瞬态荷载作用的精细积分法[J].计算力学学报,1998,15(3):288-292.
    [74]林家浩.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [75]Lin J H, Zhang W S, Li J J. Structure responses to arbitrarily coherent stationary random excitations[J]. Computers&Structures,1994,50(5):629-633.
    [76]Lin J H, Shen W P. Williams F W. Accurate high-speed computation of non-stationary random structural response[J]. Engineering Structures,1997,(19):586-593.
    [77]Lin J H, Wang X C, Williams F W. Asynchronous parallel computing of structural non-stationary random seismic responses[J]. International Journal of Numerical Method in Engineering,1997,40:2133-2148.
    [78]Lin J H, Zhang W S, Williams F W. Pseudo-excitation algorithm for non-stationary random seismic responses[J]. Engineering Structures,1994,16:270-276.
    [79]李建俊,林家浩,张文首.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-452.
    [80]林家浩.结构非平稳随机响应的混合型精细时程积分[J].振动工程学报,1995,8(2):127-134.
    [81]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报,1998,15(2):217-223.
    [82]黄玮,赵又群,杨国权.车轮动载荷计算的虚拟激励法[J].拖拉机与农用运输车,2006,33(2):29-31.
    [83]秦四成.工程机械设计[M].北京:科学出版社,2003.
    [84]杨占敏,王智明,张春秋.轮式装载机[M].北京:化学工业出版社,2005.
    [85]于硕,闫涵.装载机工作装置的机构分析[J].工程机械,2001,(8):25-27.
    [86]王克军.80型轮式装载机结构部件性能分析[D]:吉林大学,2008.
    [87]李增刚.ADAMS入门详解与实例[M].北京:国防工业出版社,2007.
    [88]段进,倪栋,王国业ANSYS10.0结构分析从入门到精通[M].北京:兵器工业出版社,2006.
    [89]ANSYS Release 10.0 Documentation.[J].
    [90]曾庆强,秦四成,赵腾云等.装载机铲斗铲掘过程受力分析[J].工程机械,2011,42(1):18-21.
    [91]杨晋生.铲土运输机械设计[M].北京:机械工业出版社,1981.
    [92]A.B.姆利科夫TB拉,莫运菊译.铲斗铲取散状物料的阻力[J].1964:51-53.
    [93]姚践谦,李政菊,彭才忠.装载机铲斗插入铲了机理与阻力[J].工程机械,1993,(3):1-4.
    [94]赵安墉.静压传动装置控制中的气穴问题[J].丛础流体动力研究,1984,17(2):176-178.
    [95]80型轮式装载机技术资料[M].
    [96]李洪人.液压控制系统[M].北京:国防工业出版社,1990.
    [97]王春行.液压伺服控制系统[M].北京:机械工业出版社,1981.
    [98]袁立鹏,赵克定,李海金.阀控液压缸统一流量方程的分析研究[J].机床与液压,2005,(18):98-99.
    [99]孟亚东,李长春,张金英.阀控非对称缸液压系统建模研究[J].北京交通大学学报,2009,33(1):66-70.
    [100]刘春荣.阀控缸系统固有频率和阻尼比的正确求法[J].煤矿机电,2007,(3):42-44.
    [101]薛小虎.工程机械液压系统泄漏故障的分析与研究[J].工程机械,2002,(7):25-28.
    [102]杨玉顺.工程热力学[M].北京:机械工业出版社,2009.
    [103]姚为民.汽车座椅结构安全性与空气悬挂式座椅减振性能研究[D]:吉林大学,2005.
    [104]张利国,张嘉钟,贾力萍等.空气弹簧的现状及其发展[J].振动与冲击,2007,26(2):146-150.
    [105]王家胜,朱思洪.带附加气室空气弹簧动刚度的线性化模型研究[J].振动与冲击,2009,28(2):72-76.
    [106]李芾,付茂海,黄运华,倪文波.车辆空气弹簧动力学参数特性研究[J].中国铁道科学,2003,24:91-95.
    [107]孙蓓蓓.工程车辆悬架橡胶弹簧动力学特性的试验建模研究[J].中国机械工程, 2006,17(12):1313-1316.
    [108]管迪华,曾祥生,范建成.轮胎动态模型的阻尼和对滚动阻力及动态响应影响的分析[J].汽车工程,2006,28(7):643-646.
    [109]陈栋华,靳晓雄.轮胎刚度和阻尼非线性模型的解析研究[J].中国工程机械学报,2004,2(4):408-412.
    [110]Zuo Shuguang, Zhang Qi. Simulation analysis of influence of road surface roughness on tyre dynamic performace in automotive braking[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2000,17(1):42-45.
    [111]贺海留,刘欣然.影响轿车子午线轮胎静态径向刚度的因素[J].轮胎工业,2004,24(6):359-362.
    [112]彭莫,宫春峰.汽车轮胎的径向刚度[J].研究设计,1994,(3):16-19.
    [113]车辆振动输入路面平度表示方法[M].GB/T 7031-1986.中华人民共和国.
    [114]孙蓓蓓,张晓阳,孙庆鸿.基于轮胎与地面接触模型的非公路车辆平顺性[J].东南大学学报,2006,36(6):937-940.
    [115]王国权,余群,吕伟.8自由度乘坐动力学模型及时域仿真[J].中国农业大学学报,2002,7(2):99-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700