用户名: 密码: 验证码:
浙西桐村斑岩钼铜矿含矿花岗岩成岩成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桐村中型斑岩钼铜矿床地处江山—绍兴断裂带北侧的浙西拗陷,邻近江南台隆。桐村矿区隶属钦州—杭州成矿带,该带汇集了德兴、金山和银山等一大批矿床,是我国重要的多金属成矿区。浙江金属矿规模小且贫乏,桐村矿床的发现为浙江多金属找矿提供了现实的研究靶区,深入研究桐村矿床有利于提高对浙西中生代斑岩型矿床的认识。
     在野外考察的基础上,本文利用岩相学、元素地球化学、Rb-Sr、Sm-Nd同位素地球化学、SHRIMP锆石U-Pb年代学、锆石原位Hf同位素地球化学及H、O、S、Pb稳定同位素地球化学等多种手段,研究桐村矿床的地质、地球化学特征及成岩成矿作用,评价花岗岩含矿性的制约因素,并将其与德兴斑岩铜矿进行全面对比,取得以下进展:
     (1)SHRIMP锆石U-Pb结果表明,桐村3个岩体形成于中—晚侏罗世,年龄分别为169±2Ma、166±2Ma、157~168Ma。含矿岩体为I型高钾钙碱性花岗岩,富集Rb、Ba、K、U、Th等,亏损Nb、Ta、Zr、Hf、HREE等,具弱Eu负异常,显示岛弧特征;(2)桐村花岗岩具低εNd(t)(–5.8~–0.8)、低TDM(0.80~1.95)、高初始87Sr/86Sr比值(0.7038~0.7143)、宽泛的εHf(t)值(–16.1~15.2)和TDM值(0.60~1.79Ga),表明桐村花岗岩形成于中—晚侏罗世岩石圈伸展体制下,热的软流圈地幔加热新元古代岛弧下地壳使其发生部分熔融;(3)流体包裹体与稳定同位素显示,桐村矿床成矿流体为低温、低盐度的水盐流体和CO2三相流体,成矿物质以下地壳为主,部分来自地幔;(4)桐村岩石偏酸、强氧化、高分异、高分离结晶程度,钼铜矿化潜力大;(5)与德兴铜矿的对比表明,岩石偏酸、高分异与较多地壳混染导致桐村矿床以钼为主,低温、低盐度、缺乏沸腾的成矿流体、较低的岩浆温度与较大的成矿深度限制了桐村矿床的规模。
     本文的主要创新有发现了古元古代(2.3~1.8Ga)及新元古代(~0.8Ga)地壳增生的同位素证据;将中型钼铜矿与超大型铜钼矿进行全面对比,确定了限制矿床矿种与规模的主要因素;提出了岩浆岩成矿偏爱性。
     总的来说,桐村矿床的3个杂岩体深部相连,实为同一岩浆源区幕式侵位的结果,形成于中生代岩石圈减薄、下地壳增厚的陆内背景下。成矿深度较大,产出Mo的潜力大于Cu。矿床低温热年代学和熔融包裹体等方面尚待研究。
Tongcun medium-sized porphyry Mo-Cu deposit locates in West Zhejiang Depressionand near Jiangnan Orogen, north of Jiangshan-Shaoxing suture zone. It belongs toQinzhou-Hangzhou metallogenic belt, where plenty of ore deposits are distributed such asfamous Dexing, Jinshan, Yinshan deposits. Metallic mineral deposits in Zhejiang arecharacterized by a limited scale and reserves. The discovery and thorough investigation ofTongcun deposit help to better understand the petrogenesis and metallogeny of Mesozoicporphyry deposits in West Zhejiang. Furthermore, based on the research on igneousore-bearing potential, comprehensive contrast on Tongcun and super-sized, neighbourhoodDexing ore deposit has been done to search the essential differences on mineralization typesand scale, and the factors controlling metallogenic potential for granites.
     On the basis of field investigation, lithology, elemental geochemistry, Rb-Sr、Sm-Ndisotopic geochemistry, SHRIMP zircon U-Pb geochronology, zircon in-situ Hf geochemistryand H、O、S、Pb stable geochemistry are applied in research on characteristics of geology,geochemistry and petrogenisis and metallogeny of Tongcun deposit, evaluation of factorseffecting the granitic metallogenic potential, and considerable comparison with Dexing oredeposit, and the following conclusions are withdrawn:
     (1) SHRIMP zircon U-Pb geochronology analysis implies that the crystallization ages ofTongcun granites are separately169±2Ma、166±2Ma、157~168Ma, which form as WPG inmedium-late Jurassic lithospheric extension setting. The ore-bearing granites are considered tobe I-type, high K, calc-alkali granites, and rich in large lithophile elements such as Rb、Ba、K、U、Th, depleted in high strength elements as Nb、Ta、Zr、Hf、HREE, with a weak abnormityin Eu and an feature of arc granites;
     (2) Tongcun granites has low εNd(t)(–5.8~–0.8), low TDM(0.80~1.95), high initial87Sr/86Sr ratio (0.7038~0.7143), broad εHf(t) value (–16.1~15.2) and TDMvalue (0.60~1.79Ga), suggesting that Shuangxiwu Group contributes a lot to the original magma. Siginificantcrust growth of Palaeoproterozoic (2.3~1.8Ga) and Neoproterozoic (~0.8Ga) arediscovered here. Tongcun granites formed in a lithospheric extention setting during medium tolate Jurassic. Neoproterozoic arc and lower crust are heated and melt by underplate hot asthenospheic materials;
     (3) Fluid inclusions and stable isotopic stydy show that metallogenic fluids are mainlyH2O-NaCl and CO2thriple-faces fluids with low temperature and salinity. Mo originates fromlower crust and Cu is extracted from Neoproterozoic arc and asthenosphere mantle.
     (4) Tongcun granites have fine potential of Mo-Cu mineralization as the granites arefeatured by more acid, strong oxidation state, fraction and crystallization degree.
     (5) Comprehensive contrast to Dexing deposit indicates that, Mo-major mineralizationare caused by the feature of granites and more contanmination of crust materials,and thereason of a limited scale is ineffective metallogenic fluids, lower magma temperature andlarger depth of Tongcun ore deposit.
     Major innovation of the thesis are that:(1) isotopic proof are found in Tongcun deposit ofcrust growth of Palaeoproterozoic (2.3~1.8Ga) and Neoproterozoic (~0.8Ga) time;(2)Main factor controlling the metallic types and scale of deposits are ensured based oncomparison medium-to super-large sized deposits;(3) magma partiality is proposed to betterdescribe the genesis relation between granites and mineralization.
     Above all,3composit plutons are connected in depth and from episodic intrusion of thesame magma region, forming in a intraplate setting of lithospheric reduction and crustdeepening. The depth of Tongcun deposit is lager and has a better potential for Momineralization relative to Cu. Low temperature geochronology and melt-inclusions areremains to be studied.
引文
Amelin Y, Lee D C, Halliday A D. Early-middle Archaean crustal evolution deduced from Lu-Hfand U-Pb isotope studies of single zircon grain, Geochim. Cosmochim. Acta,2000,64:4205-4225.
    Andersen T, Griffin W L, Sylvester A G. Sveconorwegian crustal underplating in southwesternFennoscandia: LAM-ICPMS U–Pb and Lu–Hf isotope evidence from granites and gneisses inTelemark, southern Norway. Lithos,2007,93(3):273-287.
    Arculus R J. Aspects of magma genesis in arcs. Lithos,1994,33:189–208.
    Atherton M P, Cobbing E J, Beckinsale R D. Magmatism at a plate edge: the Peruvian Andes.Blackie,1985.
    Bai T B, Koster Van Groos A F. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Cebetween granitic melts and coexisting aqueous fluids. Geochimica et Cosmochimica Acta,1999.63:1117–1131.
    Baker T. Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related golddeposits. Economic Geology,2002,97(5):1111-1117.
    Ballhaus C. Redox states of lithospheric and asthenospheric upper-mantle. Contrib. Mineral.Petrol,1993,114:331-348.
    Barbarin, B. Granitoids: main petrogenetic classifications in relation to origin and tectonic setting.Geological Journal,1990,25:227-238.
    Barton, M.D. Granitic magmatism and metallogeny of southwestern North America. Transactionsof the Royal Society Edinburgh: Earth Sciences,1996,87:261-280.
    Barton P B. Solid solutions in the system Cu-Fe-S: Part I. The Cu-S and Cu-Fe-S joins. EconomicGeology,1973,68:455-465.
    Batchelder J. Light stable isotope and fluid inclusion study of the porphyry copper deposit atCopper Canyon, Nevada. Economic Geology,1977,72(1):60-70.
    Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous zircon: Trace element composition as anindicator of source rock type. Contributions to Mineralogy and Petrology,2002,143:602-622.
    Belousova E A, Griffin W L, O'ReillY S Y. Zircon crystal morphology, trace element signaturesand Hf isotope composition as a tool for petrogenetic modelling: examples from EasternAustralian granitoids. Journal of Petrology,2006,47(2):329-353.
    Belousova E, Griffin W L, O'reilly S Y, et al. Igneous zircon: trace element composition as anindicator of source rock type. Contributions to Mineralogy and Petrology,2002,143(5):602-622.
    Blevin P L, Chappell B W. Chemistry, origin, and evolution of mineralized granites in the Lachlanfold belt, Australia; the metallogeny of I-and S-type granites. Economic Geology,1995,90(6):1604-1619.
    Blevin P L. Metallogeny of granitic rocks. Gemoc Macquarie University. Magmas toMineralisation: The Ishihara Symposium. Australia, Canberra: Geoscience Australia,2003,1-4.
    Blevin P L. Redox and Compositional parameters for interpreting the granitoid metallogeny ofEastern Australia: implications for gold-rich ore systems. Resource Geology,2004,54(3):241-252.
    Blevin, P. L., Chappell, B. W. The role of magma sources, oxidation states and fractionation indetermining the granite metallogeny of eastern Australia. Transactions of the Royal Societyof Edinburgh-Earth Sciences,1992,83:305-316.
    Blichert-Toft, J., Albarède, F. The Lu–Hf isotope geochemistry of chondrites and the evolution ofthe mantle-crust system. Earth and Planetary Science Letters1997,148(1-2):243-258.
    Brandon A D, Draper D S. Constraints on the origin of the oxidation state of mantle overlyingsubduction zones: an example from Simcoe, Washington, USA. Geochim. Cosmochim. Acta1996,60:1739-1749.
    Burnham C W. Hydrothermal fluids at the magmatic stage. In: Barnes H L (eds.). Geochemistry ofhydrothermal ore deposits. New York, Holt: Rinehart and Winston,1967,34-76.
    Burnham C W. Magmas and hydrothermal fluids. In: Barnes H L (eds.). Geochemistry ofhydrothermal ore deposits. New York, Holt: Rinehart and Winston,1979(2):71-136.
    Cabri L J. New data on phase relations in the Cu-Fe-Ssystem. Economic Geology,1973,68:443-454.
    Candela, Holland. The partitioning of copper and molybdenum between silicate melts and aqeousfluids. Geochim. Cosmochim. Acta.1984,48:373-380.
    Candela P A. A review of shallow, ore-related granites: Textures, volatiles, and ore metals.Journal of Petrology,1997,38:1619-1633
    Candela P.A. Magmatic ore-forming fluids: Thermodynamic and mass transfer calculations ofmetal concentrations. In: J A Whitney, A J Neldrett (eds.). Ore deposition associated withmagmas. Reviews in Economic Geology,1989,203-222.
    Candela. Controls on ore metal ratios in granite-related ore systems-an experimental andcomputational approach. Transactions of the Royal Society of Edinburgh-Earth Sciences.1992,83:371-326.
    Carmichael, I. S. E. The redox states of basic andsilicic magmas: a reflection of their sourceregions? Contrib. Mineral. Petrol.1991,106:129–141
    Carten R B, White W H, Stein H J. High-grade granite-related molybdenum systems:classification and origin. Mineral deposit modeling: Geological Association of CanadaSpecial Paper,1993(40):521-554.
    Castillo P R. An overview of adakite petrogenesis. Chinese Science Bulletin,2006,51:258-268.
    Chappell B W, White A J R. Two contrasting granite types:25years later. Australian Journal ofEarth Sciences,2001,48(4):489-499.
    Chappell B W. Aluminium saturation in I-and S-type granites and the characterization offractionated haplogranites. Lithos,1999,46(3):535-551.
    Chappell B W, Bryant C J, Wyborn D, et al., High-and low-temperature I-type granites. ResourceGeology,1998,48:225-235.
    Chappell B W, WhiteAJ R, Two contrasting granite types. Pac Geol,1974,8:173-174.
    Chappell B W, Stephens W E. Origin of infracrustal (I-type) granitoid magmas. Trans. Roy. Soc.Edinburgh: Earth. Sci.,1988,79:71-86.
    Charvet J, Shu L S, Shi Y S, et al. The building of south China: collision of Yangzi and Cathaysiablocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences,1996,13:223-235.
    Chen J, Jahn B. Crustal evolution of southeastern China: Nd and Sr isotopic evidence.Tectonophysics,1998,284(1):101-133.
    Chevychelov V Y, Chevychelova C T K. Partitioning of Pb, Zn, W, Mo, Cl and major elementsbetween aqueous fluid and melt in the systems grandiorite (granite,leucogranite)-H2O-NaCl-HCl. Neues Jahrbuch Fur Mineralogie-Abhandlungen,1997.172:101-115.
    Christiansen, Keith. Trace elements systematica in silicic magmas: A metallogenic perspective. In:Wyman D.D: Trace element geochemistry of volcanic rocks: Applications for massivesulphide exploration. Geological Association of Canada, Short Course Notes,1996,12:115-151.
    Christiansen E H, Wilson R T. Classification and genesis of stockwork molybdenum deposits;discussion. Economic Geology,1982(77):1250.
    Clarke, D. B. Granitoid Rocks. Chapman and Hall, London,1992.
    Clayton R N, O’Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water.Journal of Geophysical Research,1972,77:3057-3067
    Cline J S, Bodnar R J. Direct evolution of brine from a crystallizing slick melt at the Questa, NewMexico, molybdenum deposit. Econ. Geol.,1994,89:780-802
    Coleman D S, Gray W, Glazner A F. Rethinking the emplacement and evolution of zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite,California. Geology,2004,32(5):433-436.
    Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particularreference to southeastern Australia. Contributions to Mineralogy and Petrology1992,80:189-200
    Compston W, Willians I S, Kirsdivink J L. Zircon U-Pb ages for the Early Cambrian tine-scale. J.Geol. Soc. London,1992,149:171-184
    Dilles J H. Petrology of the Yerington batholith, Nevada: evidence for evolution of porphyrycopper ore fluids. Economic Geology,1987,82:1750-1789.
    Dong C, Zhou X, Li H, et al. Late Mesozoic crust-mantle interaction in southeastern Fujian.Chinese Science Bulletin,1997,42(6):495-498.
    Drummond M S, Defant M J, Kepezhinkas P K. Petrogenesis of slab-derivedtrondhjemite-tonalite-dacite/adakite magmas. Trans. Roy. Soc. Edinburgh: Earth Sci.,1996,87:205-215.
    DuPont A, Vander A J, Pin C, et al. Trace element and isotope (Sr, Nd) geochemistry of porphyry-and skarn-mineralising Late Cretaceous intrusions from Banat, western South Carpathians,Romania. Mineralium Deposita,2002,37:568-586
    Eldridge C S, Compston W, Williams I S, et al. Isotope evidence for the involvement of recycledsediments in diamond formation. Nature,1991,353:649-653
    Encarnación J, Mukasa S B. Age and geochemistry of an ‘anorogenic’ crustal melt andimplications for I-type granite petrogenesis. Lithos,1997,42(1):1-13.
    Fernandez A N, Barbarin B. Relative rheology of coeval mafic and felsic magmas: nature ofresulting interaction processes and shape and mineral fabrics of mafic microgranular enclaves.Enclaves and granite petrology,1991:263-275.
    Foland K A, Allen J C. Magma sources for Mesozoic anorogenic granites of the White Mountainmagma series, New England, USA. Contributions to Mineralogy and Petrology,1991,109:195-211.
    Foley S F, Barth M G, Jenner G A. Rutile/melt partition coefficients for trace elements and anassessment of the influence of rutile on the trace element characteristics of subduction zonemagmas. Geochimica et Cosmochimica Acta,2000,64(5):933-938.
    Foster J G, Lambert D D, Frick L R, et al. Re-Os isotopic evidence for genesis of Archaean nickelores from uncontaminated komatiites. Nature,1996,382:703-706.
    Frank M R, Simon A C, Pettke T, et al. Gold and copper partitioning in magmatic-hydrothermalsystems at800°C and100MPa. Geochimica et Cosmochimica Acta,2011,75(9):2470-2482.
    Frost, B R, Barnes C G, Collins W. J. et al. A Geochemical Classification for Granitic Rocks.Journal of Petrology,2001,42(11):2033-2048.
    Frost, C D, Frost B R, On ferroan (A-type) granitoids: their compositional variability and modesof origin. Journal of Petrology,2011,52:39-53.
    Gao Y, Hou Z, Kamber B S, et al. Adakite-like porphyries from the southern Tibetan continentalcollision zones: evidence for slab melt metasomatism. Contributions to mineralogy andpetrology,2007(153):105-120.
    Giggenbach W F. The origin and evolution of fluids in magmatic-hydrothermal systems.Geochemistry of hydrothermal ore deposits,1997,3:737-796.
    Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonicevolution of south China. Journal of Geophysical Research: Solid Earth (1978-2012),1996,101(B7):16137-16154.
    Gill R, Igneous Rocks and Processes: A Practical Guide. John Wiley&Sons, Ltd., Publication.2010.428
    Glazner A F, Bartley J M, Coleman D S, et al. Are plutons assembled over millions of years byamalgamation from small magma chambers?. GSA today,2004,14(4-5):4-12.
    Glyuk D S, Anfilogov V N. Phase equilibria in the system granite-H2O-HF at a pressure of1000kg/cm2. Geochem. Int,1973,10(1):321-25.
    Griffin W L, Zhang A D, O'Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath theSino-Korean Craton. In: Flower M, Chung, S L, Lo CH, et al.(Eds.). Mantle Dynamics andPlate Interaction in East Asia. American Geophysical Union Geodynamic Series,1998,27:107-126.
    Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X. Zirconchemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtanigneous complexes. Lithos,2002,61(3-4),237-269.
    Gustafson LB and Hunt JP. The porphyry copper deposit at El Salvador, Chile. EconomicGeology,1975,70:857-912.
    Harris A C, Kamenetsky V S, White N C, et al. Volatile phase separation in silicic magmas atBajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology,2004,54(3):341-356
    Hattori K H, Keith J D. Contribution of mafic melt to porphyry copper mineralization: evidencefrom Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner Deposita,2001,36:799-806
    Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermalore-deposits. Nature,1994,370:519-527.
    Heinrich C A. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews inMineralogy Geochemistry,2007,65:363-387
    Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at theporphyry to epithermal transition: A thermodynamic study. Mineralium Deposita,2005,39:864-889
    Hildreth W, Moorbath S. Crustal contributions to arc magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology,1988,98(4):455-489.
    Holland H D. Granites, solutions and base metal deposits. Economic Geology,1972,67:281-301.
    Hollister V F. Geology of the porphyry copper deposits of the Western Hemisphere. New York:Soc Mining Engineers AIME,1978.
    Holloway J R. Compositions and volumes of supercritical fluids in the earth's crust. In: Hollister L,Crawford M L. Short Course in Fluid Inclusions: Applications to Petroligy. MineralogicalAssociation of Canada,1981,13-28.
    Hong D, Zhang J, Wang T, et al. Continental crustal growth and the supercontinental cycle:evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences,2004,23(5):799-813.
    Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenanceindicator. Geology,2000,28:627-630
    Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives generated during mid-Mioceneeast-west extension in southern Tibet. Earth and Planetary Science Letters,2004(220):139-155.
    Hou Z Q, Zhang H R, Pan X F, et al. Porphyry Cu (-Mo-Au) deposits related to melting ofthickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. OreGeology Reviews,2011,39:21-45.
    Hsu K J, Sun S, Li J L, et al. Mesozoic overthrust tectonics in south China. Geology,1988,16(5):418-421.
    Huang D, Wu C, Du A, et al. Re-Os isotope ages of molybdenum deposits in East Qinling andtheir significance. Chinese Journal of Geochemistry,1995(14):313-322.
    Irvine T. N., Baragar W. R. A. Aguide to the chemical classification of the common volcanic rocks.Canadian Journal of Earth Sciences,1971,8(5):523-548.
    Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids ofthe Sierra Nevada batholith-A reconnaissance study. Geology,1989,17(9):788-791.
    Isuk E E, Carman J H. The system Na2Si2O5-K2Si2O5-MoS2-H2O with implications formolybdenum transport in silicate melts. Economic Geology,1981,76(8):2222-2235.
    Jahn B M, Chen P Y, Yen T P. Rb-Sr ages of granitic rocks in southeastern China and theirtectonic significance. Geological Society of America Bulletin,1976,87(5):763-776.
    Jahn B, Wu F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth inthe Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences,2000,91(1-2):181-193.
    Jay J. Ague, George H. Brimhall. Regional variations in bulk chemistry, mineralogy, and thecompositions of mafic and accessory minerals in the batholiths of California. GeologicalSociety of America Bulletin,1988,100(6),891-911.
    Jen C S, Huang J Q. Geotectonic evolution of China. Beijing and Berlin and New York: SciencePress,1987.
    Jugo P J, Candela, P A, Piccoli, P M. Magmatic sulfides and Au: Cu ratios in porphyry deposits:an experimental study of copper and gold partitioning at850°C,100MPa in a haplograniticmelt-pyrrhotite-intermediate solid solution-gold metal assemblage, at gas saturation. Lithos1999,46:573-589.
    Kamona A F, Lévêque J, Friedrich G, et al. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb,and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in theDamaran-Lufilian Fold Belt of Central Africa. Mineralium Deposita,1999,34:273-283
    Kelley K A, Cottrell E. Water and the oxidation state of subduction zone magmas. Science,2009,325:605-607.
    Keppler, Wyllie. The partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid inthe systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib. Miner. Petrol.1991,109:139-150.
    Kerrich R, Goldfarb R, Groves D, et al. The geodynamics of world-class gold deposits:characteristics, space-time distribution and origins. Reviews of Society of EconomicGeologists,2000(13):501-551.
    King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-typegranites from the Lachlan Fold Belt, southeastern Australia. Journal of petrology,1997,38(3):371-391.
    Kinney P D, Maas R, Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy andGeochemistry,2003,53:327-341.
    Klemm L M, Pettke T, Heinrich C A. Fluid and source magma evolution of the Questa porphyryMo deposit, New Mexico, USA. Mineralium Deposita,2008,43:533-552
    Krauskopf K B, Bird D K. Introduction to geochemistry. New York: McGraw-Hill,1967.
    Lehmann B. Metallogeny of tin. Lecture Notes in Earth Sciences, Berlin Springer Verlag,1990,32.
    Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in SouthChina: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of theShuangxiwu volcanic rocks. Precambrian Research,2009,174:117-128.
    Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshaniangranites in the Nanling Range, South China: in situ zircon Hf-O isotopic constraints. Sciencein China Series D: Earth Sciences,2009,52(9):1262-1278.
    Li X. Cretaceous magmatism and lithospheric extension in Southeast China. Journal of AsianEarth Sciences,2000,18(3):293-305.
    Li X H, Li W X, Li Z X, et al.850-790Ma bimodal volcanic and intrusive rocks in northernZhejiang, South China: A major episode of continental rift magmatism during the breakup ofRodinia. Lithos,2008,102:341-357.
    Li Y, Audétat A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bibetween sulfide phases and hydrous basanite melt at upper mantle conditions. Earth. Planet.Sci. Lett.2012,355-356:327-340.
    Li Z X, Li X H. Formation of the1300-km-wide intracontinental orogen and postorogenicmagmatic province in Mesozoic South China: a flat-slab subduction model. Geology,2007,35(2):179-182.
    Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in theYangtze Craton, South China and correlations with other continents: evidence for a mantlesuperplume that broke up Rodinia. Precambrian Research,2003,122:85-109.
    Liu X, Fan H R, Santosh M, et al. Remelting of Neoproterozoic volcanic arc in the MiddleJurassic: implication for the formation of the Dexing porphyry copper deposit, southeasternChina, Lithos,2012,150:85-100.
    Lodder K, Palme H. On the chalcophile character of molybdenum: determination ofsulfide/silicate partition coefficients of Mo and W. Earth Planet Sc Lett,1991,103:311-324.
    Lowell J D, Guilbert J M. Lateral and vertical alteration-mineralization zoning in porphyry oredeposits. Econ Geol,1970,65:373-408
    Lowenstern J B. A review of the contrasting behavior of two magmatic volatiles: chlorine andcarbon dioxide. Journal of Geochemical Exploration,2000,69:287-290.
    Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems.Mineralium Deposita,2001,36(6):490-502.
    Ludington S D. Descriptive model of Climax Mo deposits. Mineral deposit models: USGeological Survey Bulletin,1986,1693:73.
    Ludwig K R. Squid1.02: a user manual. Berkeley Geochronological Center Special Publication2001,2:19.
    Lynton S J, Candela P A, Piccoli P M. An experimental study of the partitioning of copperbetween pyrrhotite and a high silica rhyolitic melt. Economic Geology,1993,88(4):901-915.
    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of Americabulletin,1989,101(5):635-643
    Mao J W, Zhang Z C, Zhang Z H, et al. Re-Os isotopic dating of molybdenites in the XiaoliugouW(Mo) deposit in the northern Qilian mountains and its geological significance. Geochimicaet Cosmochimica Acta,1999,63(11):1815-1818.
    Mao J, Du A, Seltmann R, Yu J. Re-Os ages for the Shameika porphyry Mo deposit and theLipovy Log rare metal pegmatite, central Urals, Russia. Mineralium Deposita,2003(38):251-257.
    Martin H, Bonin B, Capdevila R, et al. The Kuiqi peralkaline granitic complex (SE China):petrology and geochemistry. Journal of Petrology,1994,35(4):983-1015.
    Mengason M J, Candela P A, Piccoli P M. Molybdenum, tungsten and manganese partitioning inthe system pyrrhotite-Fe-S-O melt-rhyolite melt: impact of sulfide segregation on arcmagmaevolution. Geochim Cosmochim Acta,2011,75:7018–7030
    Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturationtemperatures and preservation of inheritance. Geology,2003,31(6):529-532.
    Misra K. Understanding mineral deposits. Springer,2000.
    Müller D, Groves D I. Potassic Igneous Rocks and Associated Gold-copper Mineralization.Springer-Verlag, Berlin,2000.
    Mutschler F E, Wright E G, Ludington S, et al. Granite molybdenite systems. Economic Geology,1981,76(4):874-897.
    Nielsen R L. Hypogene texture and mineral zoning in a copper-bearing granodiorite porphyrystock, Santa Rita, New Mexico. Economic Geology,1968,63(1):37-50.
    Norton D. Source lines, source regions, and path lines for fluids in hydrothermal systems relatedto cooling plutons. Economic Geology,1978,73(1):21-28.
    Ohmoto H, Rye R O. Isotope of sulfur and carbon. In: Barnes HL (eds.). Geochemistry ofHydrothermal Ore Deposits(2nd ed.). New York: John Wiley and Sons,1979,509-567
    Ohta T, Arai H. Statistical empirical index of chemical weathering in igneous rocks: a new tool forevaluating the degree of weathering. Chemical Geology,2007,240:280-297.
    Oyarzun R, Márquez A, Lillo J, et al. Giant versus small porphyry copper deposits of Cenozoicage in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineralium Deposita,2001,36(8):794-798.
    Parkinson I J, Arculus R J. The redox stateof subduction zones: insights from arc-peridotites.Chem.Geol,1999,160:409-423.
    Parsons AB. The porphyry coppers. A. I. M. E. Rocky Mtn. Fund, NewYork,1933,1-580.
    Petford N, Cruden A R, McCaffrey K J W, et al. Granite magma formation, transport andemplacement in the Earth's crust. Nature,2000,408(6813):669-673.
    Blevin P L.. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny ofEastern Australia: Implications for Gold-rich Ore Systems. Resource Geology,2004,54(3):241-252.
    Phillips WJ. Mechanical effects of retrograde boiling and its probable importance in the formationof some porphyry ore deposits. Institution of Mining Metallurgy Transactions, Section B,1973,2:90-98.
    Pitcher W S. Granitoid type and tectonic environment. In: Hsu, K. J.(eds.) Mountain BuildingProcesses. London: Academic Press,1982:19-40.
    Qiu J T, Yu X Q, Santosh M, et al. Geochronology and magmatic oxygen fugacity of the Tongcunmolybdenum deposit, northwest Zhejiang, SE China. Mineralium Deposita,2013,48,545-556.
    Qu X M, Hou Z Q, Khin Zaw L YG. Characteristics and genesis of Gangdese porphyry copperdeposits in the southern Tibetan Plateau: preliminary geochemical and geochronologicalresults. Ore Geology Reviews,2007(31):205–223.
    Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite inthe mantle wedge: experimental constraints at3.8GPa. Chemical Geology,1999,160(4):335-356.
    Ray G E, Webster I C L, Ettlinger A D. The distribution of skarns in British Columbia and thechemistry and ages of their related plutonic rocks. Economic Geology,1995,90:920-937.
    Richards J P, Boyce A J, Pringle M S. Geologic evolution of the Escondida area, northern Chile:A model for spatial and temporal localization of porphyry Cu mineralization. EconomicGeology,2001,96(2):271-305.
    Richards JP and Kerrich R. Special paper: adakite-like rocks: their diverse originsand questionablerole in metallogenesis. Economic Geology,2007,102(4):537-576.
    Richards JP. Magmatic to hydrothermal metal fluxes in convergent and collided margins. OreGeology Reviews,2011,40:1-26.
    Richards JP. Post-subduction porphyry Cu-Au and epithermal Au deposits: Products of remeltingof subduction-modified lithosphere. Geology,2009,37(3):247-250.
    Richards JP. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation.Economic Geology,2003,98(8):1515-1533.
    Ringwood A E. Slab-mantle interactions: Petrogenesis of intraplate magmas and structure of theupper mantle. Chemical Geology,1990,82(3-4):187-207.
    Robb L. Introduction to ore-forming processes. Malden: Blakwell Science Ltd.,2005.
    Rollinson H R. Using Geochemical Data.New York: John. Wiley and Sons Inc.,1993.
    Rosenbaum G and Mo W. Tectonic and magmatic responses to the subduction ofhigh bathymetricrelief. Gondwana Research,2011,19:571-582.
    Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca ridge and the Inca plateau:insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters,2005,239:18-32.
    Ross P S, Jebrak M J, Walker B M. Discharge of hydrothermal fluids from a magma chamber andconcomitant formation of a stratified breccia zone at t he Questa porphyry molybdenumdeposit, New Mexico. Econ. Geol.,2002,97:1679-1699.
    Sajona F G, Maury R C. Association of adakites with gold and copper mineralization in thePhilippines. Comptes rendus de l’Académiedes sciences. Série II, Sciences de la terre et desplanètes,1998,326:27-34.
    Scherer E E, Cameron K L, Blichert-Toft J. Lu-Hf garnet geochronology: closure temperaturerelative to Sm Nd system and the effects of trace mineral inclusions. Geochem. Cosmochim.Acta,2000,64:3413-3432.
    Seal I I. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem,2006,61:633-677.
    Seedorff E, Dilles J H, Proffett J M, et al. Porphyry deposits: Characteristics and origin ofhypogene features. Economic Geology100th Anniversary Volume,2005:251-298
    Selby D, Nesbitt B E, Muehlenbachs K, Prochaska W. Hydrothermal alteration and fluidchemistry of the Endako porphyry molybdenum deposit, British Columbia. Econ. Geol.,2000,95:183-202.
    Sheppard S M F. Characterization and isotopic variations in natural waters. Reviews inMineralogy,1986,16:165-183
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. EconomicGeology,1972,67(2):184-197.
    Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal golddeposits in the circum-Pacific region. Australian Journal of Earth Sciences,1997,44(3):373-388.
    Sillitoe R H. Porphyry copper systems. Economic Geology,2010,105(1):3-41.
    Sillitoe R H. The tops and bottoms of porphyry copper deposits. Economic Geology,1973,68(6):799-815.
    Sillitoe R H. Types of porphyry molybdenum deposits.. Mining magazine,1980(142):550-553.
    Simon A C, Ripley E M. The role of magmatic sulfur in the formation of ore deposits. Reviews inMineralogy and Geochemistry,2011,73(1):513-578.
    Simon A C, Pettke T, Candela P A, et al. Copper partitioning in amelt-vapor-brine-magnetite-pyrrhotite assemblage. Geochimica Et Cosmochimica Acta,2006:70,5583-5600.
    Sinclair W D. Porphyry deposits. In: Goodfellow W D (eds). Mineral Deposits of Canada: Asynthesis of major deposit-types, district metallogeny, the evolution of geological provinces,and exploration methods. Geological Association of Canada. Mineral Deposits Division,Special Publication,2007,5:223-24
    Smith R.E. and Smith S.E..1976. Comments on the use of Ti, Zr, Y, Sr, classification of basalticmagmas. Earth and Planetary Science Letters,32:114-120.
    Smithies R H. The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogueof Cenozoic adakite. Earth and Planetary Science Letters,2000,182(1):115-125.
    Soderlund U, Patchett P J,Vervoort JD, et al. The176Lu decay constant determined by Lu-Hf ANDU-Pb isotope systematics of Precambrian mafic intrusions.Earth and Planetaty SciencesLetters,2004,219:311-324.
    Stein H J, Markey R J, Morgan J W, et al. The remarkable Re–Os chronometer in molybdenite:how and why it works. Terra Nova,2002,13:479-486.temprok, M. Metallization associated with acid magmatism. Geological Survey,1974.
    Streckeisen, A. To each plutonic rock its proper name.Earth Planet. Sci.,1976,12,1-33.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications foemantle composition and processes. Geological Society, London, Special Publications,1989,42:313-345.
    Sun W D, Arculus R J, Kamenetsky V S, et al. Release of gold-bearing fluids in convergentmargin magmas prompted by magnetite crystallization. Nature,2004,431:975-978
    Sun W D, Lin M X, Yang X Y, et al. Ridge subduction and porphyry copper gold mineralization:An overview. Science China Earth Science,2010,40:127-137
    Sun W D, Ding X, Hu Y H; et al.. The golden transformation of the Cretaceous plate subduction inthe west Pacific. Earth Planet. Sci. Lett,2007,262:533-542.
    Taylor H P, Sheppard S M F. Ignious rocks: Process of isotopic fractionation and isotopesystematizes. In: Valley J W, Taylor H P and O’neil J R eds. Stable isotopes in hightemperature geological processes. Review in Geology,1986,16:227-271
    Taylor H P. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In:Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York: John Wiley&Sons.1997,229-302
    Tchameni R, Mezger K, Nsifa N E, et al. Crustal origin of Early Proterozoic syenites in the Congocraton (Ntem complex), South Cameroon. Lithos,2001,57(1):23-42.
    Titley SR. Intrusion, and wall rock, porphyry copper deposits. Economic Geology,1972,67(1):122-123.
    Tosdal R M, Richards J P. Magmatic and structural controls on the development of porphyryCu±Mo±Au deposits. Reviews in Economic Geology,2001,14:157-181.
    W He, Bao Z Y, Li T P. One-dimensional reactive transport models of alteration in the TongchangPorphyry copper deposit, Dexing distriet, Jiangxi Province, China. Economic Geology,1999,94:307-323.
    Wallace S R, MacKenzie W B, Blair R G, et al. Geology of the Urad and Henderson molybdenitedeposits, Clear Creek County, Colorado, with a section on a comparison of these depositswith those at Climax, Colorado. Economic Geology,1978,73:325.
    Wallace S R, Muncaster N K, Jonson D C, et al. Multiple intrusion and mineralization at Climax,Colorado. Ore deposits of the United States,1968:605-640.
    Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting,Dexing, South China: implications for the genesis of porphyry copper mineralization. Journalof Petrology,2006,47(1):119-144.
    Wang X L, Shu L S, Xing G F, et al. Post-orogenic extension in the eastern part of the Jiangnanorogen: Evidence from ca800-760Ma volcanic rocks. Precambrian Research,2012,222-223:404-423.
    Wang X.L., Zhao G.C., Zhou J.C., et al. Geochronology and Hf isotopes of zircon from volcanicrocks of the Shuangqiaoshan Group, South China: Implications for the Neoproterozoictectonic evolution of the eastern Jiangnan orogen. Gondwana Research,2008,14:355-367.
    Wang X.L., Zhou J.C., Griffin W.L., et al. Detrital zircon geochronology of Precambrianbasement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze andCathaysia Blocks. Precambrian Research,2007,159:117–131.
    Warren I, Simmons, S F, Mauk J L. Whole-rock geochemical techniques for evaluatinghydrothermal alteration, mass changes, and compositional gradients associated withepithermal Au-Ag mineralization. Econ. Geol,2007,102,923-948.
    Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in avariety of crustal magma types. Earth and Planetary Science Letters,1983,64(2):295-304.
    Westra G, Keith S B. Classification and genesis of stockwork molybdenum deposits. EconomicGeology,1981(76):844.
    Whalen, J. B. Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau Complex, NewBritain, P. N.G. Jour. Petrol.,1985,26:603-632.
    White W H, Bookstrom A A, Kamilli R J, et al. Character and origin of Climax-type molybdenumdeposits. Economic geology, seventy-fifth anniversary volume,1981:270.
    Whitney J A. Vapor generation in a quartz monzonite magma: A synthetic model with applicationto porphyry copper deposits. Economic Geology,1975,70:346-358.
    Williams I S, Buick A, Cartwright I. An extended episode of early mesoproterozoic metamophicfluid flow in the reynold region, Centural Australia. Metamophic Geol.,1996,14:29-27
    Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts: an experimentalstudy of solubilities and mechanism. Geochim. Cosmochim. Acta.1994,58:4127-414
    Wu F, Jahn B, Wilde S A, et al. Highly fractionated I-type granites in NE China (I):geochronology and petrogenesis. Lithos,2003,66(3):241-273.
    Wu F, Jahn B, Wilde S A, et al. Highly fractionated I-type granites in NE China (II): isotopicgeochemistry and implications for crustal growth in the Phanerozoic. Lithos,2003,67(3):191-204.
    Wu R X, Zheng Y F, Wu Y B, et al. Reworking of juvenile crust: element and isotope evidencefrom Neoproterozoic granodioritic in South China. Precambrian Research,2006,146:179-212.
    Wybon D, Sun S S. Sulphur-undersaturated magmatism-a key factor for generating magma-relatedCu-Au deposits, AGSD Research Newsletter,1994,21:7-8.
    Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhenarea of east China: Partial melting of delaminated lower continental crust? Geology,2002,30:1111-1114.
    Xu X, Dong C, Li W, et al. Late Mesozoic intrusive complexes in the coastal area of Fujian, SEChina: the significance of the gabbro-diorite–granite association. Lithos,1999,46(2):299-315.
    Yao Y, Morteani G, Trumbull R B. Fluid inclusion microthermometry and the P-T evolution ofgold-bearing hydrothermal fluid in the Niuxinshan gold deposit, eastern Hebei province, NEChina. Mineralium Deposita,1999(34):348-365.
    Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: in situ U-Pbdating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology,2007,153(2):177-190.
    Zajacz Z, Halter W E, Pettke T, Guillong M. Determination of fluid/melt partition coefficients byLA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on elementpartitioning. Geochim Cosmochim Acta,2008,72:2169-2197
    Zartman R E, Doe B R. Plumbotectonics: The model. Tectonophysics,1981,75:135-162
    Zeng Q D, Wang Y B, Zhang S, et al.2012. Types, features, and prospecting potential forMesozoic metal ore deposits in Zhejiang Province, southeast China. International GeologyReviews,54(9):1031-1051.
    Zhang H, Ling M X, Liu Y L, et al. High oxygen fugacity and slab melting linked to Cumineralization: evidence from Dexing porphyry copper deposits, southeastern China. TheJournal of Geology,2013,121(3):289-305.
    Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: geochemicalevidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, SouthChina. Precambrian Research,2008,163,351–383.
    Zhou J.X. Geochemistry and Petrogenesis of igneous rocks containing amphibole and mica: Acase study of Plate collision involving Scotland and Himalayas. NewYork and Beijing:Science Press,1999,41-72.
    Zhou Q, Jiang Y H, Zhao P, et al. Origin of the Dexing Cu-bearing porphyries, SE China:elemental and Sr-Nd-Pb-Hf isotopic constraints. International Geology Review,2012,54(5):572-592.
    Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: implicationsfor lithosphere subduction and underplating of mafic magmas. Tectonophysics,2000,326(3):269-287.
    包超民,邢光福,周宇章.华东地区前寒武纪主要地质事件及构造演化.资源调查与环境,2005,26(2):79-85.
    常印佛,董树文,黄德志.论中—下扬子“一盖多底”格局与演化.火山地质与矿产,1996,17(1):1-15.
    陈好寿.铅锌矿床同位素地球化学.北京:科学出版社,1997,410-428
    陈帅奇,余心起,张德会,等.浙西开化桐村花岗斑岩地球化学特征及找矿潜力.金属矿山,2011,40(3):108-111.
    陈帅奇.浙西开化地区燕山期岩体特征及成矿背景研究:[硕士毕业论文].北京:中国地质大学,2011.
    陈衍景,李诺.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异.岩石学报,2009,25(10):2477-2508.
    程海.浙西北晚元古代岛弧火山岩的地球化学研究.地球化学,1993,1:18-27.
    戴圣潜,周存亭,储东如,等.下扬子东南缘北段加里东期构造形迹新资料.地质通报,2006,25(6):670-672.
    戴自希.矿产勘查百年.北京:地震出版社,2004.
    邓晋福,罗照华,苏尚国,等.岩石成因,构造环境与成矿作用.北京:地质出版社,2004.
    高林志,戴传固,刘燕学,等.黔东南—桂北地区四堡群凝灰岩锆石SHRIMP U-Pb年龄及其地层学意义.地质通报,2010,29(9):1259-1267.
    高林志,杨明桂,丁孝忠,等.华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄—对江南新元古代造山带演化的制约.地质通报,2008,27(10):1744-1751.
    高坪仙.对我国东部三种斑岩铜矿床的回顾.国外前寒武纪地质,1996(4):37-42
    耿建珍,李怀坤,张健,等.锆石Hf位素组成的LA-MC-ICPMS测定.地质通报,2011,30(10):1508-1513.
    弓秋丽,朱立新,马生明,等.斑岩型铜矿床地球化学勘查中岩石化学指标.物探与化探,2009,33(1):31-34.
    龚日祥,卢成忠.浙西晚中生代富碱高钾花岗岩类的岩石地球化学特征及构造意义.岩石学报,2008,24(10):2343-2351.
    郭春丽,王登红,陈毓川,等.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定.矿床地质,2007,26(4):432-442.
    郭新生,季克俭,黄耀生,等.德兴斑岩铜矿成矿热液来源及其演化—花岗闪长斑岩的氧同位素制约.高校地质学报,1999,5(3):260-268.
    侯增谦,高永丰,孟祥金,等.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,2004,20:239-248.
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征,岩浆热液系统和成矿概念模型.地质学报,2009,83:1779-1817.
    侯增谦,孟祥金,曲晓明,等.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源区相变及深部过程约束,矿床地质,2005,24(2):108-121.
    侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的含矿母岩—以西藏和智利斑岩铜矿为例,矿床地质,2003b,22(1):1-12.
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型,中国地质,2006a,33:348-359.
    侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿,现代地质,2007,21:332~351.
    侯增谦,曲晓明,黄卫,等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带,中国地质,2001,28(10):27-30.
    侯增谦,曲晓明,王淑贤,等.西藏冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用,中国科学,2003a,33:609-618.
    侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带: I.主碰撞造山成矿作用,矿床地质,2006b,25:337-358.
    侯增谦.斑岩Cu-Mo-Au矿床:新认识与新进展.地学前缘,2004(11):131-144.
    胡永和,徐有浪,朱兴盛.1994.浙江省铜矿床的稳定同位素地球化学特征.浙江地质,(2):52-57.
    黄典豪,吴澄宇,杜安道,等.东秦岭地区相矿床的铼-饿同位素年龄及其意义.矿床地质,1994,13(3):221-230.
    黄有年.浙江西裘含块状硫化物矿床特征及成矿模式.地质找矿论丛,1992,7:22-34.
    金维松,阙祖亮,李汉明.浙江省开化县桐村铜钼矿地质特征及找矿方向.矿产与地质,2012,26(5):402-407.
    冷成彪,张兴春,陈衍景,等.中国斑岩铜矿与埃达克(质)岩关系探讨,地学前缘,2007,14(5):199-210.
    李春海,邢光福,姜耀辉,等.浙江平水铜矿含硫化物石英脉锆石U-Pb定年及其地质意义.中国地质,2010,37(2):477-487.
    李光明,李金祥,秦克章,等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报,2007,23(5):935-952.
    李厚民,叶会寿,毛景文,等.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义.矿床地质,26(4):418-423.
    李诺,陈衍景,倪智勇,等.河南省嵩县鱼池岭斑岩钼矿床成矿流体特征及其地质意义.岩石学报,2009,25(10):2509r2522.
    李献华,李武显,李正祥.再论南燕山早期花岗岩的成因类型与构造意义.科学通报,2007b,52(9):981-992
    李子颖,李秀珍.试论华南中新生代地幔柱构造铀成矿作用及其找矿方向.铀矿地质,1999,15(1):9-17.
    凌洪飞,沈渭洲,邓平,等.粤北帽峰花岗岩体地球化学特征及成因研究.岩石学报,2005,21(3):677-687.
    凌洪飞,沈渭洲,邓平,等.粤北笋洞花岗岩的形成时代,地球化学特征与成因.岩石学报,2004,20(3):413-424.
    刘敦一,简平,张旗,等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报,2003,77(3):317-327
    刘亮,邱检生,李真.浙江沐尘石英二长岩和镁铁质包体的锆石U-Pb年代学与Hf同位素组成研究:对岩浆混合作用的示踪.地质论评,2011,57(3):327-336.
    卢成忠,杨树锋,顾明光,等.浙江次坞地区晋宁晚期双峰式岩浆杂岩带的地球化学特征:Rodinia超大陆裂解的岩石学记录.岩石学报,2009,25(1):67-76.
    卢树东,高文亮,汪石林,等.江西张十八铅锌矿铅同位素组成特征及其成因意义.矿物岩石,2005,25:64-69.
    马瑞士,张健康,浙东北前寒武系划分及神功运动的发现—兼论华南前寒武系研究中若干方法论问题.南京大学学报(自然科学版),1977,(1):68-90.
    毛建仁,陶奎元,李寄嵎,等.闽西南晚中生代四方岩体同位素年代学、地球化学及其构造意义.岩石学报,2002,18(4):449-458.
    毛建仁,陶奎元.中国东南大陆边缘中新生代地幔柱活动的岩石?.地球学报:中国地质科学院院报,1999,20(3):253-258.
    毛景文,胡瑞忠,陈毓川,等.大规模成矿作用与大型矿集区.北京:地质出版社,2006.
    毛景文,谢桂青,郭春丽等.华南地区中生代主要金属矿床时空分布规律和成矿环境,高校地质学报,2008,14(4):510-526.
    孟祥金,董光裕,刘建光,等.江西冷水坑斑岩型铅锌银矿床.北京:地质出版社,2007
    南京大学地质系.1981.华南不同时代花岗岩类及其与成矿关系.北京:科学出版社,1-120.
    祁岖,周新民,王德滋.浙江西裘细碧角斑岩的成因与相关幔源花岗岩类的特征.岩石矿物学杂志,1986,4:2-99.
    钱鹏,陆建军,姚春亮.德兴斑岩铜矿成矿流体演化与来源的流体包裹体研究.南京大学学报(自然科学),2003,39:319-326
    邱检生,胡建, McInnes B I A,等.广东龙窝花岗闪长质岩体的年代学、地球化学及岩石成因.岩石学报,2004,20(6):1363-1374.
    邱骏挺,余心起,张德会,等.浙西开化地区桐村花岗斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义,地质通报,2011,30(9):1360~1368.
    任纪舜,陈廷愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿.北京:科学出版社,1990,1-218.
    戎嘉余,詹仁斌,许红根,等.华夏古陆于奥陶—志留纪之交的扩展证据和机制探索.中国科学(D辑),2010,40(1):1-17.
    芮宗瑶,黄崇柯,齐国明,等.中国斑岩铜(钼)矿床.北京:地质出版社,1984., l-50.
    芮宗瑶,张洪涛,陈仁义,等.斑岩铜矿研究中若干问题探讨.矿床地质,2006,25(4):491-500
    芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨,岩石学报,2004,20(2):229-238.
    邵佳丽,金旭东,张德会,等.基于证据权重法的江绍拼合带中西段成矿预测研究,地质学刊,2011,35(2):150-155.
    申萍,沈远超,李光明,等.新疆阔尔真阔腊金矿床成矿流体包裹体研究.岩石学报,2004,20(4):969-976
    沈渭洲,凌洪飞,王德滋,徐步台,俞云文.1999.浙江省中生代火成岩的Nd-Sr同位素研究.地质科学,34:223-232.
    舒良树,于津海,贾东,等,2008.华南东段早古生代造山带研究.地质通报,27(10):1581-1593.
    舒良树,周新民,2002.中国东南部晚中生代构造格架.地质论评,2002,48(3):249-260.
    斯米尔诺夫.弗.伊.矿床地质学.《矿床地质学》翻译组译.北京:地质出版社,1985.
    宋生琼,胡瑞忠,毕献武,等.赣南崇义淘锡坑钨矿床氢、氧、硫同位素地球化学研究.矿床地质,2011,30(1):1-10
    王德滋,谢磊.2008.岩浆混合作用:来自岩石包体的证据.高校地质学报,14(1):16-21.
    王德滋,周金城,张海进,等.东南沿海早白垩世火山活动中的岩浆混合及壳幔作用证据.南京大学学报(地球科学),1994,6(4):317-325.
    王奖臻,李朝阳,胡瑞忠.斑岩铜矿研究的若干进展.地球科学进展,2001,16(4):514-519.
    王孔忠,颜铁增,袁强.扬子东南缘北段加里东期的褶皱特征—来自不整合关系的证据.地质通报,2006,25(6):673-675.
    王丽娟,于津海, O’Reilly S Y,等.华夏南部可能存在Grenville期造山作用:来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息.科学通报,2008,53(14):1680-1692.
    王丽娟,于津海,徐夕生,等.闽西南古田—小陶花岗质杂岩体的形成时代和成因.岩石学报,2007,23(6):1470-1484.
    王丽丽.浙江桐村钼(铜)矿床蚀变矿化特征及其原生晕地球化学:[硕士毕业论文].北京:中国地质大学(北京),2010.
    王莉娟,王京彬,王玉往,等.新疆北部准噶尔—东天山地区金矿床的硫铅碳同位素地球化学及对金成矿作用的指示.岩石学报,2006,22(5):1437-1447
    王联魁,朱为方,张绍立.1982.华南花岗岩两个成岩成矿系列的演化.地球化学,(4):329-338.
    王强,赵振华,简平,等.德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学.岩石学报,2004,20(2):315-338.
    王孝磊,舒徐洁,邢光福,等.浙江诸暨地区石角—璜山侵入岩LA-ICP-MS锆石U-Pb年龄—对超镁铁质球状岩成因的启示.地质通报,2012,31(1):75-81.
    王一先,赵振华,包志伟,等.浙江花岗岩类地球化学与地壳演化—Ⅰ.显生宙花岗岩类.地球化学,1997,26:1-15.
    王岳军,范蔚茗,郭锋,等.北大别晚中生代火山岩的地球化学特征及对北大别构造属性的启示.地学前缘,2003,10(4):529-538
    王执均,赵筱福.西裘铜矿矿床特征及其成因探讨.地质与勘探,1980,19-25.
    吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2:185-220.
    吴荣新,郑永飞,吴元保.皖南石耳山新元古代花岗岩锆石U-Pb定年以及元素和氧同位素地球化学研究.高校地质学报,2005,11(3):364-382.
    肖庆辉,邓晋福,马大铨等.花岗岩研究思维与方法。北京:地质出版社,2002:71-96。
    肖晓牛,喻学惠,杨贵来,等.滇西沧源铅锌多金属矿集区成矿地球化学特征.岩石学报,2008,24(3):589-599
    谢窦克,马荣生,张禹慎,等.华南大陆地壳生长过程与地幔柱构造.地质出版社,1996.
    谢家荣.苏联铜矿概况.地质学报,1952,4.
    谢智,陈江峰. Re-Os同位素体系在金属矿床研究中的应用.地质地球化学1998,26(4):79-82.
    徐克勤,胡受奚,孙明志,等.论花岗岩的成因系列—以华南中生代花岗岩为例.地质学报,1983,2:107-118.
    徐文刚,张德会.还原性流体与斑岩型矿床成矿机制探讨,地质学报,2012,86(3):495-502.
    徐文刚.浙江开化桐村斑岩钼(铜)矿床成矿流体地球化学及成因讨论:[硕士毕业论文].北京:中国地质大学(北京),2011.
    薛怀民,马芳,宋永勤,等,2010.江南造山带东段新元古代花岗岩组合的年代学和地球化学:对扬子与华夏地块拼合时间与过程的约束,岩石学报,26(11):3215-3244.
    杨树锋,顾明光,卢成忠,2009.浙江章村地区中元古代岛弧火山岩的地球化学及构造意义.吉林大学学报(地球科学版),39(4):679-698.
    姚春亮.德兴斑岩铜矿含矿岩体特征和矿化机制:[博士学位论文].南京:南京大学,2006.
    余心起,张德会,闫铁增,等.浙西北及江绍断裂带分布发现早古生代和晚古生代岩浆活动.地质通报,2013,32(10):1558-1565.
    余心起,张达,汪隆武,等,浙皖赣相邻区加里东期构造变形特征.地质通报,2006,25(6):676-684.
    张德会,周圣华,万天丰,等.矿床形成深度与深部成矿预测.地质通报,2007,26(12):1509-1518.
    张旗,金惟俊,王元龙,等.大陆下地壳拆沉模式初探.岩石学报,2006,22:265-276.
    张旗,秦克章,王元龙,等.加强埃达克岩研究,开创中国Cu、Au等找矿工作的新局面.岩石学报,2004b,20:195-204
    张旗,秦克章,许继峰,等.中国与埃达克岩有关的矿床分布、找矿方向和找矿方法刍议.华东地质与矿床,2004a,(2):1-18.
    张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义,岩石学报,2001,17(2):236-244.
    张旗,王焰,熊小林,等.埃达克岩与花岗岩:挑战与机遇.北京:中国大地出版社,2008,1-344.
    张世铭,肖渊甫,王强,等.浙江省桐村钼矿床Re-Os同位素年龄及地质意义.地质与勘探,2013,49(1):50-57.
    张世铭.浙西燕山期成岩构造背景及桐村钼(铜)矿床成矿过程:[硕士毕业论文].成都:成都理工大学,2013.
    张振亮.德兴铜厂铜矿非常温常压条件下的流体包裹体拉曼光谱特征及其成矿意义:[硕士毕业论文].北京:中国地质大学,2003.
    赵斌.高温高压实验地球化学.1995,北京:科学出版社.
    浙江金华地质大队专题组.浙江开化常山一带斑岩体特征与铜钼矿化关系初步探讨.1982.
    浙江省地质调查院.金华市幅1:25万区域地质调查报告.2006.
    浙江省第三地质大队.桐村普查08年度详查设计(初稿).2008
    浙江省金华地质大队.浙江省开化县桐村铜钼矿区普查评价报告.1978
    郑永飞,陈江峰.稳定同位素地球化学.2000.
    周名魁,王汝植,李志明,等,1993.中国南方奥陶-志留纪岩相古地理与成矿作用.北京:地质出版社,1-111.
    周清,德兴斑岩铜矿含矿斑岩成因及成矿机制:[博士毕业论文].南京:南京大学,2011.
    朱安庆,张永山,陆祖达,等.浙江省金属非金属成矿系列和成矿区带研究.地质出版社,2009
    朱炳泉.地球科学中同位素体系理论与应用.北京:科学出版社,1998:216-235
    朱训,黄崇轲,芮宗瑶,等.德兴斑岩铜矿.北京:地质出版社.1983,1-336
    朱玉娣,叶锡芳,张德会,等.浙西桐村斑岩型钼(铜)矿床与德兴斑岩铜矿岩浆岩对比研究,地球科学进展,2012,27(10):1043-1053.
    朱玉娣,叶锡芳,张德会,等.2014.浙西开化桐村斑岩型钼铜矿床含矿斑岩岩石地球化学、SHRIMP年代学及Sr-Nd同位素研究.地学前缘,2014,21(2).
    朱玉娣.浙江桐村斑岩钼(铜)矿床岩浆岩特征及矿床成因讨论:[硕士毕业论文].北京:中国地质大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700