用户名: 密码: 验证码:
高铁酸盐去除水中双酚A和磷酸盐的效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术的发展带动了新兴产业的进步,工业废水、生活污水排放总量也呈逐年增加趋势,水资源水质恶化,水生态系统遭到破坏,对水资源的保护和治理逐渐成为城市发展的战略性任务。高铁酸盐作为一种新型的多功能水处理材料逐渐得到人们的关注,并且在污水二级出水中内分泌干扰物等有机物与磷酸盐、氨氮等无机物共存,若直接排放危害巨大。因此,本文以高铁酸盐、双酚A(BPA)和磷酸盐为主要研究对象,考察Fe(Ⅵ)对BPA和磷酸盐的协同去除效能,并利用Fe(Ⅱ)强化Fe(Ⅵ)对水中磷酸盐的去除,拓展高铁酸盐在污水处理中的应用研究。
     首先研究高铁酸盐在氧化BPA的同时对水中共存的磷酸盐的去除效能。实验结果表明,高铁酸盐投量的增加能有效地提高BPA的处理效果,去除效率与水体温度也呈正相关,并且在pH为6-7之间,能够取得很好的去除效果。从高铁酸盐的自分解曲线可以看出,Fe(ⅡI)对高铁酸盐的催化反应不仅仅是继续生成Fe(ⅡI),而是伴随着中间价态铁Fe(V)或者Fe(IV)的生成。总量相同等分多次地投加高铁酸盐可使溶液中BPA去除效果增加,叔丁醇的加入对高铁酸盐去除BPA有一定的抑制作用,这些都说明在氧化BPA的反应过程中不仅仅是高铁酸盐参与了反应,同时也伴随着中间价态的强氧化性物质参与氧化过程。在Fe(Ⅵ)协同处理水中BPA和磷酸盐的实验中,高铁酸盐除磷效果要强于单独的Fe~(3+)盐,高铁酸盐氧化后生成新生态的水合氧化铁,它也具有除磷作用。
     增加Fe(Ⅵ)氧化后新生态水合氧化铁的生成量,能够更好地促进新生态水合氧化铁的除磷效果,因此本文考察Fe(Ⅵ)/Fe(Ⅱ)联合体系对水中磷酸盐的去除情况。研究结果表明,Fe(Ⅵ)/Fe(Ⅱ)体系的除磷效果要高于单独Fe~(3+)盐。通过对絮体颗粒物表面形态的表征和FTIR图谱分析,可以看出在Fe(Ⅵ)/Fe(Ⅱ)体系中生成的絮体中含有FeOOH,它能够很好地吸附水中的磷酸盐,而且它对磷酸盐不仅仅是简单的吸附,而是通过吸附过程形成内层复合物,即发生了络合反应。混凝过程中溶液的浊度和pH值变化也能说明这一点。
     在Fe(Ⅵ)/Fe(Ⅱ)除磷体系和单独Fe~(3+)盐除磷体系中,Fe(Ⅵ)/Fe(Ⅱ)体系中的最佳Fe/P摩尔比为1.32,而单独铁盐除磷时的最佳Fe/P摩尔比为1.72。在Fe(Ⅵ)/Fe(Ⅱ)体系中,氯离子和硝酸根离子的存在对磷酸盐的去除基本没有影响,硫酸根离子和氨根离子的存在对其除磷效能有一定的抑制作用。溶液中硅酸根离子的存在,在pH值较低时可强化Fe(Ⅵ)/Fe(Ⅱ)体系的除磷作用,但随着pH值的升高可明显抑制该体系中磷酸盐的去除。在碱性条件下钙离子的存在能促进磷酸盐的去除。从SEM图谱中发现,这些离子存在对絮体的表面形貌特征都有一定的影响。水中有机物腐殖酸的存在,对Fe(Ⅵ)/Fe(Ⅱ)除磷体系除磷都有一定的抑制作用。在初始pH值为5-7的混凝过程中,Fe(Ⅵ)/Fe(Ⅱ)能够达到很好的除磷效果,但是出水浊度有所升高。
     因此,为了强化Fe(Ⅵ)/Fe(Ⅱ)体系对浊度的去除,引入Fe(多价态)体系,考察它对污水二级出水的处理情况。研究发现Fe(多价态)体系对水中的有机物和磷酸盐也有协同处理的效能,最佳的Fe(Ⅵ)/ Fe(Ⅱ)摩尔比为0.5;Fe(多价态)体系处理污水二级出水中磷酸盐时,最佳的Fe(Ⅵ):Fe(Ⅱ):Fe(ⅡI)的摩尔比为1:2:4。在该体系中高铁酸盐含量的升高是由于它能够与水中有机物反应导致的。高铁酸盐按照比例投加水中会剩余部分高铁酸盐,它不仅能够与有机物反应,并且溶液中已经存在的铁离子也能够催化高铁酸盐氧化有机物过程。
     综上所述,本文为高铁酸盐协同去除水中有机物和磷酸盐提供了数据支持,并通过投加不同价态铁盐强化了对水中污染物的去除,揭示了高铁酸盐协同处理多种污染物的反应历程,并以实际污水作为研究对象进行了初步研究,为该技术进一步在实际工程中应用提供了理论与技术依据。
The development of science and technology caused advent of increasing amout of new industries, resulting in increase of industrial wastewater and sewage discharged into the water environment. Thus, water quality of the water resources are deteriorated, and aquatic ecosystems were damaged to various extents. The protection and management of water resources gradually become an important work. Ferrate, as a new multifunctional water treatment material are recognized gradually by people, and it has high strenghth for removing endocrines、phosphate from water. Hence, ferrate, bisphenol A and phosphate as the main research reagent was selected to evalute the effectiveness of Fe(Ⅵ) to remove BPA and phosphate together from water, and to investigate the effectiveness of phosphate removal by Fe(Ⅵ) enhanced by the addition of Fe(Ⅱ), and to study the performance of ferrate on the removal of pollutants.
     Firstly, the removal efficiency of Bisphenol A(BPA) and phosphate by Fe(Ⅵ)was inverstigated. The results showed that increasing ferrate dose effectively improved the removal of BPA. The removal efficiency increased as the increase of ferrate dose and the water temperature, and at pH 6-7, ferrate oxidation achieved high removal efficiency of Bisphenol A. During the process of ferrate decom- position, it could be seen that the Fe(ⅡI) are formed in ferrate catalytic reaction, but it was not just simply to generate Fe(ⅡI), the intermediate valence iron Fe(V) or Fe(IV) may be generated. The removal efficiency of BPA was increased by ferrate in the way that ferrate was added in the same total dose at different times, and the addition of t- butanol could reduce the efficiency of BPA removal. It demonstrated that not only ferrate but also the intermediate valence oxidizing substances participate in the process of oxiding BPA. In the experiment of removing BPA and phosphate together by Fe(Ⅵ), the phosphate removal by ferrate was superior to the case of Fe~(3+), the newly hydrated ferric oxide which was generated by ferrate reduction could remove phosphate very well.
     Increasing the mount of newly formed hydrous ferric oxide could enhance the effectiveness of removal for phosphate, thus the removal efficiency of phosphate by Fe (Ⅵ)/Fe (Ⅱ) is evaluated. The research results indicated that Fe(Ⅵ)/Fe (Ⅱ) system could remove more phosphate than Fe~(3+). FTIR analysis showed that the floc particles structure formed in situ in Fe(Ⅵ)/Fe(Ⅱ) system involved in the formation of FeOOH, which could be a good adsorbent for phosphate, it is not only a simply adsorbent, but a nner complexes with phosphate by adsorption, also hence the complexation reaction took place. The variation of turbidity and pH solution during this process also supported this expectation.
     Between Fe(Ⅵ)/Fe(Ⅱ) system and Fe~(3+), the optimal molar ratio of Fe/P was 1.32 in the Fe(Ⅵ)/Fe(Ⅱ) system, the optimal molar ratio of Fe/P was 1.72 in the case of Fe~(3+). The presence of chloride ions and nitrate ion had little impact on the removal of phosphate, but the presence of sulfate and ammonia had some inhibition effect on the removal of phosphate. At lower pH range, the presence of silicate improved the removal of phosphate by Fe(Ⅵ)/Fe(Ⅱ) system, but at higher pH range it also reduce the removal efficiency of phosphate. Under alkaline conditions, the existence of calcium ions promoted phosphate removal. The surface topography characteristics of flocculants could be improved by the presence of these cations from the results of SEM analysis. The organic matter in the water background inhibited the removal of phosphate. In the coagulation process when pH is 5-7, Fe(Ⅵ)/Fe(Ⅱ)achieved very good treatment effectiveness, but the effluent turbidity somewhat was elevated.
     In order to enhence the turbidity removal in Fe(Ⅵ)/Fe (Ⅱ) system, Fe(more valences) system was added to remove oganic matter and phosphate together. It was found that the optimal molar ratio of Fe(Ⅵ):Fe(Ⅱ) was 0.5 in Fe(Ⅵ)/Fe(Ⅱ) system, and the optimal molar ratio of Fe(Ⅵ):Fe(Ⅱ):Fe(ⅡI) was 1:2:4 in the Fe(more valences) system. The increase of ferrate addition is for further oxidation of the organic matter which could be degraded by ferrate. The residual ferrate can react with organic and ammonia, the presence of ferric would also promote the process of organic oxidation by ferrate.
     Conclusively, this research provided results for both oganic matter and phosphate removal together by Fe(Ⅵ), and the addition of different valence iron could enhance the pollutant removal. The results may provide theoretical and technical basis for practical engineering application.
引文
[1]汪易森,杨元月.中国南水北调工程[J].人民长江, 2005, 36(7): 1-5.
    [2]崔玉川.我国城市水资源短缺的形势与对策[C]//中国土木工程学会水工业分会给水委员会第八次年会.成都:成都出版社, 2001: 112-124.
    [3]汪恕诚.中国水资源面临四大问题:年缺水量近400亿立方[J].治黄科技信息, 2006, (2): 18.
    [4]崔玉川,傅涛.我国城市给水发展现状与特点[J].中国给水排水, 1999, 15(2): 52-54.
    [5]杨琦.全球性水危机与水工程投资国际化[J].给水排水, 1998, 24(5): 71-74.
    [6]中国环境保护部. 2007年中国环境状况公告[EB/OL]. http://www.mep.go- v.cn/plan/zkgb/2007zkgb.
    [7]刘云根,田昆,刘惠芳.新型除磷剂应用于滇池富营养化水体的实验研究[J].环境工程, 2010, 28(1): 36-39.
    [8]张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京:中国建筑工业出版社, 1994: 6-7.
    [9]武卫政.环保总局:污染物排放总量今年将现下降拐点[OL]. http://en- v.people.com.cn/GB/5826651.html.
    [10]肖锦.城市污水处理及回用技术[M].北京:化学工业出版社, 2002: 224-247.
    [11]陈益明,刘坤,郑涛,等.城市污水回用现状及发展趋势[J].净水技术, 2003, 22(5): 34-36.
    [12] Thompson G W, Ockerman G W, Schreyer J M. Preparation and Purification of Potassium Ferrate(VI)[J]. American Chemical Society, 1951, (73): 1379-1381.
    [13]李志远,赵建国.氧化法生产高铁酸钾的研究[J].无机盐工业, 1991, 21 (6):10-12.
    [14]杨长春,高杰.固体高铁酸钾制备方法[P].中国专利: CN1488782, 2004-04-14.
    [15] Lapicque F, Valentin G. Direct Electrochemical Preparation of Solid Potassium Ferrate[J]. Electrochemistry Communications, 2002, 4(10): 764-766.
    [16] Licht S, Tel-Vered R, Halperin L. Direct Electrochemical Preparation of Solid Fe(VI) Ferrate, and Super-iron Batterycompounds[J]. Electrochemistry Com- munications, 2002, 4(11): 933-937.
    [17] Bouzek K, Rousar I. Electrochemical Production of Ferrate(VI) Using Altern- ating Current Superimposed on the Direct Current: Gray and White Cast Iron Electrodes[J]. Electrochem, 1998, 44(4): 547-557.
    [18] Gump J R, Wagner W F, Schreyer J M. Preparation and Analysis of Barium Ferrate(VI)[J]. Analytical Chemistry, 1954, 26(12): 1957.
    [19] Hrostowski H J, Scott A B. The Magnetic Susceptibility of Potassium Ferrate[J]. Journal of Chemical Physics, 1950, 18(1): 105-107.
    [20] Williams D H, Riley J T. Preparation and Alcohol Oxidation Studies of the Ferrate(VI) Ion, FeO42-[J]. Inorganica Chimica Acta, 1974, 8(13): 177-183.
    [21] Licht S, Naschitz V, Liu B, et al. Chemical Synthesis of Battery Grade Super-iron Barium and Potassium Fe(VI) Ferrate Compounds[J]. Journal of Power Sources, 2001, 99(1-2): 7-14.
    [22] Schreyer J M. Higher Valence Compounds of Iron[M]. Oregon State College, Corvallis, 1948: 236-240.
    [23] Delaude L, Laszlo P. A Novel Oxidizing Reagent Based on Potassium Ferra- te(VI) [J]. Journal of Organic Chemistry, 1996, 61(88): 6360-6370.
    [24] Waite T D. Feasibility of Wastewater Treatment with Ferrate[J]. Journal of the Environmental Engineering Division, 1979, 105(6): 1023-1034.
    [25] Hoppe M L, Schlemper E O, Murmann R K. Structure of Dipotassium Ferra- te(VI)[J]. Acta Crystallo, 1982, B(38): 2237-2239.
    [26]展漫军,杨曦,杨洪生,等.天然水体腐殖质对双酚A光降解影响的研究[J].环境科学学报, 2005, 25(6): 816-820.
    [27]苑宝玲,曲久辉.高铁酸盐氧化絮凝去除藻类机制[J].中国环境科学, 2002, 22(5): 397-399.
    [28]曲久辉,王立立,田宝珍,等.高铁酸盐氧化絮凝去除饮用水中氨氮的研究[J].环境科学学报, 2000, 20(3): 280-284.
    [29]马艳,高乃云,李聪.高铁酸盐去除饮用水源中盐酸四环素试验研究[J].土木建筑与环境工程, 2010, 32(4): 108-113.
    [30] Jiang J Q, Yin Q, Zhou J L, et al. Occurrence and Treatment Trail of Endoc- rine Disrupting Chemicals (EDCs) in Wastewaters[J]. Chemosphere, 2005, 61 (4): 544-550.
    [31]梁咏梅,刘伟,马军. pH和腐殖酸对高铁酸盐去除水中铅、镉的影响[J].哈尔滨工业大学学报, 2003, 35(5): 46-48.
    [32]陈昌杰,黄成武,王子石,等.全国生活饮用水水质与水性疾病调查[J].中国公共卫生学校学报, 1990, 9(1): 6-8.
    [33]扬在昌,过基同.关于饮用水的致突变性和致癌性问题[J].环境与健康杂志, 1998, 5(1): 23-25.
    [34]黄莉莉.高铁酸盐对水中微量有机物的去除作用[J].当代化工, 2004, 33(4): 231-232.
    [35] Cho M, Lee Y, Choi W. Study on Fe (VI) Species as a Disinfectant: Quanti- tative Evaluation and Modeling for Inactivating Escherichia coil[J]. Water Research, 2006, 40(19): 3580-3586.
    [36] Waite T D, Gilberk M. Oxidation Destruction of Phenol and Organic Water Residuals by Iron(VI) Ferrate[J]. Water Pollution Contral Federation, 1978, 50(3): 543-558.
    [37] Jiang J Q, Lloyd B. Progress in the Development and Use of Ferrate(VI) Salt As An Oxidant and Coagulant for Water and Wastewater Treatment[J]. Water Research, 2002, 36(6): 1397-1408.
    [38]傅金祥,许巧哲,邹倩,等.高铁酸盐预氧化强化混凝法去除苯胺的研究[J].中国给水排水, 25(7): 49-51.
    [39]姜洪泉,于秀娟,王鹏,等.高铁酸钾预氧化去除水中苯酚及其机理[J].中国给水排水, 2003, 19(13): 47-48.
    [40]邱慧琴,许良,陈敏,等.高铁酸盐原液在城市污水处理中的应用[J].净水技术, 2006, 25(5): 56-59.
    [41]刘丽红,吴挡兰,夏庆余,等.用高铁酸盐去除垃圾渗滤液中COD和氨氮的研究[J].环境卫生工程, 2005, 13(2): 16-18.
    [42]朱启安,张琪,孙旭峰,等.高铁酸钾的制备及去除水中2,4,6-三氯酚的研究[J].中国给水排水, 2006, 22(17): 13-17.
    [43]许秀清,单治国,朱承驻,等.高铁酸盐制备及氧化降解硝基苯水溶液的研究[J].合肥工业大学学报, 2008, 31(4): 507-510.
    [44]任朝斌,马步伟.高铁酸盐氧化去除饮用水中苯酚的研究[J].平顶山工学院学报, 2005, 14(4): 30-32.
    [45]林智虹,董锦昱,郑曦,等.电生成高铁酸盐及其度酚类废水处理机制的研究[J].福建师范大学学报, 2004, 20(3): 54-58.
    [46]孟祥茹,贾汉东,刘学军,等.高铁酸钾对偶氮及醒类染料的脱色作用[J].郑州大学学报(自然科学版), 2001, 33(3): 78-81.
    [47]吴志敏,赖经妹,张丽.高铁酸钾降解活性染料废水的研究[J].广东化工, 2010, 37(3): 167-169.
    [48] Jiang J Q. Research Progress in the Use of Ferrate(VI) for the Environmental Remediation[J]. Journal of Hazardous Materials, 2007, 146(3): 617-623.
    [49] Li C, Li X Z, Graham N. A Study of the Prepation and Reactivity of Potas- sium Ferrate[J]. Chemosphere, 2005, 61(4): 537-543.
    [50] Ma J, Liu W. Effectiveness of Ferrate (VI) Preoxidation in Enhancing the Coagulation of Surface Waters[J]. Water Research, 2002, 36(20): 4959-4962.
    [51]李春娟,马军,梁涛.高铁酸盐预氧化对松花江水混凝效果的影响[J].环境科学, 2008, 29(6): 1550-1554.
    [52]黄莉莉.高铁酸盐预氧化在混凝过程中的助凝作用[J].沈阳工业学院学报, 2004, 23(1): 85-87.
    [53]王国华,李晨光,孙晓,等.高铁酸钾强化PAC去除景观水体中藻类的研究[J].中国给水排水, 2010, 26(9): 83-85.
    [54]苑宝玲,李坤林,邓临莉,等.多功能高铁酸盐去除饮用水中砷的研究[J].环境科学, 2006, 27(2): 281-284.
    [55]苑志华,桂和荣,何文丽,等.高铁酸钾去除重金属的模拟试验研究[J].水处理技术, 2009, 35(5): 67-71.
    [56]刘伟,梁咏梅,马军.高铁酸盐预氧化强化去除地表水中锰的试验[J].哈尔滨工业大学学报, 2005, 37(2): 180-182.
    [57]齐文启,孙宗光.痕量有机物的监测[M].北京:化学工业出版社, 2001:10-20.
    [58] Vandenberg L N, Hauser R, Marcus M, et al. Human Exposure to Bisphenol A(BPA)[J]. Reproductive Toxicology, 2007, 24(2): 139-177.
    [59]梁增辉,何世华,孙成均,等.引起青蛙进行的环境内分泌干扰物的初步研究[J].环境与健康杂志, 2004, 19(6): 419-421.
    [60] Chen J H, Huang X, Lee D. Bisphenol A Removal by a Memebrane Biorea- ctor[J]. Process Biochemistry, 2008, 43(4): 451-456.
    [61] Urase T, Kikuta T. Separate Estimation of Adsorption and Degradation of Pharmaceutical Substances and Estrogens in the Activated Sludge Process[J]. Water Research, 2005, 39(7): 1289-1300.
    [62] Kim J Y, Ryu K, Kim E J, et al. Degradation of Bisphenol A and Nonylphenol by Nitrifying Activated Sludge[J]. Process Biochemistry, 2007, 42(10): 1470-1474.
    [63] Tsai W T, Lai C W, Su T Y. Adsorption of Bisphenol-A from Aqueous Solution onto Minerals and Carbon Adsorbents[J]. Journal of Hazadrous Materials, 2006, 134(1-3): 169-175.
    [64] Clara M, Strenn B, Saracevic E, et al. Adsorption of Bisphenol-A, 17Beta-estradiole and 17Alpha-ethinylestradiole to Sewage Sludge[J]. Chemsphere, 2004, 56(9): 843-851.
    [65]王燕春,刘启凯,赵庆祥.双酚A废水的污染状况及处理技术[J].城市环境与城市生态, 2005, 18(4): 15-18.
    [66] Zhang H Q, Ymada H, Tsuno H. Removal of Endocrine-disrupting Chemicals during Ozonation of Municipal Sewage with Brominated Byproducts Con- trol[J]. Environmental Science Technology, 2008, 42(9): 3375-3380.
    [67] Irmak S, Erbatur O, Akgerman A. Degradation of 17β-estradiol and Bisphenol A in Aqueous Medium by Using Ozone and Ozone/UV Techniq- ues[J]. Journal of Hazardous Materials, 2005, 126(1-3): 54-62.
    [68]徐斌,高乃云,王虹,等.饮用水中内分泌干扰物双酚A的臭氧氧化降解研究[J].环境科学, 2006, 27(2): 294-299.
    [69] Sajiki J. Decomposition of Bisphenol-A(BPA) by Radical Oxygen[J]. Envi- ronment International, 2001, 27(4): 315-320.
    [70]杨红,孙建华,谭国进,等.对硝基苯酚废水降解的初探[J].广西轻工业, 2009, 13(3): 47-48.
    [71]杜冬云,肖文德,张传越.含磷废水的处理[J].化学工程师, 1997, 10(4): 78-81.
    [72]钱易.水污染防治手册[M].上海:上海科学技术出版社. 1989: 34-39.
    [73] Snoeyink V L.水化学[M].蒋展鹏,译.北京:中国建筑工业出版社, 1990: 72-76.
    [74]姚毅.城市污水的生物脱氮、脱磷[J].给水排水, 1994, 10(8): 20-23.
    [75] Marais G, Herman N S. IAWPR Conference Seminar on Phosphorus Removal in Biological Treatment Process[M]. Pretoria, 1982: 147-149.
    [76]杨宝林.污水除磷技术的应用[J].西南给排水, 1990, 13(4): 15-19.
    [77]日宗宫功.污水除磷脱氮技术[M].吴之丽,译.北京:中国环境科学出版社, 1987: 71-74.
    [78]郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术(上)[J].给水排水, 1998, 24(8): 69-73.
    [79] Fytianos K, Voudrias E, Raikos N. Modelling of Phosphorus Removal from Aqueous and Wastewater Samples Using Ferric Iron[J]. Environmental Pollu- tion, 1998, 101(1): 123-130.
    [80] Zeng L. Adsorptive Removal of Phosphate from Aqueous Solutions Using Iron Oxide Tailings[J]. Water Research, 2004, 38(5): 1318-1326.
    [81] Arias M, Silva-Carballal J D, Garcia-Rioc L, et al. Retention of Phosphorus by Iron and Aluminum-oxides-coated Quartz Particles[J]. Journal of Colloid and Interface Scince, 2006, 295(1): 65-70.
    [82] Mayer T D, Jarrell W M. Phosphorus Sorption during Iron(II) Oxidation in the Presence of Dissolved Silica[J]. Water Research, 2000, 34(16): 3949-3956.
    [83] Sigg L, Stumm W. The Interaction of Anions and Weak Acids with the Hyd- rous Geothite (α-FeOOH) Surface[J]. Colloids and Surface, 1998, 2(2): 101-117.
    [84] Davis C C, Knocke W R, Edwards M. Implications of Aqueous Silica Sorp-tion to Iron Hydroxide: Mobilization of Iron Colloids and Interference with Sorption of Arsenate and Humic Substances[J]. Environmental Science Tech- nology, 2001, 35(15): 3158-3162.
    [85] Staples C A, Born P B, Klecka G, et al. A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A[J]. Chemosphere, 1998, 36(10): 2149-2173.
    [86] Yamamoto T, Yasuhara A. Chlorinatioa of Bisphenol A in Aqueous Media: Formation of Chlorinated Bisphenol A Congeners and Degradation to Chlori- nated Phenolic compounds[J]. Chemosphere, 2002, 46(8): 1215-1223.
    [87] Lee C H, Lee Y H, Schmidt C, et al. Oxidation of Suspected N-nitrosodi- methylamine (NGMA) Precursors by Ferrate(VI): Kinetics and Effect on the NDMA Formation Potential of Natural Waters[J]. Water Research, 2008, 42(1 -2): 433-441.
    [88] Li C J, Ma J, Shen J M, et al. Removal of Phosphate from Secondary Efflu- ent with Fe2+ Enhanced by H2O2 at Nature pH/Neutral pH[J]. Journal of Hazardous materials, 2009, 166(2-3): 891-896.
    [89]曲久辉,林谡,王立立.高铁酸盐的溶液稳定性及其在水质净化中的应用[J].环境科学学报, 2001, 21(6): 106-109.
    [90] Casado J, Lopez-Quintela M A, Lorenzo-Barral F M. The Initial Rate Method in Chemical Kinetics [J]. Journal of Chemical Education, 1986, 63(5): 450.
    [91] Savage P E, Smith M A. Kinetics of Acetic Acid Oxidation in Supercritical Water[J]. Environmental Science and Technology, 1995, 29(1): 216-221
    [92]刘可,马军,关小红,等.新生态铁锰氧化物混凝除磷的效果研究[J].中国给水排水, 2009, 25(21): 89-90.
    [93] Schindler D W. Evolution of Phosphorus Limitation in Lakes[J]. Science, 1977, 195(12): 260-262.
    [94] Wang Y Q, Han T W, Xu Z, et al. Optimization of Phosphorus Removal from Secondary Effluent Using Simplex Method in Tianjin, China[J]. Journal of Hazardous Materials, 2005, 121(1-3): 183-186.
    [95] Clark T, Stephenson T. Development of a Jar Testing Protocol for Chemical Phosphorus Removal in Activated Sludge Using Statistical Experimental Design[J]. Water Research, 1999, 33(7): 1730-1734.
    [96] Hsu P H. Comparison of Iron(III) and Aluminum in Precipitation of Phosp- hate from Solution[J]. Water Research, 1976, 10(10): 903-907.
    [97] Xie W M, Wang Q H, Ma H Z, et al. Study on Phosphorus Removal Using A Coagulation System[J]. Process Biochemistry, 2005, 40(8): 2623-2627.
    [98] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (3rd edition)[M]. John Wiley & Sons, Inc. New York, 1996: 325-335.
    [99] DeMarco M J, SenGupta A K, Greenleaf J E. Arsenic Removal Using a Polymeric/inorganic Hybrid Sorbent[J]. Water Research, 2003, 37(1): 164–176.
    [100]王立立,张娜,胡勇有.生活污水化学强化混凝除磷试验研究[J].工业水处理, 2006, 26(3): 26-30.
    [101] Galarneau E, Gehr R. Phosphorus Removal from Wastewaters: Experimental and Theoretical Support for Alternative Mechanisms[J]. Water Research, 1997, 31(2): 328-338.
    [102] Davis C C. Aqueous Silica in the Environment: Effects on Iron Hydroxide Surface Chemistry and Implications for Natural and Engineered Systems[D]. Virginia: M.S.Thesis of the Virginia Polytechnic Institute and State Univ- ersity, 2000: 64-65.
    [103] Taras, Michael J. Standard Methods for the Examination of Water and Waste- water[S]. American Public Health Association. Washington DC, 1989: 87-98.
    [104] George S, Steinberg S M, Hodge V. The Concentration, Apparent Molecular Weight and Chemical Reactivity of Silica from Groundwater in Southern Nevada[J]. Chemosphere, 2000, 40(1): 57-63.
    [105] P. J. Swedlund, J. G. Webster. Arsenic Removal from Geothermal Bore Waters: the Effect of Monosilicic Acid[C]. Taupo: Water-Rock Interaction Proceed- ings of 9th Unternational Sympossium, 1998: 947-950.
    [106] Meng X G, Letterman R D. Modeling Cadmium and Sulfate Adsorption on Fe(OH)3/SiO2 Mixed Oxides[J]. Water Research, 1996, 30(9): 2148-2154.
    [107] Ndiaye P I, Moulin P, Dominguez L, et al. Treatment of Silica Effluents: Ultrafiltration or Coagulation-decantation[J]. Journal of Hazardous Materials, 2004, 116(1-2): 75-81.
    [108] Lee M B, Suna C, SenGupta A K. Hybrid Anion Exchange for Trace Phosph- ate Removal from Water and Wastewater[J]. Water Research, 2007, 41(7): 1603-1613.
    [109] Robinson R B, Reed G D, Frazier B. Iron and Manganese Sequestration Facilities Using Sodium Silicate[J]. Journal AWWA, 1992, 84(2): 77-82.
    [110] McCafferty N D, Callow M E, Hoggett L, et al. Application of Method to Quantify Carbonate Precipitated on Granular Activated Carbon (GAC) Used in Potable Water Treatment[J]. Water Research, 2000, 34(8): 2199-2206.
    [111] Benedetti M F, Milne C J, Kinniburgh D G, et al. Metal Ion Binding to Humic Substances: Application of the Non-ideal Competitive Adsorption Model[J]. Environmental Science Technology, 1995, 29(2): 446-457.
    [112] Genz A, Kornmuller A, Jekel M. Advanced Phosphorus Removal from Mem-brane Filtrates by Adsorption on Activated Aluminium Oxide and Granulated Ferric Hydroxide[J]. Water Research, 2004, 38(16): 3523-3530.
    [113] Zachara J M, Glrvin D C, Schmidt R L, et al. Chromate Adsorption on Amorphous Iron Oxyhydroxide in the Presence of Major Groundwater Ions[J]. Environmental Science Technology, 1987, 21(6): 589-594.
    [114] Ge F, Shu H M, Dai Y Z. Removal of Bromide by Aluminium Chloride Coag- ulant in the Presence of Humic Acid[J]. Journal of Hazardous Materials, 2007, 147(1-2): 457-462.
    [115] Freese S D, Nozaic D J, Pryor M J, et al. Enhanced Coagulation: A Viable Option to a Advance Treatment Technologies in the South African Context[J]. Water Science and Technology: Water Supply, 2001, 1(1): 33-41.
    [116] Welsh P G. Influence of Dissolved Organic Carbon on the Speciation, Bioav- ailability and Toxicity of Metals to Aquatic Biota in Soft Water Lakes[J]. Dissertation Abstracts International B: Science and Engineering, 1998, 58(1 0): 4753-4762.
    [117] Wang G S, Kang S F, Yang H J, et al. Removal of Dissolved Natural Organic Matter from Source Water with Alum Coagulation[J]. Environmental Techn-ology, 2002, 23(12): 1415-1423.
    [118] Bell-Ajy K, Abbaszadegan M, Ibrahim E, et al. Conventional and Optimized Coagulation for NOM Removal[J]. Journal AWWA, 2000, 92(10): 44-58.
    [119] Porter J. OralIron Chelators: Prospects for Future Development[J]. European Journal of Haematology, 1989: 271-285.
    [120] Park S, Yoon T. The Effect of Iron Species and Mineral Particles on Adva- nced Oxidation Processes for the Removal of Humic Acids[J]. Desalination, 2008, 208(1-3): 181-191.
    [121] Schreyer J M, Ockerman L T. Stability of the Ferrate(VI) Ion in Aqueous Solution[J]. Analytical Chemistry, 1951, 23(9): 1312-1314.
    [122] Wagner W F, Gump J R, Hart E N. Factors Affecting the Stability of Aqueous Potassium Ferrate(VI) Solution[J]. Analytical Chemistry, 1952, 24(9): 1497-1498.
    [123] Sharma V K, Rendon R A, Millero F J, et al. Oxidation of Thioacetamide by Ferrate (VI)[J]. Marine Chemistry, 2000, 70(1-3): 235-242.
    [124] Read J F, Bewick S A, Graves C R, et al. The Kinetics and Mechanism of the Oxidation of S-methyl-L-cysteine, L-cystine and L-cysteine by Potassium Ferrate[J]. Inorganica Chimica Acta, 2002, 303(2): 244-255.
    [125] Sharma V K, O'Connor D B, Cabelli D E. Sequential One-electron reduction of Fe(V) to Fe(III) by Cyanide in Alkaline Medium[J]. Journal of Physical Chemistry B, 2001, 105(46): 11529-11532.
    [126] AWWA. Research Foundation and Companie Generale des Fundamental Aspects. Ozone in Water Treatment: Application and Engineering[M]. Michi- gan, USA: LewisPublishers, 1991: 18-19.
    [127] Malik P K. Oxidation of Safranine T in Aqueous Solution Using Feton’s Reagent: Involvement of an Fe(III) Chelate in the Catalytic Hydrogen Peroxide Oxidation of Safranine[J]. Journal of Physical Chemistry A, 2004, 108(14): 2675-2681.
    [128] Yamazaki I, Piette L H. EPR Spin Trapping Study on the Oxidizing Species Formed in the Reaction of the Ferrous Ion with Hydrogen Peroxide[J]. Journal of American Chemical Society, 1991, 113(20): 7588-7593.
    [129] Koppenol W H, Liebman J F. The Oxidizing Nature of the Hydroxyl Radical. A Comparison with the Ferryl Ion (FeO2+)[J]. Journal of Physical Chemistry, 1984, 88(1): 99-101.
    [130]胡鸿飞,朱胜友,蒋祉刚,等.微碱性介质中空气氧化法制备超细α-FeOOH的动力学[J].钢铁钒钛, 1999, 20(4): 47-49.
    [131] Borgnino L, Giacomelli C E, Avena M J, et al. Phosphate Adsorbed on Fe(III) Modified Montmorillonite: Surface Complexation Studied by ATR-FTIR Spectroscopy[J]. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2010, 353(2-3): 238-244.
    [132] Luengo C, Brigante M, Antelo J, et al. Kinetic of Phosphate Adsorption on Goethite: Comparing Batch Adsorption and ATR-IR Measurements[J]. Jour- nal of Colloid Interface Science, 2006, 300(2): 511-518.
    [133] Hiemstra T, Van Riemsdijk W H. Surface Structural Ion Adsorption Modeling of Competitive Binding of Oxyanions by Metal (Hydr)oxides[J]. Journal of Colloid and Interface Science, 1999, 210(1): 182-193.
    [134] Zhu M X, Ding K Y, Xu S H, et al. Adsorption of Phosphate on Hydroxy aluminum- and Hydroxyiron-montmorillonite Complexes[J]. Journal of Haza-rdous Materials, 2008, 165(1-3): 645-651.
    [135] Elzinga E J, Sparks D L. Phosphate Adsorption onto Hematite: An in Situ ATR-FTIR Investigation of the Effects of pH and Loading Level on the Mode of Phosphate Surface Complexation[J]. Journal of Colloid and Interface Science, 2007, 308(1): 53-70.
    [136] Antelo J, Arce F, Avena M, et al. Adsorption of a Soilhumic Acid at the Sur- face of Goethite and Its Competitive Interaction with Phosphate[J]. Geoderma, 2007, 138(1-2): 12-19.
    [137] Yuan Z Y, Su B L. Surfactant-assisted Nanoparticle Assembly of Mesoporousβ-FeOOH[J]. Chemical and Physics Letters, 2003, 381(5-6): 710-714.
    [138] Misawa T, Hashimoto T, Shimodaira S. The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature[J]. Corrosion Science, 1974, 14(2): 131-149.
    [139] Santos A, Yustos P, Quintanilla A, et al. Route of the Catalytic Oxidation of Phenol in Aqueous Phase[J]. Applied Catalysis B: Environmental, 2002, 39(2): 97-113.
    [140] Mazellier P, Leverd J. Transformation of 4-tert-octyphenol by UV Irradiation and by an H2O2/UV Process in Aqueous Solution[J]. Photochemical and Photobiological science, 2003, 2(9): 946-953.
    [141] Neamtu M, Frimmel F H. Degradation of Endocrine Disrupting Bisphenol A by 254nm Irradiation in Different Water Matrices and Effect on Yeast Cells[J]. Water Research, 2006, 40(20): 3745-3750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700