用户名: 密码: 验证码:
AZ91D镁合金微弧氧化工艺及成膜行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于密度小、易于加工及力学性能优异,镁合金在航空、航天、军工、交通工具、生物医学、电子产品等领域应用前景广阔。不过,镁合金化学稳定性差,在大气环境中能和氧、水及氯盐等发生反应而导致锈蚀损坏现象,限制了其实际应用,尤其是在腐蚀性环境中。因此,提高镁合金的耐腐蚀性已经成为该领域重要的研究方向之一。
     本论文概述了镁合金的特点、应用、腐蚀原因及防护技术,并结合当今镁合金表面防护技术的发展趋势,在课题组前期工作的基础上开展了绿色环保型镁合金微弧氧化工艺开发、电解液添加剂作用机制和表面微弧氧化处理镁合金在模拟体液中的腐蚀行为等研究,主要包括以下内容:
     1.苯甲酸盐添加剂对AZ91D镁合金微弧氧化过程及氧化膜性能的影响。分别采用苯甲酸钠和邻苯二甲酸氢钾为添加剂,在碱性硼酸盐电解液中进行镁合金的微弧氧化研究。利用电流瞬变曲线和反应现象观察研究了苯甲酸盐参与下AZ91D镁合金的微弧氧化过程;利用场发射扫描电镜(SEM)、能谱(EDS)、X射线衍射(XRD)、极化曲线(Tafel)和电化学阻抗(EIS)等研究了苯甲酸盐对镁合金微弧氧化膜的形貌、组成和耐腐蚀性能的影响。结果表明,在加入苯甲酸钠或邻苯二甲酸氢钾后,微弧氧化电流密度降低,弧光放电剧烈程度减弱、气体逸出现象受到抑制,氧化反应变得相对温和。微弧氧化膜的质量也有明显改善。氧化膜表面孔洞的尺寸减小,表面裂纹消失,膜层变得更加平滑、致密,耐腐蚀性提高。
     2.苯甲酸盐添加剂对微弧氧化过程的影响行为研究。研究了碱性硼酸盐电解液中苯甲酸盐添加剂对AZ91D镁合金阳极氧化阶段和微弧氧化阶段的影响。利用EIS研究了苯甲酸盐在镁合金表面的吸附行为。利用SEM和起弧电压测试研究了苯甲酸盐对阳极氧化阶段和微弧氧化阶段的影响。利用电流瞬变曲线和反应现象观察研究了苯甲酸盐参与下AZ91D镁合金的微弧氧化过程。结果表明,苯甲酸盐在碱性硼酸盐电解液中的吸附行为符合Temkin吸附等温式,吸附过程为自发过程。苯甲酸盐主要影响镁合金的阳极氧化过程。在苯甲酸盐参与下,阳极氧化阶段得到的膜层更加均匀、致密,电阻率也高;均匀、致密及高电阻率的膜层使微弧氧化阶段电流密度降低,弧光等离子体放电剧烈程度减弱,氧化反应变得相对温和。在相对温和的条件下,火花放电变得细小均匀,气体逸出减少,放电和气体通道尺寸变小,表面烧蚀现象消失,制得氧化膜的结构更加平滑致密,其耐腐蚀性也更好。
     3.微弧氧化处理AZ91D镁合金在模拟体液中的腐蚀行为。以苯甲酸盐为添加剂,在生物安全型碱性硼酸盐电解液中对AZ91D镁合金进行微弧氧化处理,并对该处理过的镁合金在模拟体液中的耐腐蚀性进行了研究。结果表明,经微弧氧化处理后,镁合金表面生成了晶态方镁石型的致密均匀氧化膜。由于该氧化膜中不含Cr6+,F-和Mn2+等生物有害离子,作为医学植入材料更加安全可靠。利用浸泡失重实验、pH检测、电化学极化曲线和EIS等研究了微弧氧化处理镁合金的耐腐蚀性,并与未经处理镁合金进行了对比。结果表明,微弧氧化处理镁合金在模拟体液中具有优良的耐腐蚀性能。浸泡实验表明,微弧氧化处理镁合金在模拟体液中的失重速率远小于未经处理镁合金,浸泡造成的模拟体液pH的变化也小于未经处理镁合金,显示了其具有更好耐久性和生物相容性。
     总之,本论文结合镁合金表面防护技术的研究现状,以发展新型绿色环保型微弧氧化工艺为目标,分别研究了苯甲酸盐添加剂对镁合金微弧氧化过程及微弧氧化膜性能的影响,苯甲酸盐添加剂对微弧氧化过程的影响机理和微弧氧化处理AZ91D镁合金在模拟体液中的腐蚀行为,在新工艺开发、机理研究和材料应用和评价等方面做了一些探索性工作,取得了一定的进展。
Because of its specific advantages such as low density, easy machining and excellent mechanical property, magnesium alloy is believed to be highly practicable in airline industry, aerospace industry, war industry, transportation industry, biomedical research, electronic industry and so on. However, the poor corrosion resistance of magnesium alloy hinders its further applications for it can be eroded easily by oxygen, water and salt in the open air. Therefore, improving the corrosion resistance of magnesium alloy has become an important research topic in this field.
     This paper outlines the characteristics, application, corrosion and protection of magnesium alloy. Based on the development tendency of protection technologies for magnesium alloy and the precious work of our laboratory, environmental microarc oxidation (MAO) technology of AZ91D magnesium alloy, the working mechanism of benzoate additive and the corrosion behavior of MAO film in simulated body fluid were studied in this thesis. The followings are the main points:
     1. An environmental friendly alkaline borate electrolyte using benzoate (sodium benzoate (NaBz), or potassium acid phathalate (KAP) additive was developed. The effects of NaBz and KAP on the MAO process and the properties of the MAO film were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy (EIS), respectively. The results showed that in the presence of benzoate, violent sparking and gas release were restrained, and a moderate MAO condition was obtained. The quality of the MAO film was greatly improved. The size of the pores was reduced, the micro-cracks on the MAO film were eliminated, and the MAO film with compact structure and smoothing appearance was produced. Electrochemical testing results showed the obtained MAO film was excellent in corrosion resistance.
     2. The working mechanism of benzoate additive was approached. The effect of benzoate in the alkaline borate electrolyte on the anodic process and MAO process was investigated. The adsorption behavior of benzoate on the surface of AZ91D magnesium alloy was studied by EIS. The oxidation process of AZ91D magnesium alloy was studied by current density transient curves and phenomenon observation. The results indicated that the adsorption of benzoate on the surface of AZ91D magnesium alloy was spontaneous and followed the Temkin adsorption rule. Benzoate affected the anodic process of magnesium alloy. In the presence of benzoate. a kind of oxidation film with denser and uniformer structure was prepared and it had higher electrical resistivity. Due to the denser, smoother structure and the higher electrical resistivity, the current density in MAO stage was reduced and the sparking became fine and homogeneous. Gas evolution was also restrained. At this moderate MAO condition, the channels of sparking and gas became smaller, ablation phenomenon was eliminated and the oxidation film with dense structure and high corrosion resistance was formed.
     3. The corrosion resistance of the MAO treated magnesium alloy in the simulated body fluid (SBF) was studied. AZ91D magnesium alloy was treated by MAO in alkaline borate electrolyte with benzoate additive. Its corrosion resistance was investigated by SEM, XRD, EDS, Tafel, EIS and immersion test. The results showed that the prepared MAO film did not contain Cr6+, F", Mn2+ and other harmful chemicals and was safe as medical implant material. The MAO treated magnesium alloy was stable in SBF. Immersion test showed the weight loss, the average corrosion rate and the pH variation of the MAO treated magnesium alloy were far lower than that of the untreated ones, suggesting better durability and biocompatibility.
     In short, environmental friendly MAO process, the working mechanism of additive and the corrosion resistance of the MAO treated magnesium alloy in SBF were studied in this thesis. These probing works may provide new insights for the development of new MAO process, working mechanism of additive and application of magnesium alloy for medical purpose.
引文
[1]宋光玲.镁合金腐蚀与防护.北京:化学工业出版社,2006,1-7.
    [2]陈振华.变形镁合金.北京:化学工业出版社,2004,2-5.
    [3]Bakkar A, Neubert V. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PⅢ). Corrosion Sci.,2005,47(5):121-125.
    [4]Huttunen-Saarivirta E. Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys:a review. J. Alloy. Compd.,2004,363(1-2): 154-178.
    [5]Jiang Q C, Wang H Y, Ma B X, Wang Y, Zhao F. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloy. Compd., 2005,386(1-2):177-181.
    [6]Wang M X, Hong Z, Lin W. Effect of yttrium and cerium addition on microstructure and mechanical properties of AM50 magnesium alloy. J. Rare Earths, 2007; 25(2):233-237.
    [7]Mcintyre N S, Chen C. Role of impurities on Mg surfaces under ambient exposure conditions. Corrosion Sci.,1998,40(10):1697-1709.
    [8]蒋青.材料科学与工程导论.长春:吉林科学技术出版社,1999,177-345.
    [9]潘明强,迟关心,韦东波,狄士春.我国铝/镁合金微弧氧化技术的研究及应用现状.材料保护,2010,43(4):10-14.
    [10]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004,1-3.
    [11]Baril G, Pebere N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corrosion Sci.,2001,43(3):471-484.
    [12]Chang C H, Lee S L, Lin J C, Ming S Y, Jeng R R. Effect of Ag content and heat treatment on the stress corrosion cracking of Al-4.6Cu-0.3Mg alloy. Mater. Chem. Phys,2005,91(2-3):454-462.
    [13]张倩倩,曹占义,刘勇兵.铝含量对应变诱发法半固态镁合金的影响.材料热处理学报,2010,31(4):24-28.
    [14]朱祖芳.有色金属的耐腐蚀性及其应用.北京:化学工业出版社,1994.]4-15.
    [15]吉海宾,姚广春,刘乐天,祖国胤.钙在镁合金熔炼中的阻燃机理.东北大学学报,2009,30(4):571-574.
    [16]杨家灼,许春香,张学勇.Ca对ZA104镁合金显微组织和力学性能的影响.稀有金属材料与工程,2011,40(7):1165-1172.
    [17]孙晶,厉虹,郭全英,毛萍莉,刘正.钙对Mg-8%Al镁合金组织及性能的影响.沈阳工业大学学报,2011,33(2):125-128.
    [18]Yosuke T, Tetsuichi M. Effect of minor elements on grainsize of Mg-9%Al alloy. magnesium alloys. Mater. Sci. Forum,2000,350(3):199-203.
    [19]刘增会.Fe对AZ91镁合金热速处理组织和性能的影响.山东冶金,2006:28(3):64-65.
    [20]Fan J F. Effect of rare earths (Y, Ce) additions on the ignition points of magnesium alloys. J. Mate. Sci,2004.39(24):6375-6378.
    [21]黄晓梅,刘亮,王艳艳.镁锂合金的锰系磷化膜.材料科学与工艺,2010,18(5):680-684.
    [22]杨光昱,郝启堂,介万奇.镁锂系合金的研究现状.铸造技术,2004,25(1):19-21.
    [23]王玲,赵浩峰,孙磊,陈文龙,章帅,李庆芳,颜开,刘孟寅,朱学进.Mg-Mn合金在力学环境下的行为研究.铸造设备与工艺,2009,6:20-21.
    [24]赵浩峰,王玲,吴红颜.镁锰合金抗环境腐蚀性能的研究.轻合金加工技术,2009,37(2):47-48.
    [25]Wang J, Zhang D P, Fang D Q, Lu H Y, Tang D X, Zhang J H, Meng J. Effect of Y for enhanced age hardening response and me-chanical properties of Mg-Ho-Y-Zr alloys. J. Alloy. Compd.,2008,454(1-2):194-200.
    [26]张忠明,徐春杰,贾树卓,郭学锋.高硅含量镁铝硅合金的组织与力学性能.材料热处理学报,2009,18(5):680-684.
    [27]Makar G L, Kruger J. Corrosion of Magnesium. Int Mater Rev,1993, 38(3):138-153
    [28]黄晓锋,朱凯,曹喜娟,田载友,梁艳,王韬.锌对Mg-3%A1合金铸态显微组织和力学性能的影响.机械工程材料,2009,33(10):50-52.
    [29]范才河,陈刚.稀土在镁及镁合金中的作用.材料导报,2005,19(7):61-63.
    [30]田树科,郭学锋,崔红保,黄丹,王英.耐热镁合金的研究进展.铸造技术,2011,32(8):1174-1177.
    [31]张国英.镁合金高温强化、阻燃及腐蚀机理探究.沈阳师范大学学报,2011,29(3):335-342.
    [32]张景怀,唐定骧,张洪杰,王立民,王军,孟健.稀土元素在镁合金中的作用及其应用.稀有金属,2008,32(5):659-667.
    [33]丁文江,袁广银.新型镁合金的研究开发与应用.有色金属加工,2002,31(3):27-33.
    [34]王渠东,丁文江.镁合金研究开发现状与展望.世界有色金属,2004,7:8-11.
    [35]卢晨,卫中山.镁合金的研究与应用进展.汽车工艺与材料,2005,9:1-3.
    [36]Thomas J R, Darry L A. Magnesium castings for auto applications. Adv. Mater. Process,1994,145(6):28-35.
    [37]苏鸿英.镁合金的应用前景和局限性.世界有色金属,2011,2:69.
    [38]李平,万琦,DIN Rafi-ud,谢东辉,曲选辉.放电等离子烧结制备Mg-(2-x)Nd-xNi(x=0~0.3)储氢合金.北京科技大学学报,2011,33(8):986-994.
    [39]沈健,彭博,陶占良,陈军.镁二次电池正极材料和电解液研究.化学进展,2010,22(2/3):515-521.
    [40]Song G L, Stjohn D. Corrosion behaviour of magnesium in ethylene glycol. Corrosion Sci.,2004,46(6):1381-1399.
    [41]石春梅,曾小勤,常建卫,努丽燕娜,丁文江.镁二次电池的研究现状.电源技术,2010,34(9):975-978.
    [42]Gregory T, Hoffman R, Winterton R. Nonaqueous electrochemistry of magnesium. Electrochem Soc,1990,137(3):775-780.
    [43]Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Prototype system for rechargeable magnesium batteries. Nature,2000,407(6805):724-727.
    [44]慕伟意,李争显,杜继红,奚正平.镁电池的发展及应用.材料导报,2011,25(7):35-39.
    [45]杨维谦,杨少华,孙公权,辛勤.镁燃料电池的发展及应用.电源技术,2005,29(3):182-186.
    [46]王祝堂.镁在航空航天器上的应用历史和现状.世界有色金属,2010,9:68-69.
    [47]丁文江,付彭怀,彭立明,蒋海燕,王迎新,吴国华,董杰,郭兴伍.先进镁合金材料及其在航空航天领域中的应用.航天器环境工程,2011,28(2):103-109.
    [48]黄晓艳,刘波.轻合金是武器装备轻量化的首选金属材料.轻合金加工技术,2007,35(1):12-15.
    [49]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析.兵器材料科学与工程,2007,30(2):69-72.
    [50]马震宇,董铁良,吕海泉.薄壁结构镁合金耐水压舱体研究.兵器材料科学与工程,2011,34(3):27-30.
    [51]肖冰.康凤,胡传凯.舒大禹.黄树海,宁海青.国外轻质结构材料在国防工业中的应用.兵器材料科学与工程,2011.34(1):94-97.
    [52]杨永顺,郭俊卿,陈拂晓.镁合金汽车轮毂塑性成形研究.锻压技术,2011.36(4):20-22.
    [53]李力,王翠芳.镁合金汽车下壳体充型和凝固过程数值模拟.特种铸造及有色合金,2011,31(8):702-705.
    [54]赵琛,陈云霞,李中兵.轻量化材料镁合金在汽车上的应用.汽车工艺与材料,2011,7:54-57.
    [55]Perrault G G. Potentiostatic study of the magnesium electrode in aqueous solution. Electroanal. Chem. Interface. Electrochem,1970,27(1):47-58.
    [56]Abbas G, Liu Z, Skelon P. Corrosion behavior of laser-melted magnesium alloys. Appl. Sur. Sci,2005,247(1/4):347-353.
    [57]Rosalbino F, Angelini E, Denegri S. Effect of erbium addition on the corrosion behavior of Mg-Al alloys. Intermetallics,2005,13(1):55-60.
    [58]Cheng Y L, Wu H L, Chen H E, Zhen H, Wang H M, Li L L. Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings. Trans. Nonferrous Met. Soc. China,2006,16(5):1086-1091.
    [59]Shi Z M, Song G L, Aterns A. The corrosion performance of anodized magnesium alloys. Corrosion Sci.,2006,48(11):3531-3546.
    [60]李轶,程培元,华林.镁合金在汽车工业和3C产品中的应用.江西有色金属,2007,21(2):30-34.
    [61]郭磊,刘魁,张世亮,黄晶晶,谭丽丽,杨柯.氧化镁膜AZ31B镁合金材料的细胞毒性研究.稀有金属材料与工程,2008,37(6):1027-1231.
    [62]郭磊,刘魁,张世亮,高晓宇,黄晶晶,杨柯.CA-P/AZ31B镁合金的生物相溶性研究.稀有金属材料与工程,2009,38(1):99-103.
    [63]Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials,2008:29(10):1329-44.
    [64]Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review. J. Alloy. Compd.,2002,336(1-2):88-113.
    [65]韩欢庆,刘桂荣,褚征军,卢惠民.二硼化镁粉末的研究现状.粉末冶金工业,2005,15(1):39-42.
    [66]杨公安,蒲永平,王瑾菲,庄永勇,韦继锋.超导材料研究进展及其应用.陶瓷,2009,7:56-59.
    [67]舒华兵,王玮,刘楣.MgCNi3空穴(Na)掺杂的磁性和声子谱研究.低温物理学报,2010,32(4):262-268.
    [68]魏桂丹,孙爱民,平学琦,马金元,郑龙.C、Cu掺杂对MgB2超导电性的影响.低温物理学报,2010,32(4):317-320.
    [69]Ma Z Q, Liu Y C, Shi Q Z, Zhao Z, Gao M. Variation of the enhancement mechanism in the critical current density of Cu-doped MgB2 samples sintered at different temperatures. Appl. Phys,2008,104(6):063917-1-063917-2
    [70]刘长瑞,韩莉,王庆娟,杜忠泽.镁含量对铝阳极材料组织和电化学性能的影响.轻合金加工技术,2007,35(4):40-42.
    [71]丁振斌,孔小东,朱梅五.不同镁含量铝基牺牲阳极材料的组织与性能研究.材料保护,2004,37(5):50-52.
    [72]Song G, Atrens A, Stjohn D, Nairn J, Yi L. The electrochemical corrosion of pure magnesium in 1NNaCl. Corrosion Sci.,1997,39(5):855-875.
    [73]Strehblow H H, Doherty C J. Examination of aluminum copper films during anodic oxidation I.Corrosion studies. J Electrochem Soc,1978,125(1):30-33.
    [74]Khaselev O, Weiss D, Yahalom J. Anodizing of pure magnesium in KOH-Aluminate solutions under sparking. J. Electrochem. Soc,1999,146(5): 1757-1763.
    [75]Zhang L J, Fan J J, Zhang Z, Cao F H, Zhang J Q, Cao C N. Study on the anodic film formation process of AZ91D magnesium alloy. Electrochim. Acta,2007,52(17): 5325-5333.
    [76]Weijde-der-van D H, Westing-van E P M, Wit-de J H W. Electrochemical techniques for delamination studies. Corrosion Sci.,1994,36(4):643-652.
    [77]Hunkovic M M, Barbic R, Grubac Z. Pitting corrosion of Al2O24-T3 in sodium chloride solution. J. Appl. Electrochem,1994,24(8):772-778.
    [78]Zhang Y J, Yan C W, Wang F H, Li W F. Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution. Corrosion Sci.,2005, 47(11):2816-2831.
    [79]Altun H, Sen S. The effect of DC magnetron sputtering A1N coatings on the corrosion behaviour of magnesium alloys. Surf. Coat. Technol,2005,197(2/3): 193-200.
    [80]Ono S, Asami K, Osaka T. Structure of anodic films formed on magnesium. J Electrochem Soc,1996,143(3):L62-L63.
    [81]Khaselev O, Yahalom J. Constant Voltage Anodizing of Mg-Al Alloys in KOH-Al(OH)3 solutions. J. Electrochem. Soc,1998,145(1):190-196.
    [82]Pebere N, Riera C, Dabosi F. Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy. Electrochim. Acta,1990,35(2):555-561.
    [83]陈崇木,崔宇,张涛,邵亚薇,孟国哲,王福会,李晓刚,董超芳.电化学方法研究纯镁在薄液膜下的腐蚀行为Ⅰ-O2对纯镁在薄液膜下腐蚀行为的影响.腐蚀科学与防护技术,2009,21(2):94-96.
    [84]林翠,李晓刚.AZ91D镁合金在含SO2大气环境中的初期腐蚀行为.中国有色金属学报,2004,14(10):1658-1665.
    [85]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002,45-47.
    [86]赵明坚,蔡超.纯镁在中性1.0 mass% NaCl溶液中的腐蚀行为研究.腐蚀科学与防护技术,2009,21(2):101-103.
    [87]贾瑞灵,严川伟,王福会.NaCl污染条件下β相对镁-铝合金大气腐蚀行为的影响.腐蚀科学与防护技术,2010,22(4):266-270.
    [88]Lin C S, Lin H C, Lin K M. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys. Corrosion Sci.,2006,48(1):93-109.
    [89]Zhang R F, Shan D Y, Hane H. Status and prospect of anodization on magnesium and its alloys. Trans. Nonferrous Met. Soc. China,2006,16(11):1136-1148.
    [90]Hinton B R W, Arnott D R. The characterist ics of corrosion inhibiting films formed in the presence of rare earth cations. Micro structural Sci,1989,17:311-320.
    [91]王志峰,丁俭,李永艳,赵维民.稀土元素Ce. Nd对AZ91镁合金显微组织、显微硬度及起燃温度的影响.中国铸造装备与技术,2011,4:8-11.
    [92]张虎,张代东,于学花,宫长伟,姚倩倩.稀土相对AZ61镁合金力学性能的影响.机械工程与自动化,2011,167(4):94-96.
    [93]王瑞权,陈云祥,贺睿,武慧慧.La对AZ81镁合金p相组织及腐蚀性能的影响.铸造技术,2011,32(5):673-675.
    [94]李华基,刘志良.加入混合稀土后ZM5镁合金的耐腐蚀性能.机械工程材料,2011,35(4):76-78.
    [95]李琮,李明照,王跃琪,许并社.Nd对挤压态AZ31镁合金耐腐蚀性能的影响.稀有金属材料与工程,2011,40(1):156-160.
    [96]马宏,彭晓东,谢卫东.稀土Y对镁合金显微组织及腐蚀性能的影响.腐蚀科学与防护技术,2011,23(3):223-227.
    [97]李华基,邓正华,饶劲松,黄锐,陈婧.混合稀土阻燃ZM5镁合金的氧化膜结构分析.特种铸造及有色合金,2009,29(1):5-7.
    [98]Chiu L H, Chen C C, Yang C F. Improvement of corrosion properties in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment. Surf. Coat. Technol,2005,191(2-3):181-187.
    [99]王鹏程,徐春杰,杨林,张忠明,郭学锋.快速凝固与普通凝固Mg-Zn-Y镁合金的耐腐蚀性能.铸造技术,2006,27(6):609-612.
    [100]薛寿昌.镁合金黑色化学转化膜工艺.电镀与精饰,2011,33(7):39-41.
    [101]曾荣昌,兰自栋,陈君,莫鲜花,韩恩厚.镁合金表面化学转化膜的研究进展.中国有色金属学报,2009,19(3):397-404.
    [102]张丹,熊金平,左禹.镁合金无铬化学转化工艺的研究进展.材料保护,2011,44(2):33-35.
    [103]Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater. Sci. Eng. A,2004,366(1):74-86.
    [104]Huo H W, Li Y, Wang F H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Sci.,2004,46(6): 1467-1477.
    [105]钟丽应,曹发和,施彦彦,文强,张昭,张鉴清.AZ91镁合金表面铈基稀土转化膜的制备及腐蚀电化学行为.金属学报,2008,44(8):975-985.
    [106]古锐,张新明,陈明安,易建龙.两种成膜促进剂对Mg-Gd-Y-Zr镁合金表面铈盐转化膜耐蚀性能的影响.腐蚀与防护,2009,30(11):839-842.
    [107]Petrova L M, Krasnoyaskii V V. Dissolution mechanisms for Magnesium-Lithium anodes in natural aqueous media. Protect. Met.,1987,23(3): 342-343.
    [108]王章忠,戴玉明,巴志新,谈玲华.镁合金锡酸盐化学转化表面处理工艺研究.金属热处理,2008,33(8):89-92.
    [109]刘晓兰,陈杰,曹靖涛,崔中雨,张涛,邵亚薇,孟国哲,王福会.载波钝化对AZ91D镁合金锡酸盐化学转化膜耐蚀性能的影响.中国腐蚀与防护学报,2010,30(5):341-345.
    [110]杨娜,夏兰廷,伊振斌.AZ31镁合金表面锡酸盐化学转化膜的研究.中国铸造装备与技术,2011,2:8-10.
    [111]夏兰廷,郭志丹,杨娜.AZ91D镁合金表面锰酸盐化学转化膜的研究.中国铸造装备与技术,2010,1:9-12.
    [112]周蕾玲,马立群,丁毅.添加剂对镁合金磷酸盐-高锰酸盐化学转化膜耐蚀性的影响.轻合金加工技术,2010,38(3):47-51.
    [113]蒋永锋,周海涛,曾苏民.镁合金表面草酸盐化学转化膜的性能研究.电镀与涂饰,2009,28(11):26-28.
    [114]Kakizaki, Masahiko. Process for surface2t reating body made of metal and composition of matter produced thereby. US:6136381,1999.
    [115]高丽丽,张春红,张密林,黄晓梅,江溪,王兴璞.镁锂合金无铬植酸化学转化膜研究.功能材料,2008,39(7):1134-1137.
    [116]徐桂英,王凤平,丁言伟,于伟,刘照斌.AZ91D镁合金在含植酸NaCl溶液中的腐蚀行为.辽宁师范大学学报,2009,32(3):332-335.
    [117]陈东初,吴建峰,龚伟慧,李文芳,徐东明.AZ91D镁合金表面植酸转化膜的正交实验优化研究.兵器材料科学与工程,2009,32(2):1-7.
    [118]王燕华,钟莲,刘圆圆,姜泉良,郭向阳,王佳.镁基体超疏水表面制备及 表征.腐蚀科学与防护技术,2010,22(4):329-332.
    [119]Kouisni L, Azzi M. Zertoubi M. Phosphate coatings on magnesium alloy AM60 part 1:study of the formation and the growth of zinc phosphate films. Surf. Coat. Tech,2004,185(1):58-67.
    [120]黄荣,陈明安,路学斌.AZ31镁合金表面聚吡咯的化学氧化合成及其耐蚀性能.物理化学学报,2011,27(1):113-119.
    [121]贾素秋,于淑敏,苏一多.以硫酸镍为主盐的AZ91D镁合金化学镀镍研究.特种铸造及有色合金,2009,29(12):1102-1104.
    [122]Zhao M, Wu S S, Luo R J. A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution. Surf. Coat. Tech,2006,200(18-19): 5407-5412.
    [123]沟引宁,黄伟九,朱翊.AZ91D镁合金表面化学镀Ni-P-SiC复合镀层的结构与性能.机械工程材料,2011,35(3):68-70.
    [124]慕伟意,李争显,杜继红,奚正平.镁合金的应用及其表面处理研究进展.表面技术,2011,40(2):86-91.
    [125]Sato F, Asakawa Y. Corrosion behavior of magnesium alloy AZ91D anodized in aluminum sulfate added solution. J. Jpn. I. Met,1994,44(2):104-109.
    [126]Saijo A, Hino M, Hiramatsu M. Environmental friendly anodizing on AZ91D magnesium alloys and coating characteristics. Acta Metall. Sin,2005,18(3):411-415.
    [127]Blawert C, Dietzel W, Ghali E, Song G. Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments. Adv. Eng. Mater,2006,8(6):511-533.
    [128]Kurze P. Method of Producing Articles of aluminum, magnesium or titanium with an oxide ceramic layer filled with fluorine polymers. US:5487825,1996.
    [129]Kurze P. Method of producing oxide ceramic layers on barrier layer-Forming metals and articles produced by the Method. US:5385662,1995.
    [130]李宝东.镁合金铸件表面处理现状.材料保护,2002,35(4):1-3.
    [131]Krymann W, Kurze P, Dittrich K H. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF). Cryst. Res. Technol,1984,19(7): 973-979.
    [132]Dittrich K. H, Krysmann W. Kurze P, Schneider H G. Structure and properties of ANOF layers. Cryst. Res. Technol,1984,19(1):93-99.
    [133]李泽,马跃洲,陈明,王巧霞.过电压对镁合金微弧氧化膜层性能的影响.热加工工艺,2009,38(20):94-96.
    [134]王蕊,马跃洲,陈明,田庆涛.不同电压下镁合金的微弧氧化行为.腐蚀与防护,2011,32(5):363-365.
    [135]马颖,王宇顺,王劲松,董海荣,郭惠霞.不同电压下Cr03对镁合金微弧氧化膜的影响.兰州理工大学学报,2011,37(4):1-5.
    [136]刘俊超,朱彦海,唐明奇,李卫平,朱立群.电参数对铝合金微弧氧化涂层生长特性的影响.表面技术,2011,40(3):71-74.
    [137]陈明,马跃洲,马颖,郝远.电压增幅对镁合金微弧氧化膜层性能的影响.稀有金属材料与工程,2010,39(11):1943-1947.
    [138]赵晴,章志友,陈宁.终止电压对MB8镁合金微弧氧化膜耐蚀性的影响.表面技术,2007,36(4):4-6.
    [139]蒋百灵.铝合金微弧氧化陶瓷层组织结构与性能的研究.中国机械工程,2001,12(3):23-26.
    [140]唐培松.铝合金表面微弧氧化工艺条件研究.昆明.昆明理工大学.2001.72-103.
    [141]Shi Z M, Song G L, Atrens A. Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corrosion Sci.,2006,48(4): 1939-1959.
    [142]沈德久,廖波,王玉林.影响铝微弧氧化陶瓷层电绝缘性的工艺因素探讨.材料开发与应用,2002,17(4):22-23.
    [143]卢立红,沈德久,王玉林.微弧氧化陶瓷膜层的性能及应用.材料保护,2001,34(1):17-18.
    [144]吴国建.镁合金微弧氧化膜层制备技术及其耐蚀性研究.西安.西安理工大学,2002.68-78.
    [145]郭洪飞,安茂忠,徐莘,霍慧彬.电流密度对镁合金微弧氧化过程及氧化陶瓷膜性能的影响.稀有金属材料与工程,2005,34(10):1554-1557.
    [146]吕维玲,陈体军,马颖,徐卫军,王伟,郝远.AZ91D镁合金恒定小电流密度微弧氧化工艺.中国有色金属学报,2008,18(9):1590-1595.
    [147]刘忠德,向正群,张中元,孙茂坚,付华.电流密度对钛合金微弧氧化膜的影响.轻金属,2008,1:48-51.
    [148]蒋百灵,张淑芬.氧化镁陶瓷层的组织结构及耐蚀性能.西安理工大学学报,2000,16(4):327-329.
    [149]卢立红,沈德久,王玉林.微弧氧化陶瓷膜层的性能及应用.材料保护,2001,34(1):17-18.
    [150]王海庆,马立群,丁毅.脉冲频率对阳极氧化膜耐蚀性的影响.轻合金加工技术,2009,37(2):42-44.
    [151]郭雪锋,彭光怀,张小联,胡珊玲.脉冲频率及占空比对稀土镁合金微弧氧化膜的影响.赣南师范学院学报,2009,6:58-60.
    [152]Fukuda H, Matsumoto Y. Effects of Na2SiO3 on anodization of Mg-Al-Zn alloy in 3 M KOH solution. Corrosion Sci.,2004,46(9):2135-2142.
    [153]Duan H P, Yan Ch W, Wang F H. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim. Acta,2007,52(11):3785-3793.
    [154]张荣发.镁合金阳极氧化与电偶腐蚀的研究.沈阳,中国科学院沈阳金属研究所,2005:1-30.
    [155]Gulbrandsen E. Anodic behaviour of Mg in HCO3-/CO32-buffer solutions quasi-steady measurements. Electrochim. Acta,1992,37(8):1403-1412.
    [156]钱建刚,李荻,王学力,郭宝兰.硅酸钠浓度对镁合金阳极化的影响.材料科学与工艺,2006,14(1):275-279.
    [157]Cao F H, Lin L G, Zhang Z, Zhang J Q, Cao C N. Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance. Trans. Nonferrous Met. Soc. China,2008,18(2):240-247.
    [158]惠华英,余刚,叶立元.环保型镁合金阳极氧化工艺的研究.电镀与环保,2005,25(6):34-38.
    [159]Li Y C, Xia Y, Zhi H Y, Yun Y W, Masazumi O. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking. Corrosion Sci., 2008.50(12):3274-3279.
    [160]Hsiao H Y, Tsai W T. Characterization of anodic films formed on AZ91D magnesium alloy. Surf. Coat. Tech,2005,190(2-3):299-308.
    [161]郝建民,陈宏,张荣军,蒋百灵.镁合金微弧氧化陶瓷层的耐蚀性.中国有色金属学报,2003,13(4):988-991.
    [162]Cao F H, Cao J L, Zhang Z, Zhang J Q, Cao C N. Plasma electrolytic oxidation of AZ91 D magnesium alloy with different additives and its corrosion behavior. Mater. Corros,2007,58(9):696-702.
    [163]Wen Q, Cao F H, Shi Y Y Zhang Z. The effect of phosphate on MAO of AZ91 D magnesium using AC power source. Mater. Corros,2008,59(10):819-824.
    [164]李建中,邵忠财,田彦文,翟玉春,郝清伟.不同含磷电解液在微弧氧化过程中的作用.中国腐蚀与防护学报,2004,24(4):222-225.
    [165]Wang L S, Cai Q Z, Wei B K. Analysis of rolls deflection of Sendzimir mill by 3D FEM. T. Trans. Nonferrous Met. Soc. China,2005,15(3):600-605.
    [166]Barton B F, Johnson C B. The effect of electrolyte on the anodized finish of a magnesium alloy. Plat. Surf. Finish,1995,82(5):138-141.
    [167]郭洪飞,安茂忠,霍慧彬,徐羊.电解液组成对AZ91D镁合金微弧氧化的影响.材料科学与工艺,2006,14(2):116-119.
    [168]Li W, Li C, Zong C Y, Hong L W, Jia Z P. Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. J. Alloy. Compd.,2009,480(2):469-474.
    [169]钱建刚,李获,王学力,郭宝兰.硼酸钠浓度对镁合金阳极化的影响.中国腐蚀与防护学报,2005,25(5):275-278.
    [170]Wu C S, Zhang Z, Cao C N. Study on anodizing of AZ31 magnesium alloys in alkaline borate solutions. Appl. Surf. Sci,2007,253(8):3893-3898.
    [171]Barton T F, Johnson C B. The effect of electrolyte on the anodized finish of a magnesium alloy. Plat. Surf. Finish,1995,82(5):138-141.
    [172]Barton T F. Anodization of magnesium based alloys. US:5792335.1998.
    [173]丁玉荣,郭兴伍,丁文江,朱燕萍.三乙醇胺对镁合金氧化膜层性能和微 观结构的影响.表面技术,2005,34(1):14-16.
    [174]罗胜联,张涛,周海晖,陈劲松,陈金华,旷亚非.有机胺对镁合金阳极氧化的影响.中国有色金属学报.2004,14(4):691-696.
    [175]欧爱良,余刚,胡波年,何晓梅,张俊,易海波,陈云.三乙醇胺在镁合金阳极氧化中的作用.化工学报,2009,60(8):2019-2013.
    [176]Wu D, Liu X D, Lu K, Zhang Y P, Wang H. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface. Appl. Surf. Sci,2009,255(16): 7115-7120.
    [177]于霞.镁合金AZ31环保型阳极氧化工艺及基础理论研究.长沙.2006.中南大学,45-46.
    [178]Zhang R F, Zhang S F, Duo S W. Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys. Appl. Surf. Sci, 2009,255(18):7893-7897.
    [179]Allen B, Chen Z J. Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D. Surf. Coat. Tech,2009, 203(14):1956-1963.
    [180]Guo X H, An M Z, Yang P X, Li H X, Su C N. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte. J. Alloy. Compd.,2009,482(1-2):487-497.
    [181]Luo H H, Cai Q Z, Wei B K, Yu B, He J, Li D J. Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation. J. Alloy. Compd.,2009,474(1-2):551-556.
    [182]骆海贺.AZ91D镁合金微弧氧化ZrO2-Y2O3复合陶瓷膜层的制备、表征及性能研究.武汉.华中科技大学.2009.94-95.
    [183]张莉娜.镁合金微弧氧化锆盐溶液体系的工艺及耐蚀性研究.西安.长安大学.2009.26-27.
    [184]Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson G E, Merino M C. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles. Appl. Surf. Sci,2008,254(21):6937-6942.
    [185]贺子凯.铝合金微弧氧化生成陶瓷膜的研究.昆明理工大学学报,2001,26(1):17-20.
    [186]卢立红,沈德久,王玉林.工艺参数对铸造铝-硅合金微弧氧化层特性的影响.电镀与精饰,2001,23(1):32-34.
    [187]吕维玲,马颖,陈体军,徐卫军,杨健,郝远.氧化时间对AZ91D镁合金微弧氧化膜微观组织和性能的影响.中国有色金属学报,2009,19(8):1385-1391.
    [188]马跃洲,马凤杰,陈明,陈海涛.电解液温度对镁合金微弧氧化成膜过程的影响.兰州理工大学学报,2008,34(3):25-28.
    [189]庞国星,李忠磊,陈志勇,黄胜洲.硬铝合金硬质阳极氧化中电解液温度对膜层性能的影响.材料保护,2011,44(4):41-41.
    [190]蒋奎胜,唐幸明,赵旭辉,左禹.电流密度对AZ91D镁合金阳极氧化膜表面形貌及粘接性能的影响.材料研究学报,2010,24(3):305-310.
    [191]赵晖,朱其柱,金光,易赞.负向电流密度对镁合金微弧氧化电压及陶瓷膜的影响.特种铸造及有色合金,2010,30(9):800-803.
    [1]Zhang L J, Fan J J, Zhang Z, Cao F H, Zhang J Q, Cao C N. Study on the anodic film formation process of AZ91D magnesium alloy. Electrochim. Acta,2007, 52(17):5325-5333.
    [2]Wu C S, Zhang Z, Cao F H, Zhang L J, Zhang J Q, Cao C N. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Appl. Surf. Sci, 2007,253(8):3893-3898.
    [3]王峰.模拟体液法合成HA纳米晶须的工艺、相关机理及性能研究.山东.山东大学.2005.27-28.
    [4]宋光玲.镁合金的腐蚀与防护.北京:化学工业出版社.2006,199.
    [1]Wang J Q, Ding Z L, Qi F J, Zhu H, Fan Y C. Effects of antimony addition on the microstructures of ZA84 magnesium alloy. J. Alloy. Compd.,2010,507(1):322-325.
    [2]Liang J, Bala-Srinivasan P, Blawert C, Dietzel W. Influence of chloride ion concentration on the electrochemical corrosionbehaviour of plasma electrolytic oxidation coated AM50 magnesium alloy. Electrochim. Acta,2010,55(22): 6802-6811.
    [3]Chang L M. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. J. Alloy. Compd.,2009,468(1-2):462-465
    [4]Inoue H, Sugahara K, Yamamoto A, Tsubakino H. Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corrosion Sci.,2002,44(3):603-610.
    [5]Huttunen-Saarivirta E, Kuokkala V T, Kokkonen J, Paajanen H. Corrosion effects of runway de-icing chemicals on aircraft alloys and coatings. Mater. Chem. Phys, 2011,126(1-2):138-151.
    [6]Song Y W, Shan D Y, Chen R S, Zhang F, Han E H. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater. Sci. Eng., C,2009, C29(3): 1039-1045.
    [7]Hsiao H Y, Tsung H C, Tsai W T. Anodization of AZ91D magnesium alloy in silicate-containing electrolytes. Surf. Coat. Techol,2005,199(2-3):127-134.
    [8]Wang L, Shinohar T, Zhang B P. Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium. J. Alloy. Compd.,2010,496(1-2): 500-507.
    [9]Merino M C, Pardo A, Arrabal R, Merinob S, Casajus P, Mohedano M. Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog. Corrosion Sci.,2010.52 (5):1696-1704.
    [10]Jonsson M. Persson D. Leygraf C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D. Corrosion Sci., 2008,50 (5):1406-1413.
    [11]Banczek E P, Zarpelon L M, Faria R N, Costa I. Corrosion resistance and micro structure characterization of rare-earth-transition metal-aluminum-magnesium alloys. J. Alloy. Compd.,2009,479 (1-2):342-347.
    [12]Kirkland N T, Lespagnol J, Birbilis N, Staiger M P. Survey of bio-corrosion rates of magnesium alloys. Corrosion Sci.,2010,52 (2):287-291.
    [13]Timoshenko A V, MagurovaT-Yu V. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes. Surf. Coat. Tech,2005.199(2-3):135-140.
    [14]Zhou W Q, Shan D Y, Han E H. Structure and formation mechanism of phosphate conversion coatingon die-cast AZ91D magnesium alloy. Corrosion Sci., 2008,50(2):329-337.
    [15]Amart R, Zhou W. Electroless nicke-plating on AZ91D magnesium alloy: Effect of substrate microstructure and plating parameters. Surf. Coat. Technol,2004, 179(2-3):124-128.
    [16]Candan S, Unal M, Koc E, Turen Y, Candan E. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. J. Alloy. Compd., 2011,509(5):1958-1963.
    [17]吴昌胜,卢政明,蒋伟华.环保型AZ31镁合金微弧阳极氧化工艺的研究.材料保护,2008,41(11):31-33.
    [18]王艳,秋吴昆,郑明毅.SiC/AZ91镁基复合材料的微弧氧化行为及涂层的耐腐蚀性能.金属学报,2007,43(6):631-636.
    [19]张永君,严川伟,楼翰一,王福会,曹楚南.镁及镁合金阳极氧化工艺综述.材料保护,2001,34(9):24-29.
    [20]Pinto R, Carmezima M J, Ferreira M G S, Montemor M F. Passive behavior of magnesium alloys (Mg-Zr) containing rare-earth elements in alkaline media. Electrochim. Acta,2010,55 (7):2482-2489.
    [21]Carboneras M, Hernandez L S,Valle-del J A, Garcia-Alonso M C, Escudero M L. Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium. J. Alloy Compd.,2010,496 (1-2):442-448.
    [22]Laleh M, Sabour Rouhaghdam A, Shahrabi T, Shanghi A. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloy Compd.,2010,496 (1-2):548-552.
    [23]Guo J, Wang L P, Liang J, Xue Q J, Yan F G. Tribological behavior of plasma electrolytic oxidation coating on magnesium alloy with oil lubrication at elevated temperatures. J. Alloy Compd.,2009,481(1-2):903-909.
    [24]Walsh F C, Low C T J, Wood R J K, Stevens K T, Archer J, Poeton A R, Ryder A. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans. Inst. Metal Finish,2009,87 (3): 122-135.
    [25]Sato F, Asakawa Y. Corrosion behavior of magnesium alloy AZ91D anodized in aluminum sulfate added solution. J. Jpn. I. Met,1994,44(2):104-109.
    [26]Saijo A, Hino M, Hiramatsu M. Environmental friendly anodizing on AZ91D magnesium alloys and coating characteristics. Acta Metall. Sin,2005,18(3):411-415.
    [27]Kurze P. Method of Producing Articles of aluminum, magnesium or titanium with an oxide ceramic layer filled with fluorine polymers. US:5487825,1996.
    [28]Kurze P. Method of producing oxide ceramic layers on barrier layer-Forming metals and articles produced by the Method. US:5385662,1995.
    [29]边风刚,李国禄,刘金海,刘家浚.镁重金属铬在水环境中的迁移转化规律及其污染防治措施合金铸件表面处理现状.材料保护,2002,35(4):1-3.
    [30]赵晴,王帅星,朱文辉,简志超,马刚.AZ91D镁合金钒酸盐转化膜的最佳制备工艺.材料保护,2011,44(2):30-32.
    [31]孙亚坤,能昌信,刘玉强,董路,铬污染土壤电阻率特性及其影响因素研究.环境科学学报,2011,31(9):1992-1998.
    [32]黄顺红.土著微生物原位修复铬渣堆场污染土壤的条件优化.中国有色金属学报,2011,21(5):1741-1747.
    [33]尹华,王锋,刘文.重金属铬在水环境中的迁移转化规律及其污染防治措施. 农业与技术,2010,30(5):47-49.
    [34]刘瑛,李溥,黎从飞,黄月那,高丽,王小林.职业接触铬盐导致血清酶活力的变化.工业卫生与职业病,2010,36(6):337-340.
    [35]王青,王娜.铬对人体与环境的影响及防治.微量元素与健康研究,2011,28(5):64-66.
    [36]丁双阳,沈建忠,肖希龙,刘金凤,张素霞,江海洋,周宗灿,傅娟玲.吡啶酸铬的致突变性和生殖毒性研究.中国农业科学,2003,36(7):840-845.
    [37]杨芝华,考庆君.三价铬和六价铬小鼠急性毒性及致突变性研究.浙江预防医学,2011,23(1):17-21.
    [38]金念祖.铬化合物的毒性及其生物学监测指标研究进展.工业卫生与职业病,1999,25(6):382-384.
    [39]李桂影.铬中毒的临床反应和实验研究.国外医学.医学地理分册,2002,23(1):33-35.
    [40]任丽敏.六价铬对作业工人生殖功能影响的调查.现代医药卫生,2011,27(8):1129-1130.
    [41]Lv G H, Chen H, Wang X Q, Pang H, Zhang G L, Zou B, Leed H J, Yang S Z. Effect of additives on structure and corrosion resistance of plasma electrolytic oxidation coatings on AZ91D magnesium alloy in phosphate based electrolyte. Surf. Coat. Technol,2010,205 (1):36-40.
    [42]郝建民,田新宇,陈宏,胡星.镁合金微弧氧化黑色膜的制备工艺和结构.材料热处理学报,2011,32(7):164-168.
    [43]梁军,田军,金芳,刘维民,徐洮.磷酸盐-氢氧化钾溶液中镁合金微弧氧化膜层结构和性能研究.电镀与涂饰,2005,24(1):4-7.
    [44]王吉会,杨静.铝酸盐体系中镁合金微弧氧化膜的性能.天津大学学报,2006,39(7):851-856.
    [45]王卫峰,蒋百灵,李均明,时惠英.工艺参数对镁合金微弧氧化陶瓷膜色度的影响.材料与表面处理技术,2006(3):87-89.
    [46]Bai A, Chen Z J. Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on AZ91D magnesium alloy. Surf. Coat. Technol, 2009,203(14):1956-1963.
    [47]Guo X H, An M Z, Yang P X, Li H X, Su C N. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte. J. Alloy Compd.,2009,482(1-2):487-497.
    [48]Zengin N, Yuzbasioglu D, Unal F, Yilmaz S, Aksoy H. The evaluation of the genotoxicity of two food preservatives:Sodium benzoate and potassium benzoate. Food Chem. Toxicol,2011,49(4):763-769.
    [49]Bau-Jason T, Kurz-Ebba U. Sodium salicylate is a novel catalytic inhibitor of human DNA topoisomerase Ⅱ alpha. Biochem. Pharmacol,2011,81(3):345-354.
    [50]Cohen-Stuart M, Laurito-Charles E, Curran-Mary J. Grand mal seizure in a postpartum patient following intravenous infusion of caffeine sodium benzoate to treat persistent headache. J. Clin. Anesth,1992,4(1):48-51
    [51]李凌杰,姚志明,雷惊雷,唐安明,张胜涛,潘复生.苯甲酸钠对AZ31镁合金的缓蚀作用.材料保护,2009,42(11):24-26.
    [52]Afshari V, Dehghanian C. Inhibitor effect of sodium benzoate on the corrosion behavior of nanocrystalline pure iron metal in near-neutral aqueous solutions. J. Solid State Electrochem,2010,14(10):1855-1861.
    [53]中华人民共和国卫生部.急性毒性试验.GB15193.3-2003.北京:中国标准出版社,2004.
    [54]国际化学品安全规划署欧洲共同体委.国际化学品安全手册.EMS-MSDS-IB-093.北京:化学工业出版社,1996.
    [55]Ziel R, Haus A, Tulke A. Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. J. Membr. Sci,2008,323(2):241-246.
    [56]Lv G H, Chen H, Gu W C, Li L, Niu E W, Zhang X H, Yang S Z. Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology. J. Mater. Process. Technol, 2008,208(1-3):9-13.
    [57]Wu C S, Zhang Z, Cao F H, Zhang J Q, Cao C N. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Appl. Surf. Sci,2007,253(8): 3893-3898.
    [58]Barchiche C E, Rocca E, Juers C, Hazan J. Steinmetz J. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods. Electrochim. Acta,2007,53(2):417-425.
    [59]Li M J, Tamura T, Omura N, Miwa K. Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique. J. Alloy Compd.,2009,487(1-2):187-193.
    [60]Raj V, Mubarak-Alia M. Formation of ceramic alumina nanocomposite coatings on aluminium for enhanced corrosion resistance. J. Mater. Process. Technol,2009, 209(12-13):5341-5352.
    [61]Su P B, Wu X H, Yun G, Zhao H J. Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy. J. Alloy Compd.,2009,475(1-2):773-777.
    [62]Wu H L, Cheng Y L, Li L L, Chen Z H, Wang H M, Zhang Z. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films. Appl. Surf. Sci,2004,25(24):9387-9394.
    [63]Liang J, Hu L T, Hao J C. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Appl. Surf. Sci,2007,253(16):6939-6945.
    [64]Bala Srinivasan P, Liang J, Blawert C, Stormer M, Dietzel W. Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Appl. Surf. Sci,2009,255 (7):4212-4218.
    [65]Blawert C, Heitmann V, Dietael W, Nykyforchyn H M, Klapkiv M D. Influence of process parameters on the corrosion properties of electrolytic conversion plasma coated magnesium alloys. Surf. Coat. Technol,2005,200(1-4):68-72.
    [66]Guo H F, An M Z. Xu S, Huo H B. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin. Solid. Film.2005,485(1-2):53-58.
    [67]Wang Y H, Wang J, Zhang J B, Zhang Z. Effects of spark discharge on the anodic coatings on magnesium alloy. Matter. Lett,2006,60(4):474-478.
    [68]Lee Y K, Lee K S, Jung T. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution. Electrochem. Commun,2008,10(11): 1716-1719.
    [69]Chai L Y, Yu X, Yang Z H, Wang Y Y, Okido M. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking. Corrosion Sci., 2008,50(12):3274-3279.
    [70]Cao F H, Zhang Z, Zhang J Q, Cao C N, Plasma electrolytic oxidation of AZ91D magnesium alloy with different additives and its corrosion behavior. Mater. Corros. 2007,58(9):696-703.
    [71]Bonilla F A, Berkani A, Liu Y, Skeldon P, Thompson G E, Habazaki H, Shimizu K, John C, Steven K. Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte. J. Electrochem. Soc.2002,149(1):B4-B13.
    [72]Zhang Y J, Yan C W, Wang F H, Lou H Y, Cao C N. Study on the environmentally friendly anodizing of AZ91D magnesium alloy. Surf. Coat. Technol. 2002 161(1):36-43.
    [73]Yao Z P, Xu Y J, Jiang Z H, Wang F P. Effects of cathode pulse at low frequency on the structure and composition of plasma electrolytic oxidation ceramic coatings. J. Alloy Compd.,2009,488(1):273-278.
    [74]Khan R H U, Yerokhin A, Li X, Dong H, Matthews A. Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy:Effect of current density and electrolyte concentration. Surf. Coat. Technol,2010,205(6):1679-1688.
    [75]Verdier S, Boinet M, Maximovitch S, Dalard F. Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodising. Corrosion Sci.,2005,47(6):1429-1444.
    [76]Yang Y, Hua W. Effect of current density on corrosion resistance of micro-arc oxide coatings on magnesium alloy. Trans. Nonferrous Met. Soc. China,2010,20(2): s688-s692.
    [77]Chen Y, Nie X, Northwood D O. Investigation of Plasma Electrolytic Oxidation (PEO) coatings on a Zr-2.5Nb alloy using high temperature/pressure autoclave and tribological tests. Surf. Coat. Technol,2010,205(6):1774-1782.
    [78]Shi Z, Song G, Atrens A. Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corrosion Sci.,2006,48(8): 1939-1953.
    [79]Stern M, Geary A L. Electrochemical polarization (I):A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc,1957,104(1):56-63.
    [80]Wang L, Chen L, Yan Z C, Wang H L, Peng J Z. Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. J. Alloy. Compd.,2009,480(2):469-474.
    [81]Xia S J, Yue R, Rateick R G, Briss V I. Electrochemical studies of. AC/DC anodized Mg alloy in NaCl solution. J. Electrochem. Soc,2004,51(3):B179-B187.
    [1]Zhang R F, Shan D Y, Han E H, Zeng Z L. Status and prospect of anodization on magnesium and its alloys. Trans. Nonferrous Met. Soc. China,2006,16(7): 1136-1148.
    [2]Candan S, Unal M, Koc E, Turen Y, Candan E. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. J. Alloy. Compd., 2011,509(5):1958-1963.
    [3]Pinto R, Carmezima M J, Ferreira M G S, Montemor M F. Passive behavior of magnesium alloys (Mg-Zr) containing rare-earth elements in alkaline media. Electrochim. Acta,2010,55(7):2482-2489.
    [4]Carboneras M, Hernandez L S, Valle J A D, Garcia-Alonso M C, Escudero M L. Corrosion protection of different environmentally friendly coatings on powder metallurgy magnesium. J. Alloy. Compd.,2010,496(1-2):442-448.
    [5]Laleh M, Sabour Rouhaghdam A, Shahrabi T, Shanghi A. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J. Alloy. Compd.,2010,496(1-2):548-552.
    [6]Guo J, Wang L P, Liang J, Xue Q J, Yan F G. Tribological behavior of plasma electrolytic oxidation coating on magnesium alloy with oil lubrication at elevated temperatures. J. Alloy. Compd.,2009,481(1-2):903-909.
    [7]Duan H P, Yan Ch W, Wang F H. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim. Acta,2007,52(11):3785-3793.
    [8]祝晓文,韩建民,崔世海,王金华.铝、镁合金微弧氧化技术研究进展.材料 科学与工艺,2006,14(13):366-369.
    [9]李泽,马跃洲,陈明,王巧霞.过电压对镁合金微弧氧化膜层性能的影响.热加工工艺,2009,38(20):94-96.
    [10]郭艳,董国君,王桂香,龚凡,童仲秋.柠檬酸钠对AZ31镁合金阳极氧化膜耐蚀性的影响.轻金属,2008,3:47-50.
    [11]Zozulin A J, Bartak D E. Anodized coatings for magnesium alloys. Met Finish, 1994,92(3):39-44.
    [12]Kurber K. Anodic formation of coatings on magnesium, zinc, and cadmium. J Electrochem Soc,1953,100(8):376-382.
    [13]Ono S, Aasmi K, Osaka T. Structure of anodic films formed on magnesium. J Electrochem Soc,1996,143(3):L62-L63.
    [14]Guo H F, An M Z, Xu S, Huo H B. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin Solid Film,2005,485(1-2):53-58.
    [15]Wu C S, Zhang Z, Zhang L J, Zhang J Q, Cao C N. Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions. Appl. Surf. Sci,2007,253(8): 3893-3898.
    [16]Shi Z M, Song G L, Atrens A. The corrosion performance of anodised magnesium alloys. Corrosion Sci.,2006,48(11):3531-3546.
    [17]Krymann W, Kurze P, Dittrich K H. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF). Cryst. Res. Technol,1984,19(7): 973-979.
    [18]Guo H F, An M Z, Xu S. Effect of current density on mechanism of micro-arc oxidization and property of ceramic coating formed on mgnesium alloys. Rare. Met. Mater. Eng,2005,34(10):1554-1557.
    [19]Fukuda H, Matsumoto Y. Effects of Na2SiO3 on anodization of Mg-Al-Zn alloy in 3M KOH solution. Corrosion Sci.,2004,46(9):2135-2142.
    [20]Wang L S, Cai Q Z, Wei B K. Analysis of rolls deflection of Sendzimir mill by 3D FEM. Trans. Nonferrous Met. Soc. China,2005,15(3):600-605.
    [21]Barton B F, Johnson C B. The effect of electrolyte on the anodized finish of a magnesium alloy. Plat. Surf. Finish,1995,82(5):138-141.
    [22]惠华英.余刚,叶立元.环保型镁合金阳极氧化工艺的研究.电镀与环保.2005.25(6):34-38.
    [23]Li Y C, Xia Y, Zhi H Y, Yun Y W, Masazumi O. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking. Corrosion Sci., 2008,50(12):3274-3279.
    [24]钱建刚,李获,王学力,郭宝兰.硼酸钠浓度对镁合金阳极化的影响.中国腐蚀与防护学报,2005,25(5):275-278.
    [25]Cao F H, Lin L Y, Zhang Z, Zhang J Q, Cao C N. Environmental friendly plasma electrolytic oxidation of AM60 magnesium alloy and its corrosion resistance source. Trans. Nonferrous Met. Soc. China,2008,18(2):240-247.
    [26]Wen Q, Cao F H, Shi Y Y, Zhang Z. The effect of phosphate on MAO of AZ91 D magnesium using AC power source. Mater. Corros,2008,59(10):819-824.
    [27]李建中,邵忠财,田彦文,翟玉春,郝清伟.不同含磷电解液在微弧氧化过程中的作用.中国腐蚀与防护学报,2004,24(4):222-225.
    [28]钱建刚,李荻,王学力,郭宝兰.硅酸钠浓度对镁合金阳极化的影响.材料科学与工艺,2006,14(1):275-279.
    [29]Liang J, Hu L, Hao J. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Appl. Surf. Sci, 2007,253(16):6939-6945.
    [30]Dittrich K. H, Krysmann W, Kurze P, Schneider H G. Structure and properties of ANOF layers. Cryst Res. Technol,1984,19(1):93-99.
    [31]Yerokhin A L, Lyubimov V V, Ashitkov R V. Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys. Ceram. Int,1998:24(1): 1-6.
    [32]张淑芬,张先锋,蒋百灵.溶液电导率对镁合金微弧氧化的影响.材料保护,2004,37(4):7-9.
    [33]王吉会,房大然,杨静.镁合金微弧氧化的电解液组分研究.天津大学学报,2005,38(2):1026-1030.
    [34]卫中领,陈秋荣,郭欲聪.镁合金微弧氧化膜的微观结构及耐蚀性研究.材料保护,2003,36(10):21-23.
    [35]Luo H H, Cai Q Z, Wei B K, Yu B, He J, Li D J. Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation. J. Alloy. Compd.,2009,474(1-2):551-556.
    [36]Matykina E, Arrabal R, Skeldon P. Thompson G. E. Incorporation of zirconia nanoparticles into coatings formed on aluminium by AC plasma electrolytic oxidation. J Appl Electrochem,2008,38(30):1375-1383.
    [37]骆海贺.AZ91D镁合金微弧氧化ZrO2-Y2O3复合陶瓷膜层的制备、表征及性能研究.武汉.华中科技大学.2009.94-95.
    [38]张莉娜.镁合金微弧氧化锆盐溶液体系的工艺及耐蚀性研究.西安.长安大学.2009.26-27.
    [39]Malyshev V N, Zorin Kn M. Features of microarc oxidation coatings formation technology in slurry electrolytes. Appl. Surf. Sci,2007,254(5):1511-1516.
    [40]王艳,秋吴昆,郑明毅.SiC/AZ91镁基复合材料的微弧氧化行为及涂层的耐腐蚀性能.金属学报,2007,43(6):631-636.
    [41]罗胜联,张涛,周海晖,陈劲松,陈金华,旷亚非.有机胺对镁合金阳极氧化的影响.中国有色金属学报,14(4):691-696.
    [42]Wu D, Liu X D, Lu K, Zhang Y P, Wang H. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface. Appl. Surf. Sci,2009,255(16): 7115-7120.
    [43]丁玉荣,郭兴伍,丁文江,朱燕萍.三乙醇胺对镁合金氧化膜层性能和微观结构的影响.表面技术,2005,34(1):14-16.
    [44]Barton T F. Anodization of magnesium based alloys. US:5792335.1998.
    [45]Song G L. Euivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem.Concr.Compos.2000,30(11):1723-1730.
    [46]Genevieve B, Christine B, Nadine P. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys. J. Electrochem. Soc,2001,148(12):B489-B496.
    [47]Manash R D. Sekh M. The influence of functionality on the adsorption of p-hydroxy benzoate and phthalate at the hematite-electrolyte interface. J. Colloid Interface Sci,2007,306(2):205-215.
    [48]Hosseini M. Mertens S F L, Ghorbani M, Arshadi M R. A symmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater. Chem. Phys, 2003,78(3):800-803.
    [49]Elkadi L, Mernari B, Traisnel M, Bentiss F, Lagrenee M. The inhibition action of 3,6-bis(2-methoxyphenyl)-1,2-dihydro-1,2,4,5-tetrazine on the corrosion of mild steel in acidic media. Corrosion Sci.,2000,42(4):703-719.
    [50]Manash R D, Dipak B, Prakash C, Borthakur, Sekh M. Kinetics and adsorption of benzoate and salicylate at the natural hematite-water interface. Colloids Surf., A, 2005,254(1-3):49-55.
    [51]Das-Manash R, Sekh M. Kinetics and adsorption behaviour of benzoate and phthalate at the a-alumina-water interface:Influence of functionality. Colloids Surf., A,2005,264(1-3):90-100.
    [52]Li H Q, Roscoe-Sharon G, Lipkowski J. FTIR studies of benzoate adsorption on the Au(111) electrode. J. Electroanal. Chem,1999,478(1-2):67-75.
    [53]VijhA K. Sparking voltages and side reactions during anodization of valve metals in terms of electron tunnelling. Corrosion Sci.,1971,11(6):411-417.
    [54]Yan Y, Li W H, Cai L K, Hou B R. Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution. Electrochim. Acta,2008,53(20): 5953-5960.
    [55]Guan N M, Xue M L, Gung H L. Synergistic ingibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0.5 M sulfuric acid. Corrosion Sci.,2005, 47(8):1932-1952.
    [56]Guan N M, Xiang H Li, Qing Q, Zhou J. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution. Corrosion Sci.,2006, 48(2):445-459.
    [57]Tang L B, Mu G N, Guang H L.The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid. Corrosion Sci.,2003,45(10): 2251-2262.
    [58]Blustein G, Zinolab C F. Inhibition of steel corrosion by calcium benzoate adsorption in nitrate solutions:theoretical and experimental approaches. J. Colloid Interface Sci,2004,278(2):393-403.
    [59]Sirtori V, Zambon F, Lombardi L. Xps and ellipsometric characterization of zinc-BTA complex. J. Electron. Mater,2000,29(4):463-467.
    [60]刘永辉.电化学测试技术.北京:北京航空学院出版社.1987.441-447.
    [61]Ryu H S, Hong S H. Effects of KF, NaOH, and KOH electrolytes on properties of microarc-oxidized coatings on AZ91D magnesium alloy. J Electrochem Soc,2009, 156(9):C298-C303.
    [62]Albella J M, Montero I, Martinez-Duart J M. Electron Injection and Avalanche during the Anodic Oxidation of Tantalum. J. Electrochem.Soc,1984,131(5): 1101-1104.
    [63]Zhang L J, Fan J J, Zhang Z, Cao F H, Zhang J Q, Cao C N. Study on the anodic film formation process of AZ91D magnesium alloy. Electrochim. Acta,2007,52(17): 5325-5333.
    [64]konopisov S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta,1977,22(10):1077-1082.
    [65]Khaselev O, Weiss D, Yahalom. Structure and composition of anodic film formed on binary Mg-Al alloys in KOH aluminate solutions under continuous sparking. Corrosion Sci.,2001,43(7):1295-1307.
    [66]旷亚非,侯朝辉,刘建平.阳极氧化过程中电击穿理论的研究进展.电镀与涂饰,2000,19(3):38-41.
    [67]薛文斌,邓志威,来永春.ZM5镁合金微弧氧化膜的生长规律.金属热处理学报,1998:19(3):42-45.
    [68]郭洪飞,安茂忠,徐莘,霍慧彬.电流密度对镁合金微弧氧化过程及氧化陶瓷膜性能的影响.稀有金属材料与工程,2005.34(10):1554-1557.
    [69]吕维玲,陈体军,马颖,徐卫军,王伟,郝远.AZ91D镁合金恒定小电流密度微弧氧化工艺.中国有色金属学报,2008,18(9):1590-1595.
    [70]刘忠德,向正群,张中元,孙茂坚,付华.电流密度对钛合金微弧氧化膜的影响.轻金属,2008,1:48-51.
    [71]Liu F, Shan D Y, Song Y W, Han E H. Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy. Trans. Nonferrous Met. Soc. China,2011,21(4):943-948.
    [72]Zhang R F. Film formation in the second step of micro-arc oxidation on magnesium alloys. Corrosion Sci.,2010,52(4):1285-1290.
    [73]Duan H P, Yan C W, Wang F H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochim. Acta,2007, 52(15):5002-5009.
    [74]Ling L L, Cheng Y L, Wang H M, Zhang Z. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films. Trans. Nonferrous Met. Soc. China.2008,18(3):722-727.
    [75]Wang P, Li J P, Guo Y C, Zhong Y. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys. J. Rare Earths,2010,28(5):798-802.
    [76]Chang L M. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation. J. Alloy. Compd.,2009,468(1-2):462-465.
    [77]Guo X H, An M Z, Yang P X, Li H X, Su C N. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte. J. Alloy Compd.,2009,482(1-2):487-497.
    [78]于霞.镁合金AZ31环保型阳极氧化工艺及基础理论研究.长沙.中南大学.2006.45-46.
    [79]Allen B, Chen Z J. Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D. Surf. Coat. Tech,2009, 203(14):1956-1963.
    [80]钱建刚,李获,王学力,郭宝兰.硼酸钠浓度对镁合金阳极化的影响.中国腐蚀与防护学报,2005,25(5):275-278.
    [1]陈振华.镁合金.北京:化学工业出版社,2004.1-3.
    [2]Yang L, Zhang E L. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Mater. Sci. Eng C,2009,29 (5): 1691-1696.
    [3]Witte F, Kaeseb V, Haferkampb H, Switzerc E, Meyer-Lindenberg, Wirth C J, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials,2005,26(17):3557-3563.
    [4]Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys:a new principle in cardiovascular implant technology. Heart,2003,89(6):651-656.
    [5]余混,陈良建,雷路,张思慧.镁合金作为生物医用植入材料的研究进展.金属功能材料,2009,16(4):61-64.
    [6]张广道,黄晶晶,杨柯,张炳春,艾红军.动物体内植人镁合金的早期实验研究.金属学报,2007,143(11):1186-1190.
    [7]朱艳英,武光明,赵清.镁基生物医用材料研究进展.中国生物医学工程学报,2010,29(6):932-937.
    [8]王勇,高家诚,张艳,周详发,伍沙.纯镁在模拟体液中的腐蚀机理.中国有色金属学报,17(12):1981-1982.
    [9]Yang J X, Cui F Z, Seop-Lee I, Wang X M. Plasma surface modification of magnesium alloy for biomedical application. Surf. Coat. Technol,2010,205(1): S182-S187.
    [10]郭磊,刘魁,张世亮,高晓宇,黄晶晶,杨柯.CA-P/AZ31B镁合金的生物相 溶性研究.稀有金属材料与工程,2009,38(1):99-103.
    [11]郑玉峰,顾雪楠,李楠,周维瑞.生物可降解镁合金的发展现状与展望.中国材料进展,2011,30(4):30-34.
    [12]Wang-aw Y M, Wang-v F H, Xu M J, Zhao B, Guo L X, Ouyang J H. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application. Appl. Surf. Sci,2009,255(22):9124-9131.
    [13]李凌杰,雷惊雷,于生海.钼酸盐对镁合金在模拟冷却水中腐蚀的抑制作用.化工学报,2008,59(5):1223-1227.
    [14]Zhao L C, Cui C X, Qing Z W, Bu S J. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corrosion Sci.,2010,52(7):2228-2234.
    [15]郅青,高瑾,董超芳,李晓刚.AZ91D镁合金微弧氧化膜的腐蚀行为研究.金属学报,2008,44(8):986-990.
    [16]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004:1-2.
    [17]Lenka M. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta. Biomater,2006,2(2):181-189.
    [18]Gray J E, Luan B. Protective coatings on magnesium and its alloys-a critical review. J. Alloy. Compd.,2002,336(1-2):88-113.
    [19]Hamdy A S. Corrosion protection of aluminum composites by silicate/cerate conversion coating. Surf. Coat. Technol,2008,203(3-4):240-249.
    [20]尚伟,陈白珍,石西昌,肖湘.添加剂对AZ91D镁合金微弧氧化膜的影响.稀有金属材料与工程,2009,38(2):335-338.
    [21]Liang J, Hu L, Hao J. Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Appl. Surf. Sci, 2007,253(16):6939-6945.
    [22]Laleh M, Sabour Rouhaghdam A, Shahrabi T, Shanghi A. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on AZ91D magnesium alloy. J. Alloy. Compd.,2010,496(1):548-552.
    [23]Fumihiro S, Yoshihiko A. Corrosion behavior of magnesium alloy AZ91D anodized in aluminum sulfate added solution. J. Jpn. Int. Met,1994,44 (2):104-109.
    [24]Umehara H, Terauchi S, Takaya M. Structure and corrosion behavior of conversion coatings on magnesium alloys. Mater. Sci. Forum,2000,350-351: 273-282.
    [25]HWang D Y, Kim Y M, Park D Y, Yoo B Y, Shin D H. Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation. Electrochim. Acta,2009,54(23):5479-5485.
    [26]Wm Mc, Neill. The Cr-22 coating for magnesium. Met. Finish,1955,53(12): 57-59.
    [27]Emley E F. Principles of Magnesium Technology. Headington Hill Hall, Oxford: Pergamon Pree Ltd,1966.
    [28]Wang L, Chen L, Yan Z C, Wang H L, Peng J Z. Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. J. Alloy. Compd,2009,480(2/8):469-474.
    [29]Ryu H S, Hong S H. Effects of KF, NaOH, and KOH electrolytes on properties of microarc-oxidized coatings on AZ91D magnesium alloy. J Electrochem Soc,2009, 156(9):C298-C303.
    [30]Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, Sinebryukhov S L, Egorkin V S, Nistratova M V, Yerokhin A, Matthews A. PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes. Surf. Coat. Technol,2010,204(14):2316-2322.
    [31]Bai A, Chen Z J. Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D. Surf. Coat. Technol, 2009,203(14):1956-1963.
    [32]Guo X H, An M Z, Yang P X, Li H X, Su C N. Effects of benzotriazole on anodized film on AZ31B magnesium alloy in environmental-friendly electrolyte. J. Alloy. Compd.,2009,482(1-2):487-497.
    [33]Guo H F, An M Z, Xu S, Huo H B. Formation of oxygen bubbles and its influence on current efficiency in micro-arc oxidation process of AZ91D magnesium alloy. Thin Solid Film,2005,485(1-2):53-58.
    [34]Nie X, Meletis E I, Jiang J C, Leyland A, Yerokhin A L, Matthews A. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf. Coat. Technol,2002,149(2/3):245-251.
    [35]Song Y W, Shan D Y, Chen R S, Zhang F, Han E H. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mat. Sci. Eng. C-Mater,2009,29(3): 1039-1045.
    [36]Shi P, Ng W F.,Wong M H, Cheng F T. Improvement of corrosion resistance of pure magnesium in Hanks'solution by microarc oxidation with sol-gel TiO2 sealing. J. Alloy. Compd.,2009,469(1/2):286-292.
    [37]Lorenz C, Brunner J G, Kollmannsberger P, Jaafar L, Fabry B, Virtanen S. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomater,2009, 5(7):2783-2789.
    [38]颜世铭,洪昭毅,李增禧.实用元素医学.郑州:河南医科大学出版社,1999:47-48.
    [39]Revell P A, Damien E. The effect of magnesium ions on bone bonding to hydr oxyapatite. Key Eng Mater,2004; 254(256):447-50.
    [40]戴尅戎.骨折内固定与应力遮挡效应.医用生物力学,2001,15(2):69-72.
    [41]Mark S P. Magnesium and its alloys as orthopedic biomaterials:a review. Biomaterial,2006,27(9):1728-1734.
    [42]李龙川,高家诚,王勇.医用镁合金的腐蚀行为与表面改性.材料导报,2003,17(10):29-32.
    [43]宋光玲,宋诗哲.镁在人体模拟体液中的腐蚀行为.物理化学学报,2006,22(10):1222-1226.
    [44]郭磊,刘魁,张世亮,黄晶晶,谭丽丽,杨柯.氧化镁膜AZ31B镁合金材料的细胞毒性研究.稀有金属材料与工程,2008,37(6):1027-1031.
    [45]孙秋霞.材料腐蚀与防护.北京:冶金工业出版社,2001,140-145.
    [46]宋光玲.镁合金腐蚀与防护.北京:化学工业出版社,2006,28-32.
    [47]Sachiko H, Akiko Y. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution. Electrochim. Acta,2009, 54(27):7085-7093.
    [48]Song Y W, Shan D Y, Han E H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett,2008,62(17/18): 3276-3297.
    [49]Wen C L, Guan S K, Peng L. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl. Sur. Sci,2009,255(13/14):6433-6438.
    [50]Gu X N, Zheng Y F, Cheng Y. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials,2009,30 (4):484-498.
    [51]Mario C D, Goktekin O D. Drug-eluting bioabsorbable magnesium stent. J. Interv. Cardiol,2004,17(6):391-395.
    [52]Rashmir-Raven A M, Richardson D C, Aberman H M. Response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods. J Appl Biomater,1995,6(4):237-242.
    [53]Al-Abdullant Y, Sadami T, NaoKi N. Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications. Mater. Trans,2001,42(8):1777-1783.
    [54]Kim S G, Inoue A, Masumoto T. Increase of mechanical strength of a Mg85 Znl2Ce3 amorphous alloy by dispersion of ultrafine hcp-Mg particles. Mater. Trans, 1991,32(9):875-878.
    [55]Kim S R, Lee J H, Kim Y T. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials,2003,24(8):1389-1398.
    [56]高家诚,李龙川,王勇.镁表面改性及其在仿生溶液中的耐腐蚀行为.中国有色金属学报,2004,14(9):1508-1513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700