用户名: 密码: 验证码:
供水管网中氯和二氧化氯耦合反应过程及其衰减模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是人类赖以生存的元素,供水管网是连接用户和水处理厂生产的优质饮用水的桥梁。但供水管网中饮用水在输配的过程中往往受水中残余微生物、管道生物膜、消毒副产物等因素影响而发生水质恶化。因此,保证供水管网中饮用水水质安全对保障居民身体健康和人身安全具有重要意义。本文通过对供水管网中氯和二氧化氯耦合的化学反应路径、氯和二氧化氯联合作用下供水管网消毒剂衰减模型及供水管网中途加消毒剂点优化布置与运行进行理论研究与深入分析,阐述供水管网中氯和二氧化氯耦合作用对保障供水管网中饮用水水质与供水管网中途加消毒点优化布置的重要作用,提出保障供水管网水质安全的有效措施。
     饮用水消毒是保障饮用水水质的重要环节,氯、二氧化氯、一氯胺、臭氧等消毒虽然广泛使用,但这些消毒剂都存在一定的局限性。供水管网中氯和二氧化氯耦合机理研究旨在通过烧杯实验、静态管段实验、管道动态实验及现场实验分析pH值、温度、总有机碳、管材等因素对氯和二氧化氯两种消毒剂在供水管网饮用水消毒过程中耦合作用的影响,探讨供水管网中氯和二氧化氯耦合机理与反应动力学,充分利用两种消毒剂各自的优点,避免各种消毒剂存在的缺陷。通过对不同水质条件下烧杯及供水管网中不同配比的氯和二氧化氯进行实验与分析,确定氯和二氧化氯最优投加比例。结果表明,氯和二氧化氯两种消毒剂联合使用时氯和二氧化氯消毒副产物亚氯酸盐发生耦合作用生成二氧化氯,氯消毒剂消毒副产物三卤代物生成量有所降低,饮用水消毒持续时间增长。
     氯和二氧化氯联合作用下供水管网中消毒剂耦合衰减模型研究针对传统水质模型仅对单一物质进行模拟的局限性提出的崭新方法,通过氯和二氧化氯耦合反应方程计算两种消毒剂浓度及氯酸盐、亚氯酸盐等物质浓度在饮用水输送过程的变化情况,从而实现对供水管网饮用水中多种物质计算分析。传统水质模型假设饮用水传输过程中饮用水中物质通过平流输送,忽略纵向的物质扩散,而我国供水管网规模庞大,拓扑结构复杂,在管网末梢容易出现死水现象,因此,本文在供水管网消毒剂衰减模型中引入消毒剂扩散模型,对传统余氯衰减模型进一步完善。通过扩散方程模拟管段内消毒剂输送过程,改进管网末端流速较低管段内消毒剂输送模型。氯和二氧化氯联合作用下供水管网中消毒剂扩散模型将两种消毒剂在饮用水中输送过程划分为对流、扩散、反应、混合等阶段,以拉格朗日法为基础进行模型求解。本文以我国东北某大型管网为例,进行氯和二氧化氯联合作用下供水管网中各种消毒剂及消毒副产物浓度分析。
     本文提出供水管网中途加消毒剂点随机规划模型。首先通过供水管网饮用水水质综合评价方法对供水管网中途加消毒剂点有效性进行综合评价,初步确定中途加消毒剂点优化布置的可行范围,然后通过混合遗传算法进行加消毒剂点优化定位,最后将供水管网水力模型及水质模型的不确定性引入中途加消毒剂点优化布置模型中,通过随机规划方法进行中途加消毒剂点最终定位。本文建立供水管网实时模拟模型,提出消毒剂投加量交互式控制方法,建立基于SCADA系统OPC通信的供水管网实时模拟模型,实时获得供水管网运行信息,利用SCADA系统实时数据对供水管网运行工况进行实时仿真模拟,通过供水管网氯和二氧化氯浓度分布实时模拟实现供水管网中消毒剂浓度交互控制,以我国东北某大型管网为例进行供水管网中途加消毒剂点优化布置研究,建立供水管网消毒剂投加交互式控制方法,交互控制中途加消毒剂点消毒剂投加浓度。
Water is the basic element of human life, while water supply network is the bridge connecting the users and the water treatment plant that produce high quality drinking water. However, the drinking water quality often become deteriorated due to the residual microorganisms in water, pipe biofilms, disinfection by-products and other factors in the process of transmission and distribution in water supply networks. Therefore, it is very important for human health and safety to ensure drinking water quality security. In this thesis, the mechanism and kinetics using chlorine and chlorine dioxide togethor in water distribtuin network, the water distribtuion network water quality model under the effect of chlorine combined chlorine dioxide and the optimal desinfection dosage and boostering station allocation in water network is researched theoretically and analyzed in depth. The effect of the synergy of chlorine and chlorine dioxide on the drinking water quality security and the optimal boostering stations allocation in water distribution is also presented. And the effective measures to protect drinking water quality security is also proposed.
     The disinfection of drinking water play important role on protection drinking water quality security. Although the chlrine, chlorine dioxide, chloramine, and ozone disinfectants have been widely used, all these disinfectants exist some limitations. The mechanism and kinetics of chlorine and chlorine dioxide in water network are researched by jar test, static pipeline test, dynamic pipeline test, and file test. The factors of pH, temperature, total organic carbon, pipe meterial, pipe diameter, pipe service year are analized for the synergy of chlorine and chlorine dioxide. The kinetics and mechanism of the reaction between chlorine and chlorine dioxide are built. The main task of this experiment was to investigate whether the combination of the two disinfectants maintains their advantages and decrease their disadvantages. The optimal dosage ratio between chlorine and chlorine dioxide was selected by beaker and pipeline test with different water qualtiy at different dosage ratio. The results showed that the combination produced a relatively stable high residual of both disinfectants due to the synergy of chlorine and chlorine dioxide, reduced the concentration of the undesirable chlorite ion, while increasing the concentration of chlorine dioxide.
     The traditional water quality model can simulate only single substance. In order to overcome this limitations, a new water quality model to calculate chlorine and chlorine dioxide at the same time was proposed. The concentration of chlorine, chlorine dioxide, chlorite and chlorate are calculated using the mechanism and kinetics of chlorine and chlorine dioxide disinfectant in the drinking water in the process of transmission to achieve a variety of substance analysis in water distribution networks. The traditional model assumes that the chemical species, such chlorine and chlorine dioxide, will travel down the length of a pipe with the same average velocity as the carrier fluid while at the same time reacting (either growing or decaying) at some given rate. This means only advective transport within a pipe occur, while longitudinal dispersion is usually not considered. The flow rate is prone to be stagnated at the end of a water distribution network with large-scale and complexity topology in China. Therefore, the water quality component diffusion model is introduced to the improved water quality model in this thesis in order to complete traditional water quality model. The overall change in concentration of chlorine and chlorine dioxide is described by combining these three effects in water distribution netwok water quality model, leading to the advection diffusion reaction equation. And this new water quality is solved with Lagrangian method. A large scale water distribution network in Northeast China is selcted as an example, in which the concentrations of chlorine and chlorien dioxide disinfectants and other related substances are calulated.
     The stochastic programming model to the optimal location of booster disinfection station is propesed in this paper. chlorination of water supply pipe network halfway point of. Firstly, water quality in water distribution network was evaluated by comprehensive evaluation method, by which the booster disinfection stations are located in a large range. Then, the accurate location are calculate by hybrid genetic algorithm is used to optimize the booster disinfection stations. The uncertainty of the hydraulic and the water quality model is also introduced to the optimal location of booster disinfection station In order to realize the interactive water quality control, a real-time simulation model of water distribution network is established. A water distribution network real time simulation model is proposed based on OPC communication of SCADA system, by which the operation infromation of water distribution network is gained in real time , and the state-of–the-art of water distribution network is simualted. The water quality interactive control of water distribution network is achieved by real-time simulation of chlorine and chlorine dioxide concentration through the water distribution network. Water supply network to achieve real-time interactive simulation of water quality control. A large water network is selected as an example, for which the optimal location of the booster disinfection station is researched and a water quality interactive control model of chlorine and chlorine dioxided is built to control disinfectant dosing.
引文
[1] Rehan S., Yehuda K., Balvant R.. Water quality failures in distribution networks - risk analysis using fuzzy logic and evidential reasoning[J]. Risk Analysis, 2007, 27(5): 1381-1394.
    [2] Maier S.H.. Modeling water quality for water distribution systems[D]. U- xbridge: Brunel University, 1999:60-70.
    [3] Swamee P.K., Tyagi A. Describing water quality with aggregate index[J]. Journal of Environmental Engineering, 2000, 126(5): 451-455.
    [4] Percival S L. Review of potable water biofilm in engineered systems[J]. Journal of British Corrosion, 1998, 33(2): 130-137.
    [5] USEPA. Microbial and disinfection byproduct rules– simultaneous complian- ce guidance manual[R]. United States: Environmental Protection Agency, 1999:5-9.
    [6] Huang Jinhui. Chlorine decay modelling and contamination identification strategies for water distribution system[D]. Ottawa: The univ- ersity of Guelph, 2006: 10-60.
    [7] Clark, R.M. Chlorine demand and trihalomethane formation kinetics: a se- conde order model[J]. Journal of Environmental Engineering, 1998, 124(1): 16-24.
    [8] Munavalli G. R., Kumar M. S. Optimal Scheduling of Multiple Chlorine Sources in Water Distribution Systems[J].Journal of Water Resources Planning and Management, 2003, 129(6):493-504.
    [9] Tryby M. E., Boccelli D. L., Koechling M. T., et al. Booster chlorination for managing disinfectant residuals[J]. Journal of the American Water Works Association, 1999, 91(1): 95-108.
    [10] Ostfeld A., Kogan D., Shamir U.. Reliability simulation of water distribution systems– single and multiquality[J]. Urban Water, 2002, 4:53-61.
    [11] MacGillivray B. H., Hamilton P. D., Strutt J. E., et al. Risk analysis strategies in the water utility sector: an inventory of applications for better and more credible decision making[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(2): 85– 139.
    [12] Burgschweiger J., Gn?dig B., Steinbach M.. Optimization models for operative planning in drinking water networks[J]. Optimization and Engineering, 2009, 10(1):43-73.
    [13] Masago Y., Katayama H., Hashimoto A., et al. Assessment of risk of infectiondue to cryptosporidium parvum in drinking water[J]. Water science and tech- nology, 2002, 46(11):319-324.
    [14] Sadiq R., Kleiner Y., Rajani B. Water quality failures in distribution networks– risk analysis using fuzzy logic and evidential reasoning[J]. Risk Analysis, 2007, 27(5), 1381-1394.
    [15] Sadiq R., Saint M., Kleiner Y. Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis[J]. Urban Water, 2008, 5(4): 287-304.
    [16] Clark R.M., Grayman W.M., Walter M. Modeling water quality in drinking water distribution systems[M]. NewYork: Denver. 1998. 13-20.
    [17]方华,吕锡武,陆继来,等.配水管网中生物稳定性和消毒副产物的变化及相关性[J].环境科学, 2007, 28(9):2030-2034.
    [18]舒诗湖,何文杰,赵明,等.供水管网中可同化有机碳的反应动力学[J].中国环境科学, 2008, 28(9):847-850.
    [19]赵明,李欣,王静海,等.给水管网中可生物降解溶解性有机碳的变化[J].哈尔滨工业大学学报, 2006, 38(8):1323-1325.
    [20] Berry D, Xi C, Raskin L. Microbial ecology of drinking water distribution systems[J]. Current Opinion in Biotechnology, 2006,17(3): 297-302.
    [21] Delahaye E, Weltéb Y, Levic G, et al. An ATP-based method for monitoring the microbiological drinking water quality in a distribution network[J]. Water Research, 2003, 37(15):3689-3696.
    [22] Momba M, Kfir R, Venter S, et al. Overview of biofilm formation in distribution systems and its impact on the deterioration of water quality[J]. Water SA, 2000, 26(1): 59-66.
    [23] Lund V, Ormerod K. The influence of disinfection processes on biofilm formation in water distribution systems[J]. Water Research, 1995, 29(4): 1013 -1021
    [24] Maggy N, Momba, N. Comparing the effect of various pipe materials on biofilm formation in chlorinated and combined chlorine-chloraminated water systems[J]. Water SA, 2004, 30(2):175-182.
    [25] Haas, C.N. Disinfection. Water quality and treatment handbook[M]. Edited by Letterman, Raymond D. Fifth Edition. Publisher: McGraw-Hill professional publishing,1999.203-216.
    [26]王杨,田一梅.饮用水消毒技术现状及未来发展[J].安徽农业科学, 2007, 35(5): 1471-1472.
    [27]刘珊,万新南.饮用水氯消毒及余氯控制技术展望[J].水土保持研究, 2005,12(5):268-270.
    [28]李延平,蔡祖根.生活饮用水卫生标准实用指南[M].福州:东南大学出版社, 2002:11-16.
    [29]邹启光,关小红.二氧化氯取代液氯消毒剂的可行性研究[J].净水技术, 2002, 21(3):13-16
    [30]王擎,梁爽,郑爽英,等.饮用水消毒技术研究与应用[J].中国消毒学杂志, 2006, 23(4):349-351
    [31] Baribeau H, Prevost M, Desjardins R, et al.. Chlorite and chlorate ion variability in distribution systems[J]. Journal of the American Water Works Association. 2002, 94 (7), 96–105.
    [32]董丽丽,黄骏雄.饮用水消毒副产物及其分析技术[J].化学进展, 2005, 17(2): 350-358
    [33] Gordon, G. Water chemistry of the oxy-chlorine species[C]. Proceedings of the Second International Symposium on Chlorine Dioxide: DrinkingWater Issues, Houston, 1992:42-50.
    [34]尤作亮,张金松.二氧化氯消毒的控制标准及其发展趋势[J].中国给水排水, 2003, 19(2):29-31
    [35]王家玲.饮水中非挥发性有机污染物致突变性的防治对策[J].中国环境科学, 1999, 19(2):114-118.
    [36]唐非,谷康定,丁建东,等.二氧化氯与氯联合消毒减少消毒副产物[J].中国给水排水, 2003, 19 (11):55-58.
    [37]王丽,常爱敏,唐玉兰,等.二氧化氯与氯混合消毒对水消毒效果的影响[J].中国农村水力水电, 2003, 3(1):31-32.
    [38]张静,陈慧玲,向丽红.二氧化氯和氯联合消毒对水中消毒副产物生成量影响[J].职业与健康, 2008, 24(17):1779-1780.
    [39]张念华,鲁翌,汪亚洲,等.二氧化氯与氯联合控制水中消毒副产物生成量[J].中国公共卫生, 2006, 22(3):299-301.
    [40]乔铁军,尤作亮,曹大勇.水厂二氧化氯和氯联合消毒的余氯控制[J].净水技术, 2007, 26(5):33- 36.
    [41] Barbeaua B, Desjardinsa R, Mysoreb C, et al. Impacts of water quality on chlorine and chlorine dioxide efficacy in natural waters[J]. Water Research, 2005, 39 (1): 2024–2033.
    [42] Eisnor JD, Gagnon GA. Impact of secondary disinfection on corrosion in a model water distribution system[J]. Journal of Water Supply: Research and Technology—AQUA, 2004, 53 (7): 441–452.
    [43] Gagnona GA, Randa J., Learyb KC, et al. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms[J]. Water Research, 2005, 39(1): 1809-1817.
    [44] Al-Jasser O. Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect[J]. Water Research, 2007, 41(4):387-396.
    [45] DiGiano F, Zhang W. Pipe section reactor to evaluate chlorine-wall reaction[J]. Journal of the American Water Works Association. 2005, 97 (1):74–85.
    [46] Taube H, Dodgen H. Applications of radioactive chlorine to the study of the mechanisms of reactions involving changes in the oxidation state of chlorine[J]. Journal of the American Chemical Society. 1949, 71(10): 3330-3336.
    [47] Emmenegger F, Gordon G. The rapid interaction between sodium chlorite and dissolved chlorine[J]. Inorganic Chemistry. 1967, 6(3): 633-635.
    [48] Gordon G, Tachiyashiki S. Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10[J]. Environmental Science & Technology. 1991, 25(3): 468-454.
    [49] Kormanyos B, Nagypa I, Peintler G, et al.. Horvath. Effect of Chloride Ion on the Kinetics and Mechanism of the Reaction between Chlorite Ion and Hypochlorous Acid[J]. Inorganic Chemistry, 2008, 47(17): 7914-7920.
    [50] Aletat EM, Paul VR. Kinetics of the Reaction between Molecular Chlorine and Chlorite in Aqueous Solution[J]. Environmental Science & Technology, 1986, 20(1):50-55
    [51] Shang F, Uber JG., Rossman LA. EPANET multi-species extension users manual[M]. Cincinnati: National Risk Management Research Laboratory, 2008: 21-29.
    [52] Clark RM, Sivaganesan M. Predicting chlorine residuals and formation of TTHMs in drinking water[J]. Journal of Environmental Engineering, 1998, 124(12): 1203-1210.
    [53] Clark RM Chlorine Demand and TTHM formation kinetics: A Second-Order Model[J]. Journal of Environmental Engineering, 1998, 124(1): 16-24.
    [54] Grayman WM, Clark RM, Males RM. Modeling distribution system water qual- ity dynamic approach[J]. Journal of Water Resources Planning and Managem- ent, 1998, 114(3): 295-312
    [55]吴文燕,赵洪宾,解守志.监测配水管网水质[J].中国给水排水, 1997, 13(1): 25-27
    [56]吴文燕.给水管网系统水质模型的研究[D].哈尔滨:哈尔滨建筑大学, 1999: 20-25.
    [57]李欣.配水管网水质变化的研究[D].哈尔滨:哈尔滨建筑大学, 1999:19-39.
    [58]李爽,张晓健.给水管壁生物膜的生长发育及其影响因素[J].中国给水排水. 2003, 19(13):49-52.
    [59]徐洪福,赵洪宾,尤作亮,等.配水系统的水质模型研究概况[J].中国给水排水, 2002, 18(3):33-36.
    [60] Jeffrey Y, Goodricha A, Clark RM, et al. Modeling and testing of reactive contaminant transport in drinking water pipes: Chlorine response and implications for online contaminant detection[J]. Water Research, 2008, 42(6): 1397-1412.
    [61] Idornigie E, Templeton MR, Maksimovic C, et al. The impact of variable hydraulic operation of water distribution networks on disinfection by-product concentrations[J]. Urban Water Journal, 2010, 7(5):301– 307
    [62] Johnstone DW, Sanchez NP, Miller CM. Parallel factor analysis of excitation– emission matrices to assess drinking water disinfection byproduct formation during a peak formation period[J]. Environmental Engineering Science. 2009, 26(10): 1551-1559
    [63] Taras MJ. Preliminary. studies on the chlorine demand of specific chemical compounds[J]. Journal of the American Water Works Association, 1950, 42(3): 462-474.
    [64] Zhanga GR, Kienea L, Wablea O, et al. Modelling of chlorine residual in the water distribution network of Macao[J]. Environmental Technology, 1992, 13(10): 937-946
    [65] Rossman LA, Clark RM, Grayman WM. Modeling chlorine residuals in drin- king-water distribution systems[J]. Journal of Environmental Engineering, 1994, 120(4):803-820
    [66] Snead MC, Olivieri VP, Kruse CW, et al. Benefits of Maintaining a Chlorine Residual in Water Supply Systems[M]. Washington: Environmental Protection Agency, 1980:12-16.
    [67] Clark RM, Goodrich JA, Wymer LJ. Effect of the distribution system on drinking-water quality[J]. Journal of Water SRT-AQUA, 1993, 42(1): 30-38
    [68] Clark RM, Sivaganesan M. Predicting chlorine residuals and formation of TTHMs in drinking water[J]. Journal of Environmental Engineering, 1998, 124(12): 1203 -1210
    [69] Hua F, West JR, Barker RA, et al. Modelling of chlorine decay in municipal water supplies[J]. Water Research, 1999, 33(12):2735-2746.
    [70] Maier SH, Powel RS, Woodward CA. Calibration and comparison of chlorine decay models for a test water distribution system[J]. Water Research, 2000,34(8):2301-2309.
    [71] Powell JC, Hallam NB, West JR, et al.). Factors which control bulk chlorine decay rates[J]. Water Research, 2000, 34(1):117-126
    [72] Hallam NB, Hua F, West JR, et al. Bulk decay of chlorine in water distribution systems[J]. Journal of Water Resources Planning and Management, 2003, 129 (1):78-81
    [73] Westerhoff P, Reckhow D, Amy G, et al. Mechanistic-based disinfectant and disinfectant by-product models[R]. Washington: Environmental Protection Agency, 2002:1-6.
    [74] Clark RM. Chlorine demand and trihalomethane formation kinetics: a sec- ond-order model[J]. Journal of Environmental Engineering. 1998, 124(1): 16–24
    [75] Clark RM. and Sivaganesan M. Predicting chlorine residuals in drinking water: second order model[J]. Journal of Water Resources Planning and Management, 2002, 128(2):152-161.
    [76] Huang J, McBean E. Using bayesian statistics to estimate the coefficients of a two-component second-order chlorine bulk decay model for a water distribution system[J]. Water Research, 2007, 41(2): 287-294.
    [77] Clark RM., Haught RC.). Characterizing pipe wall demand: implications for water quality modeling[J]. Journal of Water Resources Planning and Mana- gement, 2005, 131(3): 208-217.
    [78] Clark RM, Haught RC. Characterizing the pipe wall demand for free chlorine in metallic pipes[C]. Salt Lake City:Proceedings Of The 2004 World Water and Environmental Re- sources Congress.2004:13-29.
    [79] Eisnor JD, Gagnon GA. A framework for the implementation and design of pilot-scale distribution systems[J]. Journal of Water Supply: Research & Tech- nology, 2003, 52(7):501 -519
    [80] Lari KS, Reeuwijk M, Maksimovi? ?edo. Simplified numerical and analytical approach for solutes in turbulent flow reacting with smooth pipe walls[J]. Journal of Hydraulic Engineering, 2010, 136(9): 626-632
    [81] Tamminen S, Ramos H, Covas D. Water supply system performance for dif- ferent pipe materials part I: water quality qnalysis[J]. Water Resour Manage, 2008, 22(1):1579–1607.
    [82] Hallama NB, Westa JR, Forstera CF, et al. The decay of chlorine associated with the pipe wall in water distribution systems[J]. Water Research, 2002, 6(14): 3479–3488.
    [83] KiénéL, Lu W, Lévi Y. Relative importance of the phenomena responsible forchlorine decay in drinking water distribution systems[J]. Water Science and Technology, 1998, 38(6):219-227
    [84] Sharp WW, Pfeffer J, Morgan M. In situ chlorine decay rate testing[C]. Cincinnati: Proceedings of the Water Quality Modeling in Distribution Systems Technology Transfer Conference.1991:20-26.
    [85] Vasconcelos J, Rossman LA, Grayman WM, et al. Kinetics of chlorine decay[J]. Journal of the American Water Works Association, 1997, 89 (7):55–65.
    [86] Huang J, McBean EA. Using bayesian statistics to estimate chlorine wall decay coefficients for water supply system[J]. Journal of Water Resources Planning and Management, 2008, 134(2):129-137.
    [87] Zhanga Z, Stouta J, Yub V, et al. Effect of pipe corrosion scales on chlorine dioxide consumption in drinking water distribution systems[J], Water Research, 2008, 42(2):129-136.
    [88] Al-Jasser A.O. Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect[J], Water Research, 2007, 42(2):387-396.
    [89] Ramos HM, Loureiro D, Lopes A. Evaluation of chlorine decay in drinking water systems for different flow conditions: from theory to practice[J]. Water Resources Management, 2010, 24(4):815–834
    [90] Tryby ME, Boccelli DL, Koechling MT, et al. Booster chlorination for man- aging disinfectant residuals. Journal of the American Water Works Association, 1999, 91(1), 95–108.
    [91] Rico-Ramireza V, Cruza F, Gomez-De L, et al. Two-stage stochastic approach to the optimal location of booster disinfection stations[J]. Industrial & Engineering Chemistry Research, 2007, 46(19):6284-6292.
    [92] Boccelli DL, Tryby ME, Uber JG. Optimal scheduling of booster disinfection in water distribution systems[J]. Journal of Water Resources Plonning and Management, 1998, 124(2):99-112.
    [93] Prasad TD, Walters GA, Savic DA. Booster disinfection of water supply net- works: multiobjective approach[J]. Journal of Water Resources Planning and Management, 2004, 130(5): 367-376
    [94] Propato M, Uber JG. Booster system design using mixed-integer quadratic programming[J]. Journal of Water Resources Planning and Management, 2004, 130(4):348-352
    [95] Ostfeld A, Salomons E. Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems[J]. Engineering Optimization, 2006, 38(3):337 -352
    [96] Lansey K, Pasha F, Pool S, et al. Locating Satellite Booster DisinfectantStations[J]. Journal of Water Resources Planning and Management, 2007, 133 (4): 372-376.
    [97] Shannon L, VanBriesen JM. Booster disinfection for response to contamination in a drinking water distribution system[J]. Journal of Water Resources Planning and Management, 2009, 135(6): 502-511.
    [98] Carrico B, Singer PC, Impact of booster chlorination on chlorine decay and THM production: simulated analysis[J]. Journal of Environmental Engineering, 2009, 135(10): 928-935
    [99] Kansal M.L., Arora G. Reliability analysis of booster chlorination in urban water distribution networks[C]. Florida:Proceedings of World Water and Environmental Resources Congress. 2001:31-47.
    [100]Kang D, Lansey Kevin. Real-time optimal valve operation and booster disin- fection for water quality in water distribution systems[J]. Journal of Water Resources Planning and Management, 2010, 136(4): 463-473.
    [101]Boccelli DL, Tryby ME, Uber JG, et al. Optimal location of booster disin- fection stations for residual maintenance[J]. UK:In Proceedings of the Annual Water Resource Planning Management Conference, 1998:266-271.
    [102]Tryby ME, Boccelli DL, Uber JG, et al. Facility location model for booster dis- infection of water supply networks. Journal of Water Resources Planning and Management. 2002, 128(5):322-333.
    [103]赵洪宾.给水管网系统理论与分析[M].北京:中国建筑工业出版社. 2003: 377-379
    [104]鲁宁波.城市给水管网二次加氯优化及算法实现[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2006:43-56.
    [105]邓涛.基于水质监测点水质状况进行现有加氯点加氯模式优化[D].哈尔滨:哈尔滨工业大学博士学位论文, 2007:31-63.
    [106]迟海燕.城市供水管网氯的优化配置[D].天津:天津大学硕士学位论文, 2004:63-74.
    [107]李莉.基于水质安全的城市输配水系统二次加氯优化与分析[D],浙江:浙江大学硕士学位论文, 2008:96-103.
    [108]张燕,李莉.基于理想余氯质量浓度的给水管网二次加氯优化[J].浙江大学学报(工学版), 2010, 44(5): 930-934
    [109]黄雅芳.城市配水管网二次加氯的优化研究[D].湖南:湖南大学硕士学位论文, 2005:61-77.
    [110]刘渊,王慧斌,崔建国.供水管网多点加氯优化选址方法的研究[J].太原理工大学学报, 2006, 37(5):561-564
    [111]马力辉.供水管网余氯优化控制决策支持系统研究[D].上海:同济大学博士学位论文, 2007:43-56.
    [112]Sadiq R, Rodriguez M. Disinfection by-products (DBPs) in drinking water and the predictive models for their occurrence: a review[J]. Science of the Total Environment, 2004, 321(13):21-46.
    [113]Horton RK. An Index-number System for Rating Water Quality[J]. Journal of Water Pollution Control Federation, 1965, 37(3):300-306.
    [114]Shrestha S. Use of principal component analysis, factor analysis and disc- riminant analysis to evaluate spatial and temporal variations in water quality of the Mekong River[J]. Journal of Hydroinformatics, 2008, 10(1): 43–56.
    [115]Wang WC, Chau KW, Cheng CT, et al. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series[J]. Journal of Hydrology, 2009, 374(3): 294-306.
    [116]Weber C, Bunn S. Water Distribution Optimization: Taking SCADA One Step Forward[C]. USA:Proceedings of World Environmental and Water Resources Congress, 2009:2182 -2190.
    [117]OPC Data Access Custom Interface Specification Version 2105 [S]. OPC Foundation, 2002:12-16.
    [118]欧阳红,马军.离子色谱法测定饮用水中微量无机消毒副产物[J].哈尔滨建筑大学学报, 2001, 34(4):70-73
    [119]曹志先,魏良玫.对流扩散反应型方程的一种稳定的算子分裂格式[J].水动力学研究与进展[J]. 1991, 6(1):60-68
    [120]Shang F, Uber JG. EPANET Multi-Species Extension User`s annual[S]. Cincinnati: USEPA, 2007: 1-16.
    [121]金翔秋,林娟娟.刚性常微分方程的数值解法在化学动力学中的应用[J].温州职业技术学院学报, 2003, 3(2): 46-49
    [122]Sandu A, Verwer JG, Blom JG, et al. Carmichael, Benchmarking stiff ODE solvers for atmospheric chemistry problems II:Rosenbrock solvers[J]. Atmospheric Environment. 1997, 31 (1):3459-3472
    [123]Verwer JG., Spee EJ, Blom JG, et al. A second order Rosenbrock method applied to photochemical dispersion problems[J]. Journal of Scientific Computing, 1999, 20(12):1456-1480.
    [124]Dekker K, Verwer JG.. Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations[M]. North Holland:Elsevier, Amsterdam, 1984:56-79.
    [125]Rossman LA. EPANET2 User`s manual[S]. Cincinnati USEPA. 2000:23-56
    [126]Li X, Zhao H. Development of a model for predicting trihalomethanes propa-gation in water distribution systems[J]. Chemosphere, 2006, 62(1): 1028–1032
    [127]李欣,马建薇.生物可降解溶解性有机碳(BDOC)降解动力学研究[J].哈尔滨工业大学学报, 2005, 37(9): 1198-1200
    [128]Villanuevaa CM, Kogevinasa M, Grimaltb JO. Haloacetic acids and trihalo- methanes in finished drinking waters from heterogeneous sources[J]. Water Research, 2003, 37(2):953–958.
    [129]李娜娜.基于SOM算法的城市给水管网水质评价[D].哈尔滨工业大学硕士学位论文. 2008:23-56
    [130]Kohonen T,. Self-organizing Maps[M]. Berlin: Springer-Verlag. 1995:103-124
    [131]李飞宇.城市给水管网水质安全性评价体系研究[D].哈尔滨工业大学硕士学位论文. 2008:49-62
    [132]Sahinidis NV. Optimization Under Uncertainty: State-of-the-Art and Opport- unities[J]. Computers & Chemical Engineering, 2004, 28(3):971-983.
    [133]Snoeyink VL, Haas CN, Boulos PF. Drinking water distribution systems: ass- essing and reducing risks[M]. Washington: National Academies Press, 2006:56-73.
    [134]Gutzler DS, Nims JS. Interannual variability of water demand and summer climate in Albuquerque, New Mexico[J]. Journal of Applied Meteorology, 2005, 44(3):1777-1787.
    [135]Nauges C. Residential water demand in Californiaspreliminary findings[C] California:California Climate Change Center Working Paper, 2005:6-7
    [136]Prasad T. Design of pumped water distribution networks with storage[J]. Journal of Water Resources Planning and Management, 2010, 136(1):129-133
    [137]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社, 2002:46-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700