用户名: 密码: 验证码:
中性粒细胞在牛分枝杆菌感染宿主免疫反应中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛结核病是由牛分枝杆菌感染引起的疾病,对世界养牛业乃至全世界的食品安全和人类健康均产生很大的影响。长久以来的研究都将巨噬细胞作为结核菌感染的主要宿主细胞,但是随着中性粒细胞生理功能的逐步研究明了,其在结核菌感染中的作用也越来越受到人们的重视。中性粒细胞是机体受到感染后最先游走到感染部位的细胞成分,属于机体天然免疫反应的第一道防线,其在对抗胞内菌感染中也起着不可忽视的作用。本研究着眼于中性粒细胞在牛分枝杆菌感染的不同阶段中所发挥作用的不同,研究了在急性感染和慢性感染阶段,即中性粒细胞在机体的抗结核免疫反应中包括固有免疫和获得性免疫阶段所发挥的抗菌防御和致病机理中可能发挥的作用。
     1.本研究利用体外感染试验来模拟在牛结核病急性感染的早期阶段,检测了牛中性粒细胞的功能改变如表型变化、凋亡率以及炎性因子表达等。实验数据表明中性粒细胞受到牛分枝杆菌刺激后,发挥吞噬功能并启动抗菌程序,但是并不能完全清除感染,反而在牛分枝杆菌的刺激下能够促使中性粒细胞以坏死的形式走向死亡;自噬可能参与中性粒细胞杀菌的过程。
     2.本研究以从小鼠分离的原代的中性粒细胞细胞为模型,检测了经过牛分枝杆菌感染的小鼠中性粒细胞其上清液作为刺激剂对巨噬细胞、树突状细胞、淋巴细胞、Ⅱ型肺泡上皮细胞等已经被证实参与在肺脏微环境下抗结核感染中的细胞成分的激活效应。数据表明,中性粒细胞感染结核菌后的旁分泌效应能够有效的激活巨噬细胞并增强其杀菌能力;在一定程度上促进树突状细胞的激活和成熟;能够增强Ⅱ型肺泡上皮细胞抗炎因子等的分泌活性。
     3.本研究对正常牛外周血中性粒细胞体外经牛分枝杆菌感染刺激后以及牛结核病感染牛的外周血中性粒细胞其表达干扰素诱导转录基因以及中性粒细胞的PTX3基因和MPO基因的变化进行了检测。实验数据显示在牛结核病慢性感染过程中,外周血中性粒细胞的干扰素诱导转录基因的表达具有一定的特异性。
Bovine tuberculosis (BTB), a zoonotic disease caused by Mycobacterium bovis(M. bovis) infection, continues to be a major problem in cattle industry and pose a potential threat to food safety and human health worldwide. Interactions between M. bovis and bovine macrophages have been extensively characterized in various studies, while similar analyses in neutrophils, which are one of the other types of white blood cells in mammals, were often overlooked. Neutrophils form the front line of immune defense and are the first inflammatory cells to arrive at sites of infection to eliminate pathogenic bacteria by presenting a diverse collection of antimicrobial molecules. Latest research results imply the participation of neutrophils also in the elimination of intracellular bacterial pathogens. Our reaserch concentrated on investigating the role neutrophils might play in the acute and chronic infection with M. bovis, providing a further understanding of their exact participation in host anti-BTB immunity and tuberculosis progression.
     1. The study was aimed to investigate in vitro modulation of neutrophils functions including phenotypic changes, apoptosis rate, and inflammatory cytokines expression after infection with M. bovis, micking the acute early infection phase. It was demonstrated that phagocytosis of M. bovis activated and enhanced bovine neutrophils functions as well as initialed their defense mechanism, but failed to eliminate the mycobacteria. Moreover, autophagy might get involved in the defense infection process functioning as a protective mechanism.
     2. The supernatant of isolated primary mouse neutrophils infected with M. bovis was used as stimuli to challenge macrophages cells, dendritic cells, lymphocytes, type II alveolar epithelial cells, which have been shown to participate in the effect of anti-tuberculosis infection in the lung micro-environment. Data indicated that neutrophil paracrine effect after M. bovis infection could effectively activate macrophages and enhance the bactericidal activity of macrophages, promote activation and dendritic cell maturation to a certain degree. Meanwile, Type II alveolar epithelial cells display enhanced activity of secreting cytokines..
     3. The expression levels of ten IFN-inducible transcriptional genes in neutrophils from healthy cattle stimulated by M. bovis and neutrophils isolated from three groups of cattle of different infection status was assessed. Additionnally, the changes in the expression of myeloperoxidase and pentraxin-related protein pentraxin-inducible protein genes were also tested during bovine tuberculosis infection. Our results demonstrated a specific expression pattern of IFN-inducible transcriptional genes and MPO and PTX3genes in neutrophils during bovine tuberculosis infection.
引文
[1]P. Tiruviluamala, L.B, Reichman. Tuberculosis. Annu Rev Public Health.2002,23:403-426
    [2]O. Cosivi, J.M. Grange, C. Daborn, M.C. Raviglione, T. Fujikura, D. Cousins, R. Robinson, H. Huchzermeyer, I. De Kantor, F. Meslin. Zoonotic Tuberculosis Due to Mycobacterium Bovis in Developing Countries. Emerging Infectious Diseases.1998,4 (1):59
    [3]J. Pollock, S. Neill. Mycobacterium Boviss Infection and Tuberculosis in Cattle. The Veterinary Journal.2002,163 (2):115-127
    [4]C. Phillips, C. Foster, P. Morris, R. Teverson. The Transmission of< I> Mycobacterium Bovis Infection to Cattle. Research In Veterinary Science.2003,74 (1):1-15
    [5]陆承平.兽医微生物学[M].北京:中国农业出版社,2002.
    [6]S. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. Gordon, K. Eiglmeier, S. Gas, C.r. Barry. Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence. Nature.1998,393 (6685):537-544
    [7]T. Garnier, K. Eiglmeier, J.-C. Camus, N. Medina, H. Mansoor, M. Pryor, S. Duthoy, S. Grondin, C. Lacroix, C. Monsempe. The Complete Genome Sequence of Mycobacterium Bovis. Proceedings of the National Academy of Sciences.2003,100 (13):7877-7882
    [8]M. Behr, M. Wilson, W. Gill, H. Salamon, G. Schoolnik, S. Rane, P. Small. Comparative Genomics of Bcg Vaccines by Whole-Genome DNA Microarray. Science.1999,284 (5419):1520-1523
    [9]W.Y. Ayele, S.D. Neill, J. Zinsstag, M.G. Weiss, I. Pavlik. Bovine Tuberculosis:An Old Disease but a New Threat to Africa. Int J Tuberc Lung Dis.2004,8 (8):924-937
    [10]L.N. Kuzina, S.A. Belichenko. [Interrelations between Human and Bovine Tuberculosis]. Probi Tuberk.1984 (12):13-15
    [11]S.H. Siddiqi, N. Niaz. Bovine Tuberculosis. J Pak Med Assoc.1978,28 (9):118-121
    [12]J. Chapman. Bovine Tuberculosis. Veterinary Record.1999,144 (21):596
    [13]R. Minor. Bovine Tuberculosis. Veterinary Record.1999,144 (21):595-596
    [14]G.B. Neumann. Bovine Tuberculosis-an Increasingly Rare Event. Australian Veterinary Journal. 1999,77 (7):445-446
    [15]R. Barthel, J.A. Piedrahita, D.N. McMurray, J. Payeur, D. Baca, F. Suarez Guemes, V.S. Perumaalla, T.A. Ficht, J.W. Templeton, L.G. Adams. Pathologic Findings and Association of Mycobacterium Bovis Infection with the Bovine Nrampl Gene in Cattle from Herds with Naturally Occurring Tuberculosis. American Journal Of Veterinary Research.2000,61 (9):1140-1144
    [16]J. Gallagher. The Bovine Tuberculosis Dilemma-What Do We Do Next? Veterinary Journal. 2000,160 (2):85-86
    [17]O. Cosivi, F. Meslin, C. Daborn, J. Grange. Epidemiology of Mycobacterium Bovis Infection in Animals and Humans, with Particular Reference to Africa. Revue scientifique et technique (International Office of Epizootics).1995,14 (3):733-746
    [18]H. Kohler, G. Martin, D. Schimmel. [Immunological Methods for the Diagnosis of Bovine Tuberculosis-State of the Art]. Berl Munch Tierarztl Wochenschr.2000,113 (10):388-391
    [19]S.D. Neill, J.M. Pollock. Testing for Bovine Tuberculosis-More Than Skin Deep. Veterinary Journal.2000,160 (1):3-5
    [20]S.G. Rhodes, N. Palmer, S.P. Graham, A.E. Bianco, R.G. Hewinson, H.M. Vordermeier. Distinct Response Kinetics of Gamma Interferon and Interleukin-4 in Bovine Tuberculosis. Infection And Immunity.2000,68 (9):5393-5400
    [21]C. Lutze-Wallace, S. Chen, C. Turcotte. Laboratory Diagnosis of Bovine Tuberculosis in Canada for Calendar Year 2003. Canadian Veterinary Journal-revue Veterinaire Canadienne.2004,45 (11): 915-916
    [22]P.R. Wood, S.L. Jones. Bovigam:An in Vitro Cellular Diagnostic Test for Bovine Tuberculosis. Tuberculosis (Edinb).2001,81 (1-2):147-155
    [23]M.L. Doherty, J.P. Cassidy. New Perspectives on Bovine Tuberculosis. Veterinary Journal.2002, 163 (2):109-110
    [24]C. Lutze-Wallace, C. Turcotte. Laboratory Diagnosis of Bovine Tuberculosis in Canada for Calendar Year 2004. Canadian Veterinary Journal-revue Veterinaire Canadienne.2005,46 (9):797-799
    [25]M. Bose. Natural Reservoir, Zoonotic Tuberculosis & Interface with Human Tuberculosis:An Unsolved Question. The Indian journal of medical research.2008,128 (1):4
    [26]R. De la Rua-Domenech. Human< I> Mycobacterium Bovis Infection in the United Kingdom:Incidence, Risks, Control Measures and Review of the Zoonotic Aspects of Bovine Tuberculosis. Tuberculosis.2006,86 (2):77-109
    [27]G.M. Shirima, R.R. Kazwala, D.M. Kambarage. Prevalence of Bovine Tuberculosis in Cattle in Different Farming Systems in the Eastern Zone of Tanzania. Preventive Veterinary Medicine.2003,57 (3):167-172
    [28]N.P. Hart. Control of Bovine Tuberculosis. Veterinary Record.2003,152 (19):603
    [29]R. Minor. Control of Bovine Tuberculosis. Veterinary Record.2003,152 (19):603-604
    [30]F. Reviriego Gordejo, J. Vermeersch. Towards Eradication of Bovine Tuberculosis in the European Union. Veterinary Microbiology.2006,112 (2):101-109
    [31]B. Radunz. Surveillance and Risk Management During the Latter Stages of Eradication: Experiences from Australia. Veterinary Microbiology.2006,112 (2):283-290
    [32]D.M. Wolfe, O. Berke, S.J. More, D.F. Kelton, P.W. White, J.J. O'Keeffe, S.W. Martin. The Risk of a Positive Test for Bovine Tuberculosis in Cattle Purchased from Herds with and without a Recent History of Bovine Tuberculosis in Ireland. Preventive Veterinary Medicine.2009,92 (1-2):99-105
    [33]J.J. Carrique-Mas, G.F. Medley, L.E. Green. Risks for Bovine Tuberculosis in British Cattle Farms Restocked after the Foot and Mouth Disease Epidemic of 2001. Preventive Veterinary Medicine.2008, 84 (1-2):85-93
    [34]H.K. Prasad, A. Singhal, A. Mishra, N.P. Shah, V.M. Katoch, S.S. Thakral, D.V. Singh, S. Chumber, S. Bal, S. Aggarwal, M.V. Padma, S. Kumar, M.K. Singh, S.K. Acharya. Bovine Tuberculosis in India: Potential Basis for Zoonosis. Tuberculosis (Edinb).2005,85 (5-6):421-428
    [35]T.C. Rodwell, N.P. Kriek, R.G. Bengis, I.J. Whyte, P.C. Viijoen, V. de Vos, W.M. Boyce. Prevalence of Bovine Tuberculosis in African Buffalo at Kruger National Park. J Wildl Dis.2001,37 (2):258-264
    [36]N. Shah, A. Singhal, A. Jain, P. Kumar, S. Uppal, M. Srivatsava, H. Prasad. Occurrence of Overlooked Zoonotic Tuberculosis:Detection of Mycobacterium Bovis in Human Cerebrospinai Fluid. Journal Of Clinical Microbiology.2006,44 (4):1352-1358
    [37]M. Scantlebury, M.R. Hutchings, D.J. Allcroft, S. Harris. Risk of Disease from Wildlife Reservoirs:Badgers, Cattle, and Bovine Tuberculosis. Journal Of Dairy Science.2004,87 (2):330-339
    [38]G.R. Wint, T.P. Robinson, D.M. Bourn, P.A. Durr, S.I. Hay, S.E. Randolph, D.J. Rogers. Mapping Bovine Tuberculosis in Great Britain Using Environmental Data. Trends In Microbiology.2002,10 (10): 441-444
    [39]V.W. Lees, S. Copeland, P. Rousseau. Bovine Tuberculosis in Elk (Cervus Elaphus Manitobensis) near Riding Mountain National Park, Manitoba, from 1992 to 2002. Canadian Veterinary Journal-revue Veterinaire Canadienne.2003,44 (10):830-831
    [40]E.A. Fischer, H.J. van Roermund, L. Hemerik, M.A. van Asseldonk, M.C. de Jong. Evaluation of Surveillance Strategies for Bovine Tuberculosis (Mycobacterium Bovis) Using an Individual Based Epidemiological Model. Preventive Veterinary Medicine.2005,67 (4):283-301
    [41]I. Van Rhijn, J. Godfroid, A. Michel, V. Rutten. Bovine Tuberculosis as a Model for Human Tuberculosis:Advantages over Small Animal Models. Microbes And Infection.2008,10 (7):711-715
    [42]R. de la Rua-Domenech. Human Mycobacterium Bovis Infection in the United Kingdom: Incidence, Risks, Control Measures and Review of the Zoonotic Aspects of Bovine Tuberculosis. Tuberculosis (Edinb).2006,86 (2):77-109
    [43]J.M. Gutierrez Garcia. Meat as a Vector of Transmission of Bovine Tuberculosis to Humans in Spain:A Historical Perspective. Vet Herit.2006,29 (1):25-27
    [44]E.K. Kang'ethe, C.E. Ekuttan, V.N. Kimani. Investigation of the Prevalence of Bovine Tuberculosis and Risk Factors for Human Infection with Bovine Tuberculosis among Dairy and Non-Dairy Farming Neighbour Households in Dagoretti Division, Nairobi, Kenya. East Afr Med J.2007, 84 (11 Suppl):S92-95
    [45]S.I. Cadmus, C.A. Agada, Onoja, II, I. Salisu. Risk Factors Associated with Bovine Tuberculosis in Some Selected Herds in Nigeria. Trop Anim Health Prod.2010,42 (4):547-549
    [46]J.L. Flynn, J. Chan. What's Good for the Host Is Good for the Bug. Trends In Microbiology. 2005,13 (3):98-102
    [47]D.G. Russell, P.-J. Cardona, M.-J. Kim, S. Allain, F. Altare. Foamy Macrophages and the Progression of the Human Tuberculosis Granuloma. Nature Immunology.2009,10 (9):943-948
    [48]B.C. VanderVen, R.M. Yates, D.G. Russell. Intraphagosomal Measurement of the Magnitude and Duration of the Oxidative Burst. Traffic.2009,10 (4):372-378
    [49]R.M. Yates, A. Hermetter, D.G. Russell. The Kinetics of Phagosome Maturation as a Function of Phagosome/lysosome Fusion and Acquisition of Hydrolytic Activity. Traffic.2005,6 (5):413-420
    [50]S. Axelrod, H. Oschkinat, J. Enders, B. Schlegel, V. Brinkmann, S.H. Kaufmann, A. Haas, U.E. Schaible. Delay of Phagosome Maturation by a Mycobacterial Lipid Is Reversed by Nitric Oxide. Cellular Microbiology.2008,10 (7):1530-1545
    [51]S. Sugii, P.C. Reid, N. Ohgami, H. Du, T.-Y. Chang. Distinct Endosomal Compartments in Early Trafficking of Low Density Lipoprotein-Derived Cholesterol. Journal Of Biological Chemistry.2003,278 (29):27180-27189
    [52]P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch, F. Bardou, M. Daffe, J.-F. Emile, B. Marchou, P.-J. Cardona. Foamy Macrophages from Tuberculous Patients'Granulomas Constitute a Nutrient-Rich Reservoir for M. Tuberculosis Persistence. PLoS pathogens.2008,4 (11):e1000204
    [53]T.R. Rustad, A.M. Sherrid, K.J. Minch, D.R. Sherman. Hypoxia:A Window into Mycobacterium Tuberculosis Latency. Cellular Microbiology.2009,11 (8):1151-1159
    [54]J.D. McKinney, K.H. zu Bentrup, E.J. Munoz-Elias, A. Miczak, B. Chen, W.-T. Chan, D. Swenson, J.C. Sacchettini, W.R. Jacobs, D.G. Russell. Persistence of Mycobacterium Tuberculosis in Macrophages and Mice Requires the Glyoxylate Shunt Enzyme Isocitrate Lyase. Nature.2000,406 (6797):735-738
    [55]K.H. Rohde, R.B. Abramovitch, D.G. Russell.< I> Mycobacterium Tuberculosis Invasion of Macrophages:Linking Bacterial Gene Expression to Environmental Cues. Cell host & microbe.2007,2 (5):352-364
    [56]S. Homolka, S. Niemann, D.G. Russell, K.H. Rohde. Functional Genetic Diversity among Mycobacterium Tuberculosis Complex Clinical Isolates:Delineation of Conserved Core and Lineage-Specific Transcriptomes During Intracellular Survival. PLoS pathogens.2010,6 (7):e1000988
    [57]D.S. Korbel, B.E. Schneider, U.E. Schaible. Innate Immunity in Tuberculosis:Myths and Truth. Microbes And infection.2008,10 (9):995-1004
    [58]L.E. Via, P.L. Lin, S.M. Ray, J. Carrillo, S.S. Allen, S.Y. Eum, K. Taylor, E. Klein, U. Manjunatha, J. Gonzales. Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infection And Immunity.2008,76 (6):2333-2340
    [59]C. Deb, C.-M. Lee, V.S. Dubey, J. Daniel, B. Abomoelak, T.D. Sirakova, S. Pawar, L. Rogers, P.E. Kolattukudy. A Novel in Vitro Multiple-Stress Dormancy Model for Mycobacterium Tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen. PLoS One.2009,4 (6):e6077
    [60]P.J. Converse, P.C. Karakousis, L.G. Klinkenberg, A.K. Kesavan, L.H. Ly, S.S. Allen, J.H. Grosset, S.K. Jain, G. Lamichhane, Y.C. Manabe. Role of the Dosr-Doss Two-Component Regulatory System in Mycobacterium Tuberculosis Virulence in Three Animal Models. Infection And Immunity.2009,77 (3): 1230-1237
    [61]R.L. Leistikow, R.A. Morton, I.L. Bartek, I. Frimpong, K. Wagner, M.I. Voskuil. The Mycobacterium Tuberculosis Dosr Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy. Journal Of Bacteriology.2010,192 (6):1662-1670
    [62]N.M. Nesbitt, X. Yang, P. Fontan, I. Kolesnikova, I. Smith, N.S. Sampson, E. Dubnau. A Thiolase of Mycobacterium Tuberculosis Is Required for Virulence and Production of Androstenedione and Androstadienedione from Cholesterol. Infection And Immunity.2010,78 (1):275-282
    [63]J.G. Asensio, C. Maia, N.L. Ferrer, N. Barilone, F. Laval, C.Y. Soto, N. Winter, M. Daffe, B. Gicquel, C. Martin. The Virulence-Associated Two-Component Phop-Phor System Controls the Biosynthesis of Polyketide-Derived Lipids in Mycobacterium Tuberculosis. Journal Of Biological Chemistry.2006,281 (3):1313-1316
    [64]T. Ulrichs, S.H. Kaufmann. New Insights into the Function of Granulomas in Human Tuberculosis. The Journal of pathology.2006,208 (2):261-269
    [65]E.J. Munoz-Eli as, A.M. Upton, J. Cherian, J.D. McKinney. Role of the Methylcitrate Cycle in Mycobacterium Tuberculosis Metabolism, Intracellular Growth, and Virulence. Molecular Microbiology. 2006,60 (5):1109-1122
    [66]S. Savvi, D.F. Warner, B.D. Kana, J.D. McKinney, V. Mizrahi, S.S. Dawes. Functional Characterization of a Vitamin B12-Dependent Methylmalonyl Pathway in Mycobacterium Tuberculosis: Implications for Propionate Metabolism During Growth on Fatty Acids. Journal Of Bacteriology.2008, 190 (11):3886-3895
    [67]M. Jackson, G. Stadthagen, B. Gicquel. Long-Chain Multiple Methyl-Branched Fatty Acid-Containing Lipids of< I> Mycobacterium Tuberculosis:Biosynthesis, Transport, Regulation and Biological Activities. Tuberculosis.2007,87 (2):78-86
    [68]M. Jain, C.J. Petzold, M.W. Schelle, M.D. Leavell, J.D. Mougous, C.R. Bertozzi, J.A. Leary, J.S. Cox. Lipidomics Reveals Control of Mycobacterium Tuberculosis Virulence Lipids Via Metabolic Coupling. Proceedings of the National Academy of Sciences.2007,104(12):5133-5138
    [69]A.K. Pandey, C.M. Sassetti. Mycobacterial Persistence Requires the Utilization of Host Cholesterol. Proceedings of the National Academy of Sciences.2008,105 (11):4376-4380
    [70]X. Yang, N.M. Nesbitt, E. Dubnau, I. Smith, N.S. Sampson. Cholesterol Metabolism Increases the Metabolic Pool of Propionate in Mycobacterium Tuberculosis. Biochemistry.2009,48 (18): 3819-3821
    [71]D. Schnappinger, S. Ehrt, M.I. Voskuil, Y. Liu, J.A. Mangan, I.M. Monahan, G. Dolganov, B. Efron, P.D. Butcher, C. Nathan. Transcriptional Adaptation of Mycobacterium Tuberculosis within Macrophages Insights into the Phagosomal Environment. The Journal of experimental medicine.2003, 198 (5):693-704
    [72]H. D'Avila, R.C. Melo, G.G. Parreira, E. Werneck-Barroso, H.C. Castro-Faria-Neto, P.T. Bozza. Mycobacterium Bovis Bacillus Calmette-Guerin Induces Tlr2-Mediated Formation of Lipid Bodies: Intracellular Domains for Eicosanoid Synthesis in Vivo. The Journal of immunology.2006,176 (5): 3087-3097
    [73]D.M. Bowdish, K. Sakamoto, M.-J. Kim, M. Kroos, S. Mukhopadhyay, C.A. Leifer, K. Tryggvason, S. Gordon, D.G. Russell. Marco, Tlr2, and Cd14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium Tuberculosis. PLoS pathogens.2009,5 (6): e1000474
    [74]M.J. Kim, H.C. Wainwright, M. Locketz, L.G. Bekker, G.B. Walther, C. Dittrich, A. Visser, W. Wang, F.F. Hsu, U. Wiehart. Caseation of Human Tuberculosis Granulomas Correlates with Elevated Host Lipid Metabolism. EMBO molecular medicine.2010,2 (7):258-274
    [75]R.L. Hunter, C. Jagannath, J.K. Actor. Pathology of Postprimary Tuberculosis in Humans and Mice:Contradiction of Long-Held Beliefs. Tuberculosis.2007,87 (4):267-278
    [76]C. Nathan. Neutrophils and Immunity:Challenges and Opportunities. Nature Reviews Immunology.2006,6 (3):173-182
    [77]V. Kumar, A. Sharma. Neutrophils:Cinderella of Innate Immune System. International Immunopharmacology.2010,10 (11):1325-1334
    [78]N. Borregaard. Neutrophils, from Marrow to Microbes. Immunity.2010,33 (5):657-670
    [79]J. Pillay, I. den Braber, N. Vrisekoop, L.M. Kwast, R.J. de Boer, J.A. Borghans, K. Tesselaar, L. Koenderman. In Vivo Labeling with 2h2o Reveals a Human Neutrophil Lifespan of 5.4 Days. Blood.2010, 116 (4):625-627
    [80]N. Borregaard, J.B. Cowland. Granules of the Human Neutrophilic Polymorphonuclear Leukocyte. Blood.1997,89 (10):3503-3521
    [81]S.D. Kobayashi, F.R. DeLeo. Role of Neutrophils in Innate Immunity:A Systems Biology-Level Approach. Wiley Interdisciplinary Reviews:Systems Biology and Medicine.2009,1 (3):309-333
    [82]W.L. Lee, R.E. Harrison, S. Grinstein. Phagocytosis by Neutrophils. Microbes And Infection. 2003,5 (14):1299-1306
    [83]A.W. Segal. How Neutrophils Kill Microbes. Annual Review Of Immunology.2005,23:197
    [84]N.D. Burg, M.H. Pillinger. The Neutrophil:Function and Regulation in Innate and Humoral Immunity. Clinical Immunology.2001,99 (1):7-17
    [85]D. Allan, P. Thomas, A.R. Limbrick. The Isolation and Characterization of 60 Nm Vesicles ('Nanovesicles') Produced During lonophore A23187-Induced Budding of Human Erythrocytes. Biochem. J.1980,188:881-887
    [86]O. Gasser, C. Hess, S. Miot, C. Deon, J.-C. Sanchez, J. Schifferli. Characterisation and Properties of Ectosomes Released by Human Polymorphonuclear Neutrophils. Experimental Cell Research.2003, 285 (2):243-257
    [87]O. Gasser, J.A. Schifferli. Activated Polymorphonuclear Neutrophils Disseminate Anti-Inflammatory Microparticles by Ectocytosis. Blood.2004,104 (8):2543-2548
    [88]C. Eken, O. Gasser, G. Zenhaeusern, I. Oehri, C. Hess, J.A. Schifferli. Polymorphonuclear Neutrophil-Derived Ectosomes Interfere with the Maturation of Monocyte-Derived Dendritic Cells. The Journal of immunology.2008,180 (2):817-824
    [89]P. Gonzalez-Cano, R. Mondragon-Flores, L.E. Sanchez-Torres, S. Gonzalez-Pozos, M. Silva-Miranda, A. Monroy-Ostria, S. Estrada-Parra, I. Estrada-Garcia. Mycobacterium Tuberculosis H37rv Induces Ectosome Release in Human Polymorphonuclear Neutrophils. Tuberculosis.2010,90 (2):125-134
    [90]G.P. Sandilands, Z. Ahmed, N. Perry, M. Davison, A. Lupton, B. Young. Cross-Linking of Neutrophil Cd11b Results in Rapid Cell Surface Expression of Molecules Required for Antigen Presentation and T-Cell Activation. Immunology.2005,114 (3):354-368
    [91]N.A. Fanger, C. Liu, P.M. Guyre, K. Wardwell, J. O'Neil, T.L Guo, T.P. Christian, S.P. Mudzinski, E.J. Gosselin. Activation of Human T Cells by Major Histocompatability Complex Class li Expressing Neutrophils:Proliferation in the Presence of Superantigen, but Not Tetanus Toxoid. Blood.1997,89 (11):4128-4135
    [92]E. Gosselin, K. Wardwell, W. Rigby, P. Guyre. Induction of Mhc Class li on Human Polymorphonuclear Neutrophils by Granulocyte/Macrophage Colony-Stimulating Factor, Ifn-Gamma, and II-3. The Journal of immunology.1993,151 (3):1482-1490
    [93]N.S. Potter, C.V. Harding. Neutrophils Process Exogenous Bacteria Via an Alternate Class I Mhc Processing Pathway for Presentation of Peptides to T Lymphocytes. The Journal of immunology.2001, 167 (5):2538-2546
    [94]S. Culshaw, O.R. Millington, J.M. Brewer, I.B. Mclnnes. Murine Neutrophils Present Class li Restricted Antigen. Immunology Letters.2008,118 (1):49-54
    [95]A.S. Cowburn, J. Deighton, S.R. Walmsley, E.R. Chilvers. The Survival Effect of Tnf-A in Human Neutrophils Is Mediated Via Nf-Kb-Dependent II-8 Release. European Journal Of Immunology.2004,34 (6):1733-1743
    [96]D.S.A. Abdallah, C.E. Egan, B.A. Butcher, E.Y. Denkers. Mouse Neutrophils Are Professional Antigen-Presenting Cells Programmed to Instruct Thl and Th17 T-Cell Differentiation. International Immunology.2011,23 (5):317-326
    [97]C. Iking-Konert, C. Cseko, C. Wagner, S. Stegmaier, K. Andrassy, M.G. Hansch. Transdifferentiation of Polymorphonuclear Neutrophils:Acquisition of Cd83 and Other Functional Characteristics of Dendritic Cells. Journal of molecular medicine.2001,79 (8):464-474
    [98]C. Iking-Konert, C. Wagner, B. Denefleh, F. Hug, M. Schneider, K. Andrassy, G. Hansch. Up-Regulation of the Dendritic Cell Marker Cd83 on Polymorphonuclear Neutrophils (Pmn):Divergent Expression in Acute Bacterial Infections and Chronic Inflammatory Disease. Clinical & Experimental Immunology.2002,130 (3):501-508
    [99]M. Aleman, S. Silvia, P.L. Schierloh, L. Alves, N. Yokobori, M. Baldini, E. Abbate, M.C. Sasiain. In Tuberculous Pleural Effusions, Activated Neutrophils Undergo Apoptosis and Acquire a Dendritic Cell-Like Phenotype. Journal Of Infectious Diseases.2005,192 (3):399-409
    [100]S.-Y. Eum, J.-H. Kong, M.-S. Hong, Y.-J. Lee, J.-H. Kim, S.-H. Hwang, S.-N. Cho, L.E. Via, C.E. Barry. Neutrophils Are the Predominant Infected Phagocytic Cells in the Airways of Patients with Active Pulmonary Tb. CHEST Journal.2010,137 (1):122-128
    [101]M. Aleman, S. de la Barrera, P. Schierloh, N. Yokobori, M. Baldini, R. Musella, E. Abbate, M. Sasiain. Spontaneous or Mycobacterium Tuberculosis-Induced Apoptotic Neutrophils Exert Opposite Effects on the Dendritic Cell-Mediated Immune Response. European Journal Of Immunology.2007,37 (6):1524-1537
    [102]B.H. Tan, C. Meinken, M. Bastian, H. Bruns, A. Legaspi, M.T. Ochoa, S.R. Krutzik, B.R. Bloom, T. Ganz, R.L. Modlin. Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. The Journal of immunology.2006,177 (3):1864-1871
    [103]A. Mantovani, M.A. Cassatella, C. Costantini, S. Jaillon. Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nat Rev Immunol.2011,11 (8):519-531
    [104]A. Fietta, C. Francioli, G. Gialdroni Grassi. Mycobacterial Lipoarabinomannan Affects Human Polymorphonuclear and Mononuclear Phagocyte Functions Differently. Haematologica.2000,85 (1): 11-18
    [105]K.V. Sawant, D.N. McMurray. Guinea Pig Neutrophils Infected with Mycobacterium Tuberculosis Produce Cytokines Which Activate Alveolar Macrophages in Noncontact Cultures. Infection And Immunity.2007,75 (4):1870-1877
    [106]R. Appelberg. Mycobacterial Infection Primes T Cells and Macrophages for Enhanced Recruitment of Neutrophils. J Leukoc Biol.1992,51 (5):472-477
    [107]X. Zhang, L. Majlessi, E. Deriaud, C. Leclerc, R. Lo-Man. Coactivation of Syk Kinase and Myd88 Adaptor Protein Pathways by Bacteria Promotes Regulatory Properties of Neutrophils. Immunity. 2009,31 (5):761-771
    [108]C. De Santo, R. Arscott, S. Booth, I. Karydis, M. Jones, R. Asher, M. Salio, M. Middleton, V. Cerundolo. Invariant Nkt Cells Modulate the Suppressive Activity of ll-10-Secreting Neutrophils Differentiated with Serum Amyloid A. Nature Immunology.2010,11 (11):1039-1046
    [109]A. Dorhoi, C. Desel, V. Yeremeev, L. Pradl, V. Brinkmann, H.J. Mollenkopf, K. Hanke, O. Gross, J. Ruland, S.H.E. Kaufmann. The Adaptor Molecule Card9 Is Essential for Tuberculosis Control. Journal Of Experimental Medicine.2010,207 (4):777-792
    [110]M. Aleman, P. Schierloh, S.S. de la Barrera, R.M. Musella, M.A. Saab, M. Baldini, E. Abbate, M.C. Sasiain. Mycobacterium Tuberculosis Triggers Apoptosis in Peripheral Neutrophils Involving Toll-Like Receptor 2 and P38 Mitogen Protein Kinase in Tuberculosis Patients. Infection And Immunity. 2004,72 (9):5150-5158
    [111]H. D'Avila, N.R. Roque, R.M. Cardoso, H.C. Castro-Faria-Neto, R.C. Melo, P.T. Bozza. Neutrophils Recruited to the Site of Mycobacterium Bovis Bcg Infection Undergo Apoptosis and Modulate Lipid Body Biogenesis and Prostaglandin E2 Production by Macrophages. Cellular Microbiology.2008,10 (12):2589-2604
    [112]M. Aleman, S.S. de la Barrera, P.L. Schierloh, L. Alves, N. Yokobori, M. Baldini, E. Abbate, M.C. Sasiain. In Tuberculous Pleural Effusions, Activated Neutrophils Undergo Apoptosis and Acquire a Dendritic Cell-Like Phenotype. Journal Of Infectious Diseases.2005,192 (3):399-409
    [113]D.V. Krysko, K. D'Herde, P. Vandenabeele. Clearance of Apoptotic and Necrotic Cells and Its Immunological Consequences. Apoptosis.2006,11 (10):1709-1726
    [114]Y.A.Z. Persson, R. Blomgran-Julinder, S. Rahman, L.M. Zheng, O. Stendahl. Mycobacterium Tuberculosis-Induced Apoptotic Neutrophils Trigger a Pro-Inflammatory Response in Macrophages through Release of Heat Shock Protein 72, Acting in Synergy with the Bacteria. Microbes And Infection. 2008,10 (3):233-240
    [115]N. Perskvist, M. Long, O. Stendahl, L. Zheng. Mycobacterium Tuberculosis Promotes Apoptosis in Human Neutrophils by Activating Caspase-3 and Altering Expression of Bax/Bcl-XI Via an Oxygen-Dependent Pathway. Journal Of Immunology.2002,168 (12):6358-6365
    [116]H. D'Avila, N.R. Roque, R.M. Cardoso, H.C. Castro-Faria-Neto, R.C. Melo, P.T. Bozza. Neutrophils Recruited to the Site of Mycobacterium Bovis Bcg Infection Undergo Apoptosis and Modulate Lipid Body Biogenesis and Prostaglandin E Production by Macrophages. Cellular Microbiology. 2008,10 (12):2589-2604
    [117]T. Laskay, G. van Zandbergen, W. Solbach. Neutrophil Granulocytes as Host Cells and Transport Vehicles for Intracellular Pathogens:Apoptosis as Infection-Promoting Factor. Immunobiology. 2008,213 (3-4):183-191
    [118]J.J.Y. Kum, Z.A. Khan. Propranolol Inhibits Growth of Hemangioma-Initiating Cells but Does Not Induce Apoptosis. Pediatric Research.2014,75 (3):381-388
    [119]S. Sharma,!. Verma, G. Khuller. Antibacterial Activity of Human Neutrophil Peptide-1 against Mycobacterium Tuberculosis H37rv:In Vitro and Ex Vivo Study. European Respiratory Journal.2000,16 (1):112-117
    [120]Y. Hoshino, S. Hoshino, J.A. Gold, B. Raju, S. Prabhakar, R. Pine, W.N. Rom, K. Nakata, M. Weiden. Mechanisms of Polymorphonuclear Neutrophil-Mediated Induction of Hiv-1 Replication in Macrophages During Pulmonary Tuberculosis. Journal Of Infectious Diseases.2007,195 (9):1303-1310
    [121]C. Morel, E. Badell, V. Abadie, M. Robledo, N. Setterblad, J.C. Gluckman, B. Gicquel, S. Boudaly, N. Winter. Mycobacterium Bovis Bcg-Infected Neutrophils and Dendritic Cells Cooperate to Induce Specific T Cell Responses in Humans and Mice. European Journal Of Immunology.2008,38 (2): 437-447
    [122]P. Seiler, P. Aichele, S. Bandermann, A.E. Hauser, B. Lu, N.P. Gerard, C. Gerard, S. Ehlers, H.J. Mollenkopf, S.H.E. Kaufmann. Early Granuloma Formation after Aerosol Mycobacterium Tuberculosis Infection ls Regulated by Neutrophils Via Cxcr3-Signaling Chemokines. European Journal Of Immunology.2003,33 (10):2676-2686
    [123]M. Petrofsky, L.E. Bermudez. Neutrophils from Mycobacterium Avium-Infected Mice Produce Tnf-Alpha,11-12, and II-1 Beta and Have a Putative Role in Early Host Response. Clinical Immunology.1999,91 (3):354-358
    [124]A. Mantovani, M.A. Cassatella, C. Costantini, S. Jaillon. Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nature Reviews Immunology.2011,11 (8):519-531
    [125]J.W. Lillard, Jr., P.N. Boyaka, O. Chertov, J.J. Oppenheim, J.R. McGhee. Mechanisms for Induction of Acquired Host Immunity by Neutrophil Peptide Defensins. Proc Natl Acad Sci U S A.1999, 96 (2):651-656
    [126]S.A. Hwang, K.M. Wilk, M. Budnicka, M. Olsen, Y.A. Bangale, R.L. Hunter, M.L. Kruzel, J.K. Actor. Lactoferrin Enhanced Efficacy of the Bcg Vaccine to Generate Host Protective Responses against Challenge with Virulent Mycobacterium Tuberculosis. Vaccine.2007,25 (37-38):6730-6743
    [127]R. Blomgran, J.D. Ernst. Lung Neutrophils Facilitate Activation of Naive Antigen-Specific Cd4+ T Cells During Mycobacterium Tuberculosis Infection. Journal Of Immunology.2011,186 (12): 7110-7119
    [128]A. Martino, E. Badell, V. Abadie, V. Balloy, M. Chignard, M.-Y. Mistou, B. Combadiere, C. Combadiere, N. Winter. Mycobacterium Bovis Bacillus Calmette-Guerin Vaccination Mobilizes Innate Myeloid-Derived Suppressor Cells Restraining in Vivo T Cell Priming Via ll-1r-Dependent Nitric Oxide Production. The Journal of immunology.2010,184 (4):2038-2047
    [129]C.-W. Yang, B.S. Strong, M.J. Miller, E.R. Unanue. Neutrophils Influence the Level of Antigen Presentation During the Immune Response to Protein Antigens in Adjuvants. The Journal of immunology.2010,185 (5):2927-2934
    [130]T.K. Kondratieva, E.I. Rubakova, I.A. Linge, V.V. Evstifeev, K.B. Majorov, A.S. Apt. B Cells Delay Neutrophil Migration toward the Site of Stimulus:Tardiness Critical for Effective Bacillus Calmette-Guerin Vaccination against Tuberculosis Infection in Mice. The Journal of immunology.2010, 184 (3):1227-1234
    [131]K.O. Kisich, M. Higgins, G. Diamond, L. Heifets. Tumor Necrosis Factor Alpha Stimulates Killing of Mycobacterium Tuberculosis by Human Neutrophils. Infection And Immunity.2002,70 (8): 4591-4599
    [132]B. Nandi, S.M. Behar. Regulation of Neutrophils by Interferon-Gamma Limits Lung Inflammation During Tuberculosis Infection. Journal Of Experimental Medicine.2011,208 (11): 2251-2262
    [133]G.A. Rook, R. Hernandez-Pando. The Pathogenesis of Tuberculosis. Annual Review Of Microbiology.1996,50:259-284
    [134]M. Morris. The Effects of Koch's Tuberculin Combined with Surgical Measures in the Treatment of Lupus. Br Med J.1893,1 (1692):1154-1155
    [135]R. Hernandez-Pando, L. Pavon, K. Arriaga, H. Orozco, V. Madrid-Marina, G. Rook. Pathogenesis of Tuberculosis in Mice Exposed to Low and High Doses of an Environmental Mycobacterial Saprophyte before Infection. Infection And Immunity.1997,65 (8):3317-3327
    [136]A.L Moreira, L. Tsenova, M.H. Aman, L.-G. Bekker, S. Freeman, B. Mangaliso, U. Schroder, J. Jagirdar, W.N. Rom, M.G. Tovey. Mycobacterial Antigens Exacerbate Disease Manifestations in Mycobacterium Tuberculosis-Infected Mice. Infection And Immunity.2002,70 (4):2100-2107
    [137]R. HernandezPando, L. Pavon, K. Arriaga, H. Orozco, V. MadridMarina, G. Rook. Pathogenesis of Tuberculosis in Mice Exposed to Low and High Doses of an Environmental Mycobacterial Saprophyte before Infection. Infection And Immunity.1997,65 (8):3317-3327
    [138]J.K. Kolls, A. Linden.Interleukin-17 Family Members and Inflammation. Immunity.2004,21 (4):467-476
    [139]M. Miyamoto, O. Prause, M. Sjostrand, M. Laan, J. Lotvall, A. Linden. Endogenous II-17 as a Mediator of Neutrophil Recruitment Caused by Endotoxin Exposure in Mouse Airways. Journal Of Immunology.2003,170 (9):4665-4672
    [140]L. Desvignes, J.D. Ernst. Interferon-f-Responsive Nonhematopoietic Cells Regulate the Immune Response to Mycobacterium Tuberculosis. Immunity.2009,31 (6):974-985
    [141]S.A. Khader, A.M. Cooper.II-23 and II-17 in Tuberculosis. Cytokine.2008,41 (2):79-83
    [142]A. Cruz, A.G. Fraga, J.J. Fountain, J. Rangel-Moreno, E. Torrado, M. Saraiva, D.R. Pereira, T.D. Randall, J. Pedrosa, A.M. Cooper, A.G. Castro. Pathological Role of Interleukin 17 in Mice Subjected to Repeated Bcg Vaccination after Infection with Mycobacterium Tuberculosis. Journal Of Experimental Medicine.2010,207 (8):1609-1616
    [143]T. Zelante, A. De Luca, P. Bonifazi, C. Montagnoli, S. Bozza, S. Moretti, M.L. Belladonna, C. Vacca, C. Conte, P. Mosci, F. Bistoni, P. Puccetti, R.A. Kastelein, M. Kopf, L. Romani. H-23 and the Thl7 Pathway Promote Inflammation and Impair Antifungal Immune Resistance. European Journal Of Immunology.2007,37 (10):2695-2706
    [144]E.B. Eruslanov, I.V. Lyadova, T.K. Kondratieva, K.B. Majorov, I.V. Scheglov, M.O. Orlova, A.S. Apt. Neutrophil Responses to Mycobacterium Tuberculosis Infection in Genetically Susceptible and Resistant Mice. Infection And Immunity.2005,73 (3):1744-1753
    [145]C. Keller, R. Hoffmann, R. Lang, S. Brandau, C. Hermann, S. Ehlers. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes. Infection And Immunity.2006,74 (7):4295-4309
    [146]L. Desvignes, J.D. Ernst. Interferon-Gamma-Responsive Nonhematopoietic Cells Regulate the Immune Response to Mycobacterium Tuberculosis. Immunity.2009,31 (6):974-985
    [147]M. Aleman, A. Garcia, M.A. Saab, S.S. De La Barrera, M. Finiasz, E. Abbate, M.C. Sasiain. Mycobacterium Tuberculosis-Induced Activation Accelerates Apoptosis in Peripheral Blood Neutrophils from Patients with Active Tuberculosis. Am J Respir Cell Mol Biol.2002,27 (5):583-592
    [148]N. Perskvist, M. Long, O. Stendahl, L. Zheng. Mycobacterium Tuberculosis Promotes Apoptosis in Human Neutrophils by Activating Caspase-3 and Altering Expression of Bax/Bcl-XI Via an Oxygen-Dependent Pathway. The Journal of immunology.2002,168 (12):6358-6365
    [149]R. Hernandez-Pando, H. Orozco-Esteves, H. Maldonado, D. Aguilar-Leon, M. Vilchis-Landeros, D. Mata-Espinosa, V. Mendoza, F. Lopez-Casillas. A Combination of a Transforming Growth Factor-B Antagonist and an Inhibitor of Cyclooxygenase Is an Effective Treatment for Murine Pulmonary Tuberculosis. Clinical & Experimental Immunology.2006,144 (2):264-272
    [150]Y.A. Persson, R. Blomgran-Julinder, S. Rahman, L. Zheng, O. Stendahl. Mycobacterium Tuberculosis-Induced Apoptotic Neutrophils Trigger a Pro-Inflammatory Response in Macrophages through Release of Heat Shock Protein 72, Acting in Synergy with the Bacteria. Microbes And Infection. 2008,10 (3):233-240
    [151]R.J. Binder, R. Vatner, P. Srivastava. The Heat-Shock Protein Receptors:Some Answers and More Questions. Tissue Antigens.2004,64 (4):442-451
    [152]R. Hernandez-Pando, D. Aguilar, M.L. Hernandez, H. Orozco, G. Rook. Pulmonary Tuberculosis in Balb/C Mice with Non-Functional II-4 Genes:Changes in the Inflammatory Effects of Tnf-Alpha and in the Regulation of Fibrosis. European Journal Of Immunology.2004,34 (1):174-183
    [153]C. Nathan. Neutrophils and Immunity:Challenges and Opportunities. Nat Rev Immunol. 2006,6 (3):173-182
    [154]R. Appelberg. Neutrophils and Intracellular Pathogens:Beyond Phagocytosis and Killing. Trends In Microbiology.2007,15 (2):87-92
    [155]G.P. Sandilands, Z. Ahmed, N. Perry, M. Davison, A. Lupton, B. Young. Cross-Linking of Neutrophil Cd11b Results in Rapid Cell Surface Expression of Molecules Required for Antigen Presentation and T-Cell Activation. Immunology.2005,114 (3):354-368
    [156]C. Braian, V. Hogea,O. Stendahl. Mycobacterium Tuberculosis-Induced Neutrophil Extracellular Traps Activate Human Macrophages. J Innate Immun.2013,5 (6):591-602
    [157]S.Y. Eum, J.H. Kong, M.S. Hong, Y.J. Lee, J.H. Kim, S.H. Hwang, S.N. Cho, L.E. Via, C.E. Barry, 3rd. Neutrophils Are the Predominant Infected Phagocytic Cells in the Airways of Patients with Active Pulmonary Tb. Chest.2010,137 (1):122-128
    [158]B. Corleis, D. Korbel, R. Wilson, J. Bylund, R. Chee, U.E. Schaible. Escape of Mycobacterium Tuberculosis from Oxidative Killing by Neutrophils. Cellular Microbiology.2012,14 (7):1109-1121
    [159]D.M. Lowe, P.S. Redford, R.J. Wilkinson, A. O'Garra, A.R. Martineau. Neutrophils in Tuberculosis:Friend or Foe? Trends In Immunology.2012,33 (1):14-25
    [160]P. Seiler, P. Aichele, B. Raupach, B. Odermatt, U. Steinhoff, S.H.E. Kaufmann. Rapid Neutrophil Response Controls Fast-Replicating Intracellular Bacteria but Not Slow-Replicating Mycobacterium Tuberculosis. Journal Of Infectious Diseases.2000,181 (2):671-680
    [161]E.B. Eruslanov, I.V. Lyadova, T.K. Kondratieva, K.B. Majorov, I.V. Scheglov, M.O. Orlova, A.S. Apt. Neutrophil Responses to Mycobacterium Tuberculosis Infection in Genetically Susceptible and Resistant Mice. Infection And Immunity.2005,73 (3):1744-1753
    [162]Q. Remijsen, T.W. Kuijpers, E. Wirawan, S. Lippens, P. Vandenabeele, T. Vanden Berghe. Dying for a Cause:Netosis, Mechanisms Behind an Antimicrobial Cell Death Modality. Cell Death And Differentiation.2011,18 (4):581-588
    [163]M.P. Berry, C.M. Graham, F.W. McNab, Z. Xu, S.A. Bloch, T. Oni, K.A. Wilkinson, R. Banchereau, J. Skinner, R.J. Wilkinson. An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis. Nature.2010,466 (7309):973-977
    [164]J. Huang, V. Canadien, G.Y. Lam, B.E. Steinberg, M.C. Dinauer, M.A. Magalhaes, M. Glogauer, S. Grinstein, J.H. Brumell. Activation of Antibacterial Autophagy by Nadph Oxidases. Proc Natl Acad Sci U S A.2009,106 (15):6226-6231
    [165]D. Kumar, L. Nath, M.A. Kamal, A. Varshney, A. Jain, S. Singh, K.V. Rao. Genome-Wide Analysis of the Host Intracellular Network That Regulates Survival of< I> Mycobacterium Tuberculosis. Cell.2010,140 (5):731-743
    [166]B. Amulic, C. Cazalet, G.L. Hayes, K.D. Metzler, A. Zychlinsky. Neutrophil Function:From Mechanisms to Disease. Annual Review Of Immunology.2012,30:459-489
    [167]P. Seiler, P. Aichele, S. Bandermann, A.E. Hauser, B. Lu, N.P. Gerard, C. Gerard, S. Ehlers, H.J. Mollenkopf, S.H. Kaufmann. Early Granuloma Formation after Aerosol Mycobacterium Tuberculosis Infection Is Regulated by Neutrophils Via Cxcr3-Signaling Chemokines. European Journal Of Immunology.2003,33 (10):2676-2686
    [168]M.T. Silva. Neutrophils and Macrophages Work in Concert as Inducers and Effectors of Adaptive Immunity against Extracellular and Intracellular Microbial Pathogens. J Leukoc Biol.2010,87 (5):805-813
    [169]V.A. Fadok, D.L. Bratton, D.M. Rose, A. Pearson, R.A. Ezekewitz, P.M. Henson. A Receptor for Phosphatidylserine-Specific Clearance of Apoptotic Cells. Nature.2000,405 (6782):85-90
    [170]K.V. Sawant, H. Cho, M. Lyons, L.H. Ly, D.N. McMurray. Guinea Pig Neutrophil-Macrophage Interactions During Infection with Mycobacterium Tuberculosis. Microbes And Infection.2010,12 (11): 828-837
    [171]B.H. Tan, C. Meinken, M. Bastian, H. Bruns, A. Legaspi, M.T. Ochoa, S.R. Krutzik, B.R. Bloom, T. Ganz, R.L. Modlin, S. Stenger. Macrophages Acquire Neutrophil Granules for Antimicrobial Activity against Intracellular Pathogens. Journal Of Immunology.2006,177 (3):1864-1871
    [172]G. van Zandbergen, M. Klinger, A. Mueller, S. Dannenberg, A. Gebert, W. Solbach, T. Laskay. Cutting Edge:Neutrophil Granulocyte Serves as a Vector for Leishmania Entry into Macrophages. The Journal of immunology.2004,173 (11):6521-6525
    [173]T. Tian, J. Woodworth, M. Skold, S.M. Behar. In Vivo Depletion of Cd11c+Cells Delays the Cd4+T Cell Response to Mycobacterium Tuberculosis and Exacerbates the Outcome of Infection. The Journal of immunology.2005,175 (5):3268-3272
    [174]R. Blomgran, J.D. Ernst. Lung Neutrophils Facilitate Activation of Naive Antigen-Specific Cd4+ T Cells During Mycobacterium Tuberculosis Infection. The Journal of immunology.2011,186 (12): 7110-7119
    [175]K.V. Sawant, D.N. McMurray. Guinea Pig Neutrophils Infected with Mycobacterium Tuberculosis Produce Cytokines Which Activate Alveolar Macrophages in Noncontact Cultures. Infection And Immunity.2007,75 (4):1870-1877
    [176]F.W. McNab, M.P. Berry, C.M. Graham, S.A. Bloch, T. Oni, K.A. Wilkinson, R.J. Wilkinson, O.M. Kon, J. Banchereau, D. Chaussabel. Programmed Death Ligand 1 Is over-Expressed by Neutrophils in the Blood of Patients with Active Tuberculosis. European Journal Of Immunology.2011,41 (7): 1941-1947
    [177]P. Gonzalez-Cano, R. Mondragon-Flores, L.E. Sanchez-Torres, S. Gonzalez-Pozos, M. Silva-Miranda, A. Monroy-Ostria, S. Estrada-Parra, I. Estrada-Garcia. Mycobacterium Tuberculosis H37rv Induces Ectosome Release in Human Polymorphonuclear Neutrophils. Tuberculosis (Edinb).2010,90 (2):125-134
    [178]Y. Lin, M. Zhang, P.F. Barnes. Chemokine Production by a Human Alveolar Epithelial Cell Line in Response to Mycobacterium Tuberculosis. Infection And Immunity.1998,66 (3):1121-1126
    [179]A.K. Mayer, A.H. Dalpke. Regulation of Local Immunity by Airway Epithelial Cells. Arch Immunol Ther Exp (Warsz).2007,55 (6):353-362
    [180]G. Diamond, D. Legarda, L.K. Ryan. The Innate Immune Response of the Respiratory Epithelium. Immunological Reviews.2000,173:27-38
    [181]P. Mendez-Samperio, A. Trejo, A. Perez. Mycobacterium Bovis Bacillus Calmette-Guerin (Bcg) Stimulates II-10 Production Via the Pi3k/Akt and P38 Mapk Pathways in Human Lung Epithelial Cells. Cellular Immunology.2008,251 (1):37-42
    [182]M. Gereke, S. Jung, J. Buer, D. Bruder. Alveolar Type li Epithelial Cells Present Antigen to Cd4+T Cells and Induce Foxp3+Regulatory T Cells. American Journal Of Respiratory And Critical Care Medicine.2009,179 (5):344-355
    [183]O.D. Chuquimia, D.H. Petursdottir, M.J. Rahman, K. Hartl, M. Singh, C. Fernandez. The Role of Alveolar Epithelial Cells in Initiating and Shaping Pulmonary Immune Responses:Communication between Innate and Adaptive Immune Systems. PLoS One.2012,7 (2):e32125
    [184]R.J. Delahay, G.C. Smith, A.M. Barlow, N. Walker, A. Harris, R.S. Clifton-Hadley, C.L. Cheeseman. Bovine Tuberculosis Infection in Wild Mammals in the South-West Region of England:A Survey of Prevalence and a Semi-Quantitative Assessment of the Relative Risks to Cattle. Veterinary Journal.2007,173 (2):287-301
    [185]R. de la Rua-Domenech, AT. Goodchild, H.M. Vordermeier, R.G. Hewinson, K.H. Christiansen, R.S. Clifton-Hadley. Ante Mortem Diagnosis of Tuberculosis in Cattle:A Review of the Tuberculin Tests, Gamma-Interferon Assay and Other Ancillary Diagnostic Techniques. Research In Veterinary Science. 2006,81 (2):190-210
    [186]L.C. Platanias. Mechanisms of Type-1-and Type-li-Interferon-Mediated Signalling. Nature Reviews Immunology.2005,5 (5):375-386
    [187]S. Dupuis, R. Doffinger, C. Picard, C. Fieschi, F. Altare, E. Jouanguy, L. Abel, J.L. Casanova. Human Interferon-G-Mediated Immunity Is a Genetically Controlled Continuous Trait That Determines the Outcome of Mycobacterial Invasion. Immunological Reviews.2000,178 (1):129-137
    [188]L. Desvignes, A.J. Wolf, J.D. Ernst. Dynamic Roles of Type I and Type li Ifns in Early Infection with Mycobacterium Tuberculosis. The Journal of immunology.2012,188 (12):6205-6215
    [189]N. Borregaard. Neutrophils, from Marrow to Microbes. Immunity.2010,33 (5):657-670
    [190]M.T. Silva. When Two Is Better Than One:Macrophages and Neutrophils Work in Concert in Innate Immunity as Complementary and Cooperative Partners of a Myeloid Phagocyte System. Journal Of Leukocyte Biology.2010,87 (1):93-106
    [191]J. Pedrosa, B.M. Saunders, R. Appelberg, I.M. Orme, M.T. Silva, A.M. Cooper. Neutrophils Play a Protective Nonphagocytic Role in Systemic Mycobacterium Tuberculosis Infection of Mice. Infection And Immunity.2000,68 (2):577-583
    [192]N.H. Smith, S.V. Gordon, R. de la Rua-Domenech, R.S. Clifton-Hadley, R.G. Hewinson. Bottlenecks and Broomsticks:The Molecular Evolution of Mycobacterium Bovis. Nat Rev Microbiol. 2006,4 (9):670-681
    [193]K. Kremer, M.J. van-der-Werf, B.K. Au, D.D. Anh, K.M. Kam, H.R. van-Doorn, M.W. Borgdorff, D. van-Soolingen. Vaccine-Induced Immunity Circumvented by Typical Mycobacterium Tuberculosis Beijing Strains. Emerging Infectious Diseases.2009,15 (2):335-339
    [194]A. Boasso, A.W. Hardy, A.L. Landay, J.L. Martinson, S.A. Anderson, M.J. Dolan, M. Clerici, G.M. Shearer. Pdl-1 Upregulation on Monocytes and T Cells by Hiv Via Type I Interferon:Restricted Expression of Type Ⅰ Interferon Receptor by Ccr5-Expressing Leukocytes. Clinical Immunology.2008, 129 (1):132-144
    [195]E. Lazar-Molnar, B. Chen, K.A. Sweeney, E.J. Wang, W. Liu, J. Lin, S.A. Porcelli, S.C. Almo, S.G. Nathenson, W.R. Jacobs, Jr. Programmed Death-1 (Pd-1)-Deficient Mice Are Extraordinarily Sensitive to Tuberculosis. Proc Natl Acad Sci U S A.2010,107 (30):13402-13407
    [196]S.J. Klebanoff. Myeloperoxidase:Friend and Foe. J Leukoc Biol.2005,77 (5):598-625
    [197]V. Borelli, E. Banfi, M.G. Perrotta,G. Zabucchi. Myeloperoxidase Exerts Microbicidal Activity against Mycobacterium Tuberculosis. Infection And Immunity.1999,67 (8):4149-4152
    [198]B. Bottazzi, C. Garlanda, A. Cotena, F. Moalli, S. Jaillon, L. Deban, A. Mantovani. The Long Pentraxin Ptx3 as a Prototypic Humoral Pattern Recognition Receptor:Interplay with Cellular Innate Immunity. Immunological Reviews.2009,227 (1):9-18
    [199]P. Kunes, Z. Holubcova, M. Kolackova, J. Krejsek. Pentraxin 3 (Ptx 3):An Endogenous Modulator of the Inflammatory Response. Mediators Of Inflammation.2012,2012
    [200]T.P. Primm, C.A. Lucero, J.O. Falkinham,3rd. Health Impacts of Environmental Mycobacteria. Clinical Microbiology Reviews.2004,17 (1):98-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700