用户名: 密码: 验证码:
嗜肺性军团菌效应蛋白Ceg14的生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜肺性军团菌是一种胞内寄生菌,以阿米巴原虫为自然宿主,广泛存在于自然界中。人们多因吸入污染的气溶胶而感染,引起以肺部炎症为主要特征的疾病,称为军团杆菌病(legionellosis)。军团菌可以在肺泡巨噬细胞或者单核细胞内复制增殖,军团菌侵入细胞后,会形成一个被生物膜包裹的囊泡结构,称为LCV (legionella containing vacuole)。LCV可以从内吞途径中逃逸出来,募集宿主细胞的组分,最终形成一个表面被内质网成分、核糖体和线粒体成分覆盖的膜结构,军团菌可以在其中复制增殖。LCV的形成和发育取决于一个称为Dot/Icm的Ⅳ型分泌系统,这一分泌系统也是军团菌胞内存活的分子基础。通过Dot/Icm系统,军团菌向胞浆内分泌了大量的效应蛋白,目前已鉴定出至少275个效应蛋白。这些蛋白可以作用于宿主细胞的各个生物学过程,从而有利于军团菌在胞内的复制增殖。通过探究这些效应蛋白的生物学功能,可以为进一步揭示军团菌胞内存活的分子机理提供理论依据。
     首先利用酵母系统,筛选可以抑制酵母生长的军团菌效应蛋白,进而利用生物、生化手段对这些效应蛋白进行研究。利用这一方法,获得了一些可以完全抑制酵母生长的效应蛋白,如ankX、 SidI、Ceg14等,本论文重点研究Ceg14的生物学功能。Ceg14可以完全抑制酵母生长,通过随机突变分析,确定了两个氨基酸位点,第234位甘氨酸和第623位的苏氨酸,对Ceg14的生物学功能至关重要。通过抑制子筛选实验,发现高表达酵母前纤维蛋白(profilin)可以抑制Ceg14对酵母的毒性,而前纤维蛋白在肌动蛋白(actin)的组装过程中发挥着重要作用。之前利用蛋白质组学分析LCV的膜成分发现,除了其它细胞组分外,在LCV膜上有许多与细胞骨架组装相关的组分,如肌动蛋白、前纤维蛋白、丝切蛋白(cofilin)等。说明军团菌可以修饰宿主细胞骨架,通过改变细胞骨架的重排,从而实现LCV的转运和胞内的存活。最近发现效应蛋白VipA可以直接结合肌动蛋白,体外分析显示,VipA可以作为成核剂,促进肌动蛋白单体(G-actin)的聚集,从而增强肌动蛋白在体外的聚合,该结果表明Ceg14可能影响宿主细胞骨架的组装。
     利用荧光显微镜技术,观察到Ceg14的表达可以破坏酵母的细胞骨架,导致酵母无法出芽;体外利用共沉淀(Co-sedimentation)、荧光分光光度计动态检测肌动蛋白单体聚合等实验方法,发现Ce14可以抑制肌动蛋白单体的自发聚合作用,并且Ceg14G234v和Ceg14T623N失去了这一功能。进一步用荧光显微镜观察单个的肌动蛋白丝,发现Ceg14会导致产生更多的短的肌动蛋白丝。体外的数据显示,Ceg14可以抑制肌动蛋白单体的自发组装,这是首次发现军团菌的效应蛋白可以负调控肌动蛋白的组装,不同于VipA的促进作用,从另一方面也体现了军团菌对宿主细胞修饰的复杂性。此外,同其它大多数效应蛋白一样,敲除Ceg14和VipA的菌株在A/J小鼠的巨噬细胞内和阿米巴原虫内可以正常复制增殖,说明可能有其它更多的效应蛋白参与进来,弥补了Ceg14和VipA的生物学功能。本研究结果为深入解析军团菌的致病机理提供了一定的参考。
Legionella pneumophila is the causative agent of a pneumonia known as Legionnaires' disease. These bacteria are ubiquitous in aquatic environments and the protozoan amebae are their natural host. Inhalation of aerosol contaminated by L. pneumophila introduces the bacterium to alveolar macrophage, within which it replicates by mechanisms similar to those observed in its natural host. After phagocytosis, Legionella pneumophila can form an ER-like compartment, also known as legionella containing vacuole (LCV). The LCV can escape from endocytic pathway and avoid the fusion with lysosome where the bacteria will be degraded. Intracellular bacterial replication entirely depends upon a Type IVB secretion system termed Dot/Icm, which delivers a lager cohort of protein substrates into host cells. These proteins, also called effectors function to modify fundamental cellular process, such as cell death, membrane trafficking, stress response, and cytoskeleton to create an environment permissive for bacterial survival and multiplication. Although functional dissection of some of these effectors has revealed exiciting insights into the intricate manipulation of host activity by L. pneumophila, the activity of most of these genes reamains unknown.
     The yeast saccharomyces cerevisiae is a powerful tool in functional study of bacterial effectors. Many effectors of L. pneumophila have been identified by their ability to inhibit yeast growth. In our lab, one of the focuses is to dissect the function of effectors exhibiting strong toxicity to yeast. Here we found Cegl4, an effector of L. pneumophila, completely inhibits yeast growth. By random chemical mutagenesis, we found that residues Gly234or Thr623is critical for yeast toxicity of Ceg14. Further, we found that the yeast profilin gene strongly suppresses the toxicity of Ceg14. Consistent with the suppressor phenotype, we found that wild type Ceg14but not the two mutants, disrupted yeast cytoskeletonal structure.
     Direct analysis of the effects of Ceg14on actin polymerization by biochemical approaches revealed that this protein interferes with actin polymerization, causing the formation of shorter actin filaments. Again, mutations in Gly234or Thr623abolished the effects of Ceg14on actin assembly. These activities are opposite from those observed with VipA, suggesting that the bacterium targets host cytoskeleton in a balanced manner. We also examined the effects of Ceg14on the intracellular growth of L. pneumophila. Similar to most Dot/Icm effectors, deletion of ceg14did not cause detectable defect in intracellular bacterial growth in amoeba or primary mouse macrophages. Mutants lacking both ceg14and vipA also did not display detectable defect in intracellular bacterial growth, suggesting the existence of more effectors involved in targeting the host cytoskeleton. The identification and functional study of such effectors likely will reveal the role of host cytoskeleton in the formation of vacuole supportive for L. pneumophila replication.
引文
1. Cordevant C, Tang JS, Cleland D, et al., Characterization of members of the Legionellaceae family by automated ribotyping. Journal of clinical microbiology.2003; 41:34-43.
    2. Gomez-Valero L, Rusniok C, Cazalet C, et al., Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Frontiers in microbiology. 2011; 2:208.
    3. Fraser DW, Tsai TR, Orenstein W, et al., Legionnaires' disease:description of an epidemic of pneumonia. The New England journal of medicine.1977; 297:1189-97.
    4. Albert-Weissenberger C, Sahr T, Sismeiro O, et al., Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase. Journal of bacteriology.2010; 192:446-55.
    5. Ostergaard L, Huniche B, Andersen PL. Relative bradycardia in infectious diseases. The Journal of infection.1996; 33:185-91.
    6. Je SK, Ahn M1, Park YH, et al., Detection of a small lung cancer hidden in pneumoconiosis with progressive massive fibrosis using F-18 fluorodeoxyglucose PET/CT. Clinical nuclear medicine.2007; 32:247-8.
    7. Fields BS, Benson RF, Besser RE. Legionella and Legionnaires' disease:25 years of investigation. Clinical microbiology reviews.2002; 15:506-26.
    8. McDade JE, Shepard CC, Fraser DW, et al., Legionnaires' disease:isolation of a bacterium and demonstration of its role in other respiratory disease. The New England journal of medicine.1977; 297:1197-203.
    9. McKinney RM, Porschen RK, Edelstein PH, et al., Legionella longbeachae species nova, another etiologic agent of human pneumonia. Annals of internal medicine.1981; 94:739-43.
    10. Yu VL, Plouffe JF, Pastoris MC, et al., Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis:an international collaborative survey. The Journal of infectious diseases.2002; 186:127-8.
    11. Doleans A, Aurell H, Reyrolle M, et al., Clinical and environmental distributions of Legionella strains in France are different. Journal of clinical microbiology.2004; 42:458-60.
    12. Montanaro-Punzengruber JC, Hicks L, Meyer W, et al., Australian isolates of Legionella longbeachae are not a clonal population. Journal of clinical microbiology.1999; 37:3249-54.
    13. Amodeo MR, Murdoch DR, Pithie AD. Legionnaires' disease caused by Legionella longbeachae and Legionella pneumophila:comparison of clinical features, host-related risk factors, and outcomes. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases.2010; 16:1405-7.
    14. O'Connor BA, Carman J, Eckert K, et al., Does using potting mix make you sick? Results from a Legionella longbeachae case-control study in South Australia. Epidemiology and infection.2007; 135:34-9.
    15. Asare R, Abu Kwaik Y. Early trafficking and intracellular replication of Legionella longbeachaea within an ER-derived late endosome-like phagosome. Cellular microbiology.2007; 9:1571-87.
    16. Molofsky AB, Swanson MS. Differentiate to thrive:lessons from the Legionella pneumophila life cycle. Molecular microbiology.2004; 53:29-40.
    17. Sahr T, Bruggemann H, Jules M, et al., Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Molecular microbiology.2009; 72:741-62.
    18. Asare R, Santic M, Gobin I, et al., Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infection and immunity.2007; 75:1933-45.
    19. Gobin I, Susa M, Begic G, et al., Experimental Legionella longbeachae infection in intratracheally inoculated mice. Journal of medical microbiology.2009; 58:723-30.
    20. Lightfield KL, Persson J, Brubaker SW, et al., Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature immunology.2008; 9:1171-8.
    21. Ren T, Zamboni DS, Roy CR, et al., Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS pathogens.2006; 2:e18.
    22. Wright EK, Goodart SA, Growney JD, et al., Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Current biology:CB.2003; 13:27-36.
    23. Alonso A, Garcia-del Portillo F. Hijacking of eukaryotic functions by intracellular bacterial pathogens. International microbiology:the official journal of the Spanish Society for Microbiology.2004; 7:181-91.
    24. Canton J, Kima PE. Interactions of pathogen-containing compartments with the secretory pathway. Cellular microbiology.2012; 14:1676-86.
    25. Hubber A, Roy CR. Modulation of host cell function by Legionella pneumophila type IV effectors. Annual review of cell and developmental biology.2010; 26:261-83.
    26. Berger KH, Isberg RR. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Molecular microbiology.1993; 7:7-19.
    27. Cazalet C, Jarraud S, Ghavi-Helm Y, et al., Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome research. 2008; 18:431-41.
    28. Zhu W, Banga S, Tan Y, et al., Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PloS one.2011; 6:e17638.
    29. Koronakis V, Hughes C, Koronakis E. Energetically distinct early and late stages of H1yB/HlyD-dependent secretion across both Escherichia coli membranes. The EMBO journal.1991; 10:3263-72.
    30. Omori K, Idei A. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. Journal of bioscience and bioengineering.2003; 95:1-12.
    31. Gold VA, Duong F, Collinson I. Structure and function of the bacterial Sec translocon. Molecular membrane biology.2007; 24:387-94.
    32. Voulhoux R, Ball G, Ize B, et al., Involvement of the twin-arginine translocation system in protein secretion via the type Ⅱ pathway. The EMBO journal.2001; 20:6735-41.
    33. Cornelis GR, Van Gijsegem F. Assembly and function of type Ⅲ secretory systems. Annual review of microbiology.2000; 54:735-74.
    34. Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type Ⅲ secretion machines. Nature. 2006; 444:567-73.
    35. Fronzes R, Christie PJ, Waksman G. The structural biology of type Ⅳ secretion systems. Nature reviews Microbiology.2009; 7:703-14.
    36. Wallden K, Rivera-Calzada A, Waksman G. Type Ⅳ secretion systems:versatility and diversity in function. Cellular microbiology.2010; 12:1203-12.
    37. Henderson IR, Nataro JP. Virulence functions of autotransporter proteins. Infection and immunity.2001; 69:1231-43.
    38. Henderson IR, Navarro-Garcia F, Desvaux M, et al., Type Ⅴ protein secretion pathway:the autotransporter story. Microbiology and molecular biology reviews:MMBR.2004; 68:692-744.
    39. Cascales E, Cambillau C. Structural biology of type Ⅵ secretion systems. Philosophical transactions of the Royal Society of London Series B, Biological sciences.2012; 367:1102-11.
    40. Records AR. The type Ⅵ secretion system:a multipurpose delivery system with a phage-like machinery. Molecular plant-microbe interactions:MPMI.2011; 24:751-7.
    41. Simeone R, Bottai D, Brosch R. ESX/type Ⅶ secretion systems and their role in host-pathogen interaction. Current opinion in microbiology.2009; 12:4-10.
    42. Lawley TD, Klimke WA, Gubbins MJ, et al., F factor conjugation is a true type Ⅳ secretion system. FEMS microbiology letters.2003; 224:1-15.
    43. Waters VL. Conjugation between bacterial and mammalian cells. Nature genetics.2001; 29:375-6.
    44. Hamilton HL, Dillard JP. Natural transformation of Neisseria gonorrhoeae:from DNA donation to homologous recombination. Molecular microbiology.2006; 59:376-85.
    45. Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type Ⅳ secretion systems. Microbiology and molecular biology reviews:MMBR.2009; 73:775-808.
    46. Backert S, Meyer TF. Type Ⅳ secretion systems and their effectors in bacterial pathogenesis. Current opinion in microbiology.2006; 9:207-17.
    47. Nagai H, Kubori T. Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Frontiers in microbiology.2011; 2:136.
    48. Andrews HL, Vogel JP, Isberg RR. Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infection and immunity.1998; 66:950-8.
    49. Purcell M, Shuman HA. The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infection and immunity.1998; 66:2245-55.
    50. Segal G, Purcell M, Shuman HA. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proceedings of the National Academy of Sciences of the United States of America.1998; 95:1669-74.
    51. Vogel JP, Andrews HL, Wong SK, et al., Conjugative transfer by the virulence system of Legionella pneumophila. Science.1998; 279:873-6.
    52. Nagai H, Kagan JC, Zhu X, et al., A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science.2002; 295:679-82.
    53. Christie PJ, Vogei JP. Bacterial type IV secretion:conjugation systems adapted to deliver effector molecules to host cells. Trends in microbiology.2000; 8:354-60.
    54. Sexton JA, Vogel JP. Type IVB secretion by intracellular pathogens. Traffic.2002; 3:178-85.
    55. Chen C, Banga S, Mertens K, et al, Large-scale identification and translation of type IV secretion substrates by Coxiella burnetii. Proceedings of the National Academy of Sciences of the United States of America.2010; 107:21755-60.
    56. Pan X, Luhrmann A, Satoh A, et al., Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science.2008; 320:1651-4.
    57. Voth DE, Howe D, Beare PA, et al., The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. Journal of bacteriology.2009; 191:4232-42.
    58. Chandran V, Fronzes R, Duquerroy S, et al., Waksman G. Structure of the outer membrane complex of a type IV secretion system. Nature.2009; 462:1011-5.
    59. Fronzes R, Schafer E, Wang L, et al., Waksman G. Structure of a type IV secretion system core complex. Science.2009; 323:266-8.
    60. Vincent CD, Friedman JR, Jeong KC, et al., Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Molecular microbiology.2006; 62:1278-91.
    61. Luo ZQ, Isberg RR. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proceedings of the National Academy of Sciences of the United States of America.2004; 101:841-6.
    62. Aussel L, Barre FX, Aroyo M, et al., FtsK Is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell.2002; 108:195-205.
    63. Massey TH, Mercogliano CP, Yates J, et al., Double-stranded DNA translocation:structure and mechanism of hexameric FtsK. Molecular cell.2006; 23:457-69.
    64. Buscher BA, Conover GM, Miller JL, et al., The DotL protein, a member of the TraG-coupling protein family, is essential for Viability of Legionella pneumophila strain LpO2. Journal of bacteriology.2005; 187:2927-38.
    65. Sexton JA, Yeo HJ, Vogel JP. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Molecular microbiology.2005; 57:70-84.
    66. Nagai H, Roy CR. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. The EMBO journal.2001; 20:5962-70.
    67. Roy CR, Isberg RR. Topology of Legionella pneumophila DotA:an inner membrane protein required for replication in macrophages. Infection and immunity.1997; 65:571-8.
    68. Bardill JP, Miller JL, Vogel JP. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Molecular microbiology.2005; 56:90-103.
    69. Cambronne ED, Roy CR. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS pathogens.2007; 3:e188.
    70. Ninio S, Zuckman-Cholon DM, Cambronne ED, et al., The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Molecular microbiology.2005; 55:912-26.
    71. Soderberg MA, Dao J, Starkenburg SR, et al., Importance of type Ⅱ secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Applied and environmental microbiology. 2008; 74:5583-8.
    72. Costa J, d'Avo AF, da Costa MS, Verissimo A. Molecular evolution of key genes for type II secretion in Legionella pneumophila. Environmental microbiology.2012; 14:2017-33.
    73. Horwitz MA. Phagocytosis of the Legionnaires'disease bacterium (Legionella pneumophila) occurs by a novel mechanism:engulfrnent within a pseudopod coil. Cell.1984; 36:27-33.
    74. Hilbi H, Segal G, Shuman HA. Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Molecular microbiology.2001; 42:603-17.
    75. Khelef N, Shuman HA, Maxfield FR. Phagocytosis of wild-type Legionella pneumophila occurs through a wortmannin-insensitive pathway. Infection and immunity.2001; 69:5157-61.
    76. Chang B, Kura F, Amemura-Maekawa J, et al., Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infection and immunity.2005; 73:4272-80.
    77. Abu Kwaik Y. The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Applied and environmental microbiology. 1996; 62:2022-8.
    78. Swanson MS, Isberg RR. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infection and immunity.1995; 63:3609-20.
    79. Clemens DL, Lee BY, Horwitz MA. Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate. Infection and immunity.2000; 68:2671-84.
    80. Xu L, Shen X, Bryan A, et al., Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS pathogens.2010; 6:e1000822.
    81. Kagan JC, Roy CR. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nature cell biology.2002; 4:945-54.
    82. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. Journal of cell science.2005; 118:843-6.
    83. Dorer MS, Kirton D, Bader JS, et al., RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS pathogens.2006; 2:e34.
    84. Robinson CG, Roy CR. Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cellular microbiology.2006; 8:793-805.
    85. Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS letters.2007; 581:2076-82.
    86. Alix E, Chesnel L, Bowzard BJ, et al., The capping domain in RalF regulates effector functions. PLoS pathogens.2012; 8:e1003012.
    87. Brombacher E, Urwyler S, Ragaz C, et al, Rabl guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. The Journal of biological chemistry.2009; 284:4846-56.
    88. Murata T, Delprato A, Ingmundson A, et al., The Legionella pneumophila effector protein DrrA is a Rabl guanine nucleotide-exchange factor. Nature cell biology.2006; 8:971-7.
    89. Schoebel S, Blankenfeldt W, Goody RS, et al., High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA. EMBO reports.2010; 11:598-604.
    90. Suh HY, Lee DW, Lee KH, et al., Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. The EMBO journal.2010; 29:496-504.
    91. Ingmundson A, Delprato A, Lambright DG, et al., Legionella pneumophila proteins that regulate Rabl membrane cycling. Nature.2007; 450:365-9.
    92. Mihai Gazdag E, Streller A, Haneburger I, et al., Mechanism of Rablb deactivation by the Legionella pneumophila GAP LepB. EMBO reports.2013; 14:199-205.
    93. Neunuebel MR, Chen Y, Gaspar AH, et al., De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science.2011; 333:453-6.
    94. Tan Y, Luo ZQ. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature.2011; 475:506-9.
    95. Muller MP, Peters H, Blumer J, et al., The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rablb. Science.2010; 329:946-9.
    96. Yarbrough ML, Li Y, Kinch LN, et al., AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science.2009; 323:269-72.
    97. Conover GM, Martinez-Morales F, Heidtman MI, et al., Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants. Cellular microbiology.2008; 10:514-28.
    98. Goody PR, Heller K, Oesterlin LK, et al., Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. The EMBO journal.2012; 31:1774-84.
    99. Mukherjee S, Liu X, Arasaki K, et al., Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature.2011; 477:103-6.
    100. Tan Y, Arnold RJ, Luo ZQ. Legionella pneumophila regulates the small GTPase Rabl activity by reversible phosphorylcholination. Proceedings of the National Academy of Sciences of the United States of America.2011; 108:21212-7.
    101. Schoebel S, Cichy AL, Goody RS, et al., Protein LidA from Legionella is a Rab GTPase supereffector. Proceedings of the National Academy of Sciences of the United States of America.2011; 108:17945-50.
    102. Urwyler S, Nyfeler Y, Ragaz C, et al., Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic.2009; 10:76-87.
    103. Hattula K, Furuhjelm J, Tikkanen J, et al., Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. Journal of cell science.2006; 119:4866-77.
    104. Junutula JR, De Maziere AM, Peden AA, et al, Rab14 is involved in membrane trafficking between the Golgi complex and endosomes. Molecular biology of the cell.2004; 15:2218-29.
    105. Ku B, Lee KH, Park WS, et al., VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS pathogens.2012; 8:e1003082.
    106. Ge J, Shao F. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cellular microbiology.2011; 13:1870-80.
    107. Ragaz C, Pietsch H, Urwyler S, et al., The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cellular microbiology.2008; 10:2416-33.
    108. Liu Y, Luo ZQ. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infection and immunity.2007; 75:592-603.
    109. Jiang X, Chen ZJ. The role of ubiquity lation in immune defence and pathogen evasion. Nature reviews Immunology.2012; 12:35-48.
    110. Varshavsky A. The ubiquitin system, an immense realm. Annual review of biochemistry.2012; 81:167-76.
    111. Rolando M, Buchrieser C. Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future microbiology.2012; 7:369-81.
    112. Kubori T, Hyakutake A, Nagai H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Molecular microbiology.2008; 67:1307-19.
    113. Kubori T, Shinzawa N, Kanuka H, et al., Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS pathogens.2010; 6:e1001216.
    114. Hsu F, Zhu W, Brennan L, et al., Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proceedings of the National Academy of Sciences of the United States of America.2012; 109:13567-72.
    115. Hilbi H, Weber S, Finsel I. Anchors for effectors:subversion of phosphoinositide lipids by legionella. Frontiers in microbiology.2011; 2:91.
    116. Weber SS, Ragaz C, Reus K, et al., Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS pathogens.2006; 2:e46.
    117. Viner R, Chetrit D, Ehrlich M, et al., Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS pathogens.2012; 8:e 1002988.
    118. Belyi Y, Jank T, Aktories K. Effector glycosyltransferases in legionella. Frontiers in microbiology.2011; 2:76.
    119. Jank T, Bohmer KE, Tzivelekidis T, et al., Domain organization of Legionella effector SetA. Cellular microbiology.2012; 14:852-68.
    120. Shen X, Banga S, Liu Y, et al., Targeting eEFIA by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cellular microbiology.2009; 11:911-26.
    121. Nogueira CV, Lindsten T, Jamieson AM, et al., Rapid pathogen-induced apoptosis:a mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS pathogens.2009; 5:e1000478.
    122. Banga S, Gao P, Shen X, et al., Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bc12 protein family. Proceedings of the National Academy of Sciences of the United States of America.2007; 104:5121-6.
    123. Amer AO. Modulation of caspases and their non-apoptotic functions by Legionella pneumophila. Cellular microbiology.2010; 12:140-7.
    124. Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunological reviews.2011; 240:92-104.
    125. Choy A, Dancourt J, Mugo B, et al., The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science.2012; 338:1072-6.
    126. Massis LM, Zamboni DS. Innate immunity to legionella pneumophila. Frontiers in microbiology.2011; 2:109.
    127. Palusinska-Szysz M, Janczarek M. Innate immunity to Legionella and toll-like receptors-review. Folia microbiologica.2010; 55:508-14.
    128. Newton HJ, Ang DK, van Driel IR, et al., Molecular pathogenesis of infections caused by Legionella pneumophila. Clinical microbiology reviews.2010; 23:274-98.
    129. Fontana MF, Shin S, Vance RE. Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infection and immunity.2012; 80:3570-5.
    130. Ge J, Xu H, Li T, et al., A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proceedings of the National Academy of Sciences of the United States of America.2009; 106:13725-30.
    131. Losick VP, Haenssler E, Moy MY, Isberg RR. LnaB:a Legionella pneumophila activator of NF-kappaB. Cellular microbiology.2010; 12:1083-97.
    132. Fontana MF, Banga S, Barry KC, et al., Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS pathogens. 2011;7:e1001289.
    133. Monroe KM, McWhirter SM, Vance RE. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS pathogens.2009; 5:e 1000665.
    134. Laguna RK, Creasey EA, Li Z, et al., A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proceedings of the National Academy of Sciences of the United States of America.2006; 103:18745-50.
    135. Ge J, Gong YN, Xu Y, et al., Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America.2012; 109:6193-8.
    136. Creasey EA, Isberg RR. The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proceedings of the National Academy of Sciences of the United States of America.2012; 109:3481-6.
    137. Zhao Y, Yang J, Shi J, et al., The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature.2011; 477:596-600.
    138. Case CL, Kohler LJ, Lima JB, et al., Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proceedings of the National Academy of Sciences of the United States of America.2013; 110:1851-6.
    139. O'Connor TJ, Adepoju Y, Boyd D,et al., Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proceedings of the National Academy of Sciences of the United States of America.2011; 108:14733-40.
    140. O'Connor TJ, Boyd D, Dorer MS, et al., Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science.2012; 338:1440-4.
    141. Mattila PK, Lappalainen P. Filopodia:molecular architecture and cellular functions. Nature reviews Molecular cell biology.2008; 9:446-54.
    142. Franco IS, Shuman HA. A pathogen's journey in the host cell:Bridges between actin and traffic. BioArchitecture.2012; 2:44-8.
    143. Welch MD. Interaction of Human Arp2/3 Complex and the Listeria monocytogenes ActA Protein in Actin Filament Nucleation. Science.1998; 281:105-8.
    144. Haglund CM, Choe JE, Skau CT, et al., Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nature cell biology.2010; 12:1057-63.
    145. Shevchuk O, Batzilla C, Hagele S, et al., Proteomic analysis of Legionella-containing phagosomes isolated from Dictyostelium. International journal of medical microbiology:IJMM.2009; 299:489-508.
    146. Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS pathogens.2012; 8:e 1002546.
    147. Siggers KA, Lesser CF. The Yeast Saccharomyces cerevisiae:a versatile model system for the identification and characterization of bacterial virulence proteins. Cell host & microbe.2008; 4:8-15.
    148. Lesser CF, Miller SI. Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection. The EMBO journal.2001; 20:1840-9.
    149. Shohdy N, Efe JA, Emr SD, et al., Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America.2005; 102:4866-71.
    150. Hardiman CA, McDonough JA, Newton HJ, et al., The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii. Biochemical Society transactions.2012; 40:1353-9.
    151. Burstein D, Zusman T, Degtyar E, et al., Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS pathogens.2009; 5:e1000508.
    152. James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics.1996; 144:1425-36.
    153. Mumberg D, Muller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene.1995; 156:119-22.
    154. Wolven AK, Belmont LD, Mahoney NM, et al., In vivo importance of actin nucleotide exchange catalyzed by profilin. The Journal of cell biology.2000; 150:895-904.
    155. Witke W. The role of profilin complexes in cell motility and other cellular processes. Trends in cell biology.2004; 14:461-9.
    156. Amberg DC. Three-dimensional imaging of the yeast actin cytoskeleton through the budding cell cycle. Molecular biology of the cell.1998; 9:3259-62.
    157. Jockusch BM, Murk K, Rothkegel M. The profile of profilins. Reviews of physiology, biochemistry and pharmacology.2007; 159:131-49.
    158. Winzeler EA, Shoemaker DD, Astromoff A, et al., Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science.1999; 285:901-6.
    159. Lilic M, Galkin VE, Orlova A, et al., Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms. Science.2003; 301:1918-21.
    160. Haglund CM, Welch MD. Pathogens and polymers:microbe-host interactions illuminate the cytoskeleton. The Journal of cell biology.2011; 195:7-17.
    161. Dumenil G, Isberg RR. The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Molecular microbiology.2001; 40:1113-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700