用户名: 密码: 验证码:
神经蛋白tau在Scrapie动物模型和CJD病人组织中变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可传播性海绵状脑病(Transmissible spongiform encephalopathies,TSEs)也称为朊病毒病(prion diseases),是一类可感染人类和多种动物罕见的致死性的神经系统退行性疾病,包括人类的克雅氏病(Creutzfeldt-Jakob disease,CJD)、GSS综合症(Gerstmann—Str(a|¨)ussler-Scheinker syndrome,GSS)、Kuru病、家族性致死性失眠症(fatal familial insomnia,FFI),以及动物的羊瘙痒病(Scrapie)、牛海绵状脑病(bovine spongiform encephalopathy,BSE)和鹿的慢性消耗性疾病(chronic wasting disease,CWD)等,根据疾病的来源不同可分为自发形成、遗传性和医源性三种形式。本文分为两部分,第一部分我们分别采用Western blot和real-time PCR方法检测了感染羊瘙痒因子的仓鼠脑组织中tau蛋白、磷酸化tau蛋白和蛋白激酶在表达和转录水平上的变化,以揭示这些生物活性蛋白与TSE发病机制之间的潜在联系。第二部分我们采用Western blot方法检测了202份疑似CJD病人脑脊液(cerebrospinal fluid,CSF)样品中14-3-3蛋白的阳性/阴性,以ELISA法测定了CSF中tau蛋白的浓度,分析CSF中14-3-3蛋白与tau蛋白的相关性以及这两种蛋白与病人主要临床症状之间的相关性,以评价CSF中tau蛋白在诊断CJD上的敏感性和特异性。
     第一部分:感染Scrapie仓鼠脑组织中tau蛋白与蛋白激酶关系的研究
     首先我们应用Western blot方法检测了感染羊瘙痒因子263K或139A终末期的仓鼠脑组织中是否含有PrP~(Sc),结果表明在所有感染发病的动物脑组织中均检测到了PrP~(Sc)。
     在GSS中tau蛋白的磷酸化水平升高而在sCJD中tau蛋白的磷酸化水平未发生改变,为了检测感染Scrapie的仓鼠脑组织中tau蛋白和磷酸化tau蛋白在表达水平上的变化,我们利用Western blot方法检测了感染羊瘙痒因子263K或139A终末期的仓鼠脑组织中tau蛋白、p-tau(Ser396)、p-tau(Ser404)和p-tau(Ser202/Thr205)的含量。结果表明与正常对照相比,感染Scrapie终末期的仓鼠脑组织中p-tau(Ser396)和p-tau(Ser404)的水平显著降低而p-tau(Ser202/Thr205)的水平显著升高。此外我们通过real-time PCR检测了tau在转录水平上的变化。结果表明在感染Scrapie的仓鼠脑组织中Tau4的转录水平显著升高而Tau2的转录水平仅稍有升高。这些结果提示在感染Scrapie的仓鼠脑组织中tau、p-tau(Ser396)、p-tau(Ser404)和p-tau(Ser202/Thr205)水平的改变可能是与TSE相关的,并且该现象与羊瘙痒因子的毒株和潜伏期无关。
     由于GSK3β和CDK5在tau蛋白的磷酸化过程中起着重要作用,我们通过Western blot和real-time PCR方法分别检测了感染Scrapie的仓鼠脑组织中这两种蛋白激酶的表达和转录水平。Western blot结果表明感染羊瘙痒因子263K或139A终末期的仓鼠脑组织中GSK3β含量降低而CDK5的含量升高;real-time PCR也显示相似的结果即GSK3β的转录水平显著降低而CDK5的转录水平显著升高。
     为了研究感染Scrapie的仓鼠在潜伏期中tau、p-tau(Ser396)、p-tau(Ser404)、p-tau(Ser202/Thr205)、GSK3β和CDK5含量的变化趋势,我们通过Western blot和real-time PCR分别检测了颅内接种羊瘙痒因子263K后第20天、40天、50天、60天和70天所取仓鼠脑组织中上述生物因子的表达和转录水平。结果显示在潜伏期中感染Scrapie的仓鼠脑组织中tau、p-tau(Ser202/Thr205)和CDK5的信号逐渐增强,而p-tau(Ser396)、p-tau(Ser404)和GSK3β的信号逐渐减弱,这些生物活性蛋白的变化是呈时间相关性的,并且远远早于临床症状的出现。在潜伏期内GSK3β水平逐渐降低正好与p-tau(Ser396)和p-tau(Ser404)的降低一致,而CDK5水平逐渐升高恰好与p-tau(Ser202/Thr205)的升高相一致。这种现象可能表明p-tau(Ser202/Thr205)水平的升高是由CDK5的变化引起的;而p-tau(Ser396)和p-tau(Ser404)的水平降低则是由GSK3β引起的。
     在感染Scrapie的仓鼠脑组织中PrP~(Sc)、tau蛋白、磷酸化tau蛋白和蛋白激酶等的变化构成了一个复杂的网络。尽管目前还不清楚它们是在何时以何种方式发挥作用并互相影响,除了PrP~(Sc)的沉积作为始动因素外,这些生物活性蛋白的变化在TSE的发病机制中或者起着媒介作用或者是由疾病而引发的结果。提示这些生物活性蛋白可能与Scrapie的发病机制有潜在的联系,详细研究这些生物活性蛋白在感染Scrapie动物神经组织中的变化能够有助于阐明该病的致病机制
     第二部分:中国临床诊断克雅氏病人脑脊液中tau蛋白浓度诊断价值的研究
     为了研究CSF中tau蛋白在诊断CJD上的敏感性和特异性,以及是否亚洲散发型CJD病人与其他种族病人一样CSF中tau蛋白也升高。我们通过Westernblot检测了202份CSF样品中14-3-3蛋白的阳性/阴性,其中40份来自临床诊断CJD病人,27份来自疑似诊断CJD病人,135份来自非CJD病人;采用Innogenetic公司的ELISA试剂盒测定了CSF中tau蛋白的浓度,并评价了CSF中tau蛋白在辅助诊断中国临床诊断CJD中的作用;所有病人的PRNP基因均送测序,以确定PRNP基因129位多态性,并排除fCJD。结果显示与疑似诊断CJD病人和对照相比,CSF中14-3-3蛋白的阳性率和tau蛋白浓度在临床诊断CJD病人(p<0.001)中显著升高。用于诊断临床诊断CJD病人时,CSF中tau蛋白浓度以大于1400 pg/ml为临界值,其特异性为94%,敏感性为90%。联合应用14-3-3和tau蛋白后特异性升高而敏感性稍有下降。该结果提示检测CSF中tau蛋白的浓度有助于CJD的诊断。
     为了研究CSF中tau蛋白浓度与病人年龄、性别、CSF取样时间、典型脑电图、典型核磁共振、129位多态性、CSF中14-3-3蛋白和病人主要临床症状之间的相关性,将病人按照发病年龄、性别、CSF取样时间、脑电图是否典型、核磁共振是否典型、129位多态性、CSF中14-3-3蛋白阳性/阴性和主要临床症状分为不同的组别,分别做统计学分析。统计结果显示CSF中tau蛋白浓度与病人年龄、性别、CSF取样时间、典型脑电图、典型核磁共振、129位多态性和病人主要临床症状之间均无相关性,而CSF中tau蛋白浓度与14-3-3阳性具有极高的相关性。CSF中14-3-3蛋白已被WHO列入了CJD的诊断标准,所以表明CSF中tau蛋白的浓度有助于CJD的诊断。
Transmissible spongiform encephalopathies(TSEs),prion diseases,are rare degenerative neurological disorders that afflict human beings,including Creutzfeldt-Jakob disease(CJD),Gerstmann-Str(a|¨)ussler-Scheinker syndrome(GSS),Kuru,and fatal familial insomnia(FFI),sheep and goat(scrapie),cattle(bovine spongiform encephalopathy,BSE), and other animals.They may have a sporadic,inherited or acquired origin.This study contains two individual parts,including analysis of the relation of changes of tau profiles in brains of the hamsters infected with scrapie strains 263K or 139A with the alteration of phosphate kinases,and the study of the tau level in CSF of Chinese patients with probable diagnostic Creutzfeldt-Jakob disease.
     PartⅠ:Changes of tau profiles in brains of the hamsters infected with scrapie strains 263K or 139A possibly associated with the alteration of phosphate kinases
     To investigate the possible changes of tau in scrapie experimental animals,the profiles of tau and phosphorylated tau(p-tau,at Ser396,Ser404,and Ser202/Thr205) in the brain tissues of agents 263K- or 139A-infected hamsters were evaluated by Western blots.The result showed that the contents of total tau and p-tau at Ser202/Thr205 increased,but p-tau at Ser396 and Ser404 decreased at the terminal stages.To assess the transcription of tau mRNA in brains,real time-PCR reactions were performed.The assays revealed that the level of Tau-4 transcript was remarkably increased and that of Tau-2 transcript was slightly increased in the brain tissues of scrapie-infected hamsters.These results highlight that the transcriptional and expressive changes of tau profiles are a common phenomenon of scrapie experimental animals,neither related with scrapie strains nor incubation periods.
     Both GSK3βand CDK5 played an important role in mediating tau phosphorylation,the expressive and transcriptional levels of these two kinases in the brains of normal and scrapie-infected hamsters were evaluated by Western blot and real-time PCR.It showed higher CDK5,but lower GSK3βtranscriptional and expressive levels in the brains of scrapie-infected animals.
     In order to investigate the dynamic changes of tau,p-tau(Ser396),p-tau(Ser404), p-tau(Ser202/Thr205),GSK3βand CDK5 in the brains of scrapie-infected hamsters during incubation period,the expressive and transcriptional levels of these biomarkers were evaluated by Western blots and real-time PCR,respectively.Brain samples of the agent 263K-infected hamsters at the 20~(th),40~(th),50~(th),60~(th) and 70~(th) days after inoculation were collected.The results showed that the signals of tau,p-tau (Ser202/Thr205),and CDK5 became stronger and that of p-tau(Ser396),p-tau (Ser404) and GSK3βbecame weaker in the infected specimens compared with the normal controls.These results indicate that changes of tau profiles and phosphate kinases happen much earlier than the onset of the clinical manifestations,showing a time-relative pattern.Moreover,gradually declined GSK3βand raised CDK5 levels correspond well with the decrease of p-tau(Ser396 and Ser404) and increase of p-tau (Ser202/Thr205),respectively.These phenomena may highlight the possibility that the increase of p-tau(Ser202/Thr205) is due to the higher level of CDK5 and depression of p-tau(Ser396 and Ser404) owes to the lower level of GSK3β.
     Alterations of PrP~(Sc),tau,p-tau and kinases in the brains of TSE animals during pathogenicity may consist of a complicate network.It is still unclear when and how these components function and impact each other.Except for the deposits of PrP~(Sc) as the initiative agent,alterations of these bioactive proteins are either intermediate or consequent events in TSE pathogenesiscity and proposed the potential linkage of these bioactive proteins with the pathogenesis of prion diseases.
     PartⅡ:Raised levels of tau protein in CSF of Chinese patients with probable diagnostic Creutzfeldt-Jakob disease
     In order to investigate the diagnostic sensitivity and specificity of tau protein in cerebrospinal fluid(CSF) for Chinese patients with sporadic Creutzfeldt-Jakob disease (sCJD) and whether increased concentration of tau protein in CSF is the common feature for all racial CJD,especially Asian patients,total 202 CSF samples from clinically suspected sCJD patients were analyzed for the levels of tau protein with ELISA and the presences of 14-3-3 protein by immunoblot.Among them,40 were classified as probable CJD,27 as possible CJD and 135 as others.Results showed that remarkably higher values of tau protein and positive rates of 14-3-3 were observed in probable CJD,compared with possible CJD and others(p<0.001).Using a threshold of 1400 pg/ml,tau determination showed a sensitivity of 90%and a specificity of 94%for diagnosis of probable CJD. Combining use of raised tau and positive 14-3-3 increased the specificity,but slightly reduced sensitivity.It indicated that measurement of CSF tau will be helpful for CJD diagnosis antemortem.
     The relationship between the raised CSF tau and the main clinical data in the patients were analyzed.The patients were grounped according to the onset age,gender,sampling time,appearance of typical EEG,appearance of typical MRI,presentence of 14-3-3,codon 129 genotype of PRNP and appearance of the major neurological symptoms.Statistic analyses indicated that the raised tau did not correlate with main clinical characteristics,e.g. age,gender,clinical manifestations,sampling time,typical EEG and typical MRI but positive correlate with the presence of 14-3-3 in CSF.
引文
1. Prusiner SB. Prions. Proc Natl Acad Sci. 1998; 95:13363-13383.
    
    2. Aguzzi A, Montrasio F, Kaeser PS. Prions: health scare and biological challenge. Nat Rev Mol Cell Biol, 2001; 2:118-126.
    
    3. Goedert M: Tau protein and the neurofibrillary pathology of Alzheimer's disease.Trends Neurosci 1993, 16:460-465.
    
    4. Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci 1993; 16:460-465.
    
    5. Giaccone G, Mangieri M, Capobianco R, Limido L, Hauw JJ, Ha(?)k S, Fociani P, Bugiani O & Tagliavini F. Tauopathy in human and experimental variant Creutzfeldt-Jakob disease. Neurobiol Aging. 2008; 29:1864-1873.
    
    6. Budka H, Head MW, Ironside JW, Gambetti P, Parchi P, Zeidler M & Tagliavini F. Sporadic Creutzfeldt-Jakob disease in: Dickson, D.(Ed.), neurodegeneration:the molecular pathology of dementia and movement disorders, 2003; pp.287-297. ISN Neuropath Press, Basel, Switzerland
    
    7. Bautista MJ, Gutierrez J, Salguero FJ, et al, Romero-Trevejo JL,Gomez-Villamandos JC. BSE infection in bovine PrP transgenic mice leads to hyperphosphorylation of tau protein. Vet Microbiol. 2006; 115: 293-301.
    
    8. Goedert M, Spillantini MG, Jakes R, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 1989; 3:519-526.
    
    9. Chun W, Johnson GV. The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci 2007; 12:733-756.
    
    10. Hanger DP, Byers HI , Wray S, et al. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 2007; 282:2364 5-23654.
    
    11. Mt K, J ohnson GV. The role of tau phosphorylation in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 2006; 3:49 463.
    
    12. Alonso A , Zaidi T. Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments.Proc Natl Acad Sci U S A 2001; 98:6923.
    
    13. Perez M, Hernandez F, Gomez-Ramos A, et al. Formation of aberrant phosphor-tau fibrillar polymers in neural cultured cells. Eur J Biochem 2002;269:1484.
    
    14. Buee L, Bussiere T, Buee-Scherrer V, et al. Tau protein isoforms,phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33:95-130.
    
    15. Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase5 and glycogen synthase kinase 3 in tau hyperphosphorylation. 2006; 281:25457-25465.
    
    16. Paudel HK, Lew J, Ali Z & Wang JH. Brain proline-directed protein kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer's paired helical filaments. J Biol Chem 1993; 268:23512-23518.
    
    17. Gong CX, Liu F, Grundkelqbal I, et al. Post translational modifications of tau protein in Alzheimer's disease. Neural Transm 2005; 112:813.
    
    18. Bhat R V, Budd-Haeberlein S L, Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 2004; 89:1313 -1317.
    
    19. Kozlovsky N, Nadri C, Agam G. Low GSK-3beta in schizophrenia as a consequence of neumdevelopmental insult. Eur Neuropsychopharmacol 2005;15:1-11.
    
    20. Bhat R V, Budd S L. GSK3beta signalling: casting a wide net in Alzheimer's disease. Neurosignals 2002; 11:251-261.
    
    21. Dhavan R, Tsai LH. A decade of CDK5. Nat Rev Mol Cell Biol 2001;2:749-759.
    
    22. Smith DS, Greer PL, Tsai LH. CDK5 on the brain. Cell Growth Difer 2001; 12:277-283.
    
    23. Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures,and adult lethality. Neuron 1997;18:29-42.
    
    24. Paglini G, Peris L, Diez-Guerra J, Quiroga S, Caceres A. The Cdk5-p35 kinase associates with the Golgi apparatus and regulates membrane traffic. EMBO Rep 2001; 2:1139-1144.
    
    25. Paglini G, Caceres A. The role of the Cdk5-p35 kinase in neuronal development. Eur J Biochem. 2001; 268:1528-1533.
    
    26. Shelton SB, Johnson GV. Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 2004; 88:1313-1326.
    27.Nishimura I,Yang Y,Lu B.PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila.Cell 2004;116:671-682.
    28.Lopes JP,Oliveira CR,Agostinho P.Role of cyclin-dependent kinase 5 in the neurodegenerative process triggered by amyloid-Beta and prion peptides:implications for Alzheimer's disease and prion-related encephalopathies.Cell Mol Neurobiol 2007;27:943-957.
    29.Plattner F,Angelo M,Giese KP.The roles of cyclin-dependent kinase5 and glycogen synthase kinase 3 in tau hyperphosphorylation.J Biol Chem 2006;281:25457-25465.
    30.Liu F,Iqbal K,Grundke-Iqbal I,Gong CX:Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta.FEBS Lett 2002;530:209-214.
    31.Zhang J,Chen L,Zhang BY,Han J,Xiao XL,Tian HY,Li BL,Gao C,Gao JM,Zhou XB,Ma GP,Liu Y,Xu CM,Dong XP.Comparison study on clinical and neuropathological characteristics of hamsters inoculated with scrapie strain 263K in different challenging pathways.Biomed Environ Sci 2004;17:65-78.
    32.Gao JM,Zhou XB,Xiao XL,Zhang J,Chen L,Gao C,Zhang BY,Dong XP:Influence of guanidine on proteinase K resistance in vitro and infectivity of scrapie prion protein PrP(Sc).Acta Virol 2006;50:25-32.
    33.Sergeant N,Sablonniere B,Schraen-Maschke S,Ghestem A,Maurage CA,Wattez A,Vermersch P,Delacourte A:Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1.Hum Mol Genet 2001;10:2143-2155.
    34.Wang L,Lin HK,Hu YC,Xie S,Yang L,Chang C:Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 in prostate cells.J Biol Chem 2004;279:32444-32452.
    35.Lena Lilja,Shao-Nian Yang,Dominic-Luc Webb,Lisa Juntti-Berggren,Per-Olof Berggren,Christina Bark:Cyclin-dependent Kinase 5 Promotes Insulin Exocytosis.J Biol Chem 2001;276:34199-34205.
    36.Bayatti N,Zschocke J,Behl C:Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons.Endocrinology 2003;144:4051-4060.
    37.Ishizawa K,Komori T,Shimazu T,et al.Hyperphosphorylated tau deposits parallels prion protein burden in a case of Gerstmann-Straussler-Scheinkersyn drome P102L mutation complicated with dementia. Acta Neuropathol 2002;104:342-350.
    
    38. Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84:361-84.
    
    39. Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Mol Neurodegener 2009; 4:13.
    
    40. Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH,Hanger DP: Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 2008; 22:3186-3195.
    
    41. Chen JM, Gao C, Shi Q, Shan B, Lei YJ, Dong CF, An R, Wang GR, Zhang BY & other authors. Different expression patterns of CK2 subunits in the brains of experimental animals and patients with transmissible spongiform encephalopathies. Arch Virol 2008; 153:1013-1020.
    
    42. Liu F, Iqbal K, Grundke-Iqbal I, Gong CX: Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett 2002; 530:209-214.
    1. Glatzel M, Stoeck K, Seeger H, Luhrs T, Aguzzi A. Human prion diseases: molecular and clinical aspects. Arch Neurol. 2005; 62:545-552.
    
    2. Glatzel M, Ott PM, Under T, Gebbers JO, Gmur A, Wust W, Huber G, Moch H,Podvinec M, Stamm B, Aguzzi A. Human prion diseases: epidemiology and integrated risk assessment. Lancet Neurol. 2003; 2:757-763.
    
    3. Collins SJ, Lawson VA, Masters CL. Transmissible spongiform encephalopathies.Lancet. 2004; 363:51-61.
    
    4. Prusiner SB. Prions. Proc Natl Acad Sci. 1998; 95:13363-13383.
    
    5. Hill A F, Antoniou M, Collinge J. Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol. 1999; 80: 11-14.
    
    6. Kocisko D A, Come J H, Priola S A, et al. Cell-free formation of protease-resistant prion protein. Nature. 1994; 370: 471—474.
    
    7. Saborio G P, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 2001; 411:810-813.
    
    8. Castilla J, Saa' P, Hetz C. In vitro generation of infectious scrapie prions. Cell.2005; 121: 195-206.
    
    9. Castilla J, Saa' P, Soto C. Detection of prions in blood. Nat Med. 2005; 11:982-985.
    
    10. Deleault N R, Lucassen R W, Supattapone S. RNA molecules stimulate prion protein conversion. Nature. 2003; 425: 717-720.
    
    11. Deleault N R, Harris B T, Rees J R. Formation of native prions from minimal components in vitro. Proc Natl Acad Sci USA. 2007; 104: 9741-9746.
    
    12. Atarashi R, Moorel R A, Sim V L, et al. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods. 2007;4: 645-650.
    
    13. Jackson G S, Hosszu L P, Power A, et al. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science.1999; 283: 1935-1937.
    
    14. Baskakov I V, Bocharova, O V. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features. Biochemistry. 2005; 44: 2339-2348.
    
    15. Bocharova 0 V, Breydo L, Parfenov A S, et al. On vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrPSc. J Mol Biol. 2005; 346: 645-659.
    
    16. Tahiri-Alaoui A, James W, Rapid formation of amyloid from a-monomeric recombinant human PrP in vitro. Protein Sci. 2005; 14: 942-947.
    
    17. Zerr I, Pocchiari M, Collins S, et al. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 2000; 55:811-815.
    
    18. Budka H, Aguzzi A, Brown P, et al. Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies(prion diseases). Brain Pathol 1995; 5:459-466.
    
    19. Collins SJ, Lawson VA, Masters CL. Transmissible spongiform encephalopathies.Lancet 2004; 363:51-61.
    
    20. Meissner B, Ko¨hler K, Ko¨rtner K, et al.Sporadic Creutzfeldt-Jakob disease: magnetic resonance imaging and clinical findings. Neurology 2004; 63:450-456.
    
    21. Gola(?)ska E, Gresner S, Sieruta M, Liberski P. Cerebrospinal fluid markers of prion diseases. Neurol Neurochir Pol. 2008; 42:441-450.
    
    22. Lavinio A, Czosnyka Z, Czosnyka M. Cerebrospinal fluid dynamics: disturbances and diagnostics. Eur J Anaesthesiol Suppl. 2008; 42:137-141.
    
    23. Aguzzi A, Montrasio F, Kaeser PS. Prions: health scare and biological challenge.Nat Rev Mol Cell Biol, 2001; 2:118-126.
    
    24. Collins S, Boyd A, Fletcher A, et al. Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid. J Clin Neurosci 2000;7:203-208.
    
    25. Lemstra AW, van Meegen MT, Vreyling JP, et al. 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients. Neurology 2000;55:514-516.
    
    26. Mead S, Poulter M, Uphill J, Beck J, Whitfield J, Webb TE, Campbell T,Adamson G, Deriziotis P, Tabrizi SJ, Hummerich H, Verzilli C, Alpers MP,Whittaker JC, Collinge J. Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurol. 2009; 8:57-66.
    
    27. Kitamoto T, Tateishi J. Human prion diseases with variant prion protein. Philos Trans R Soc Lond B Biol Sci. 1994; 343:391-398.
    
    28. Yu SL, Jin L, Sy MS, Mei FH, Kang SL, Sun GH, Tien P, Wang FS, Xiao GF. Polymorphisms of the PRNP gene in Chinese populations and the identification of a novel insertion mutation. Eur J Hum Genet. 2004;12:867-870.
    
    29. Jeong BH, Nam JH, Lee YJ, Lee KH, Jang MK, Carp RI, Lee HD, Ju YR, Ahn Jo S, Park KY, Kim YS. Polymorphisms of the prion protein gene (PRNP) in a Korean population. J Hum Genet. 2004; 49:319-324.
    
    30. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I,Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J,Vital C, Ghetti B, Gambetti P, Kretzschmar H. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999; 46:224-233.
    
    31. NANShan-ji, ZHAOJie-xu. Studies on polymorphism at codon 129 of prion protein gene of the normal population in China. Chinese Journal of Zoonoses 2004; 20:140-142.
    
    32. Brown P, Cervenakova L, Goldfarb L.G, et al. Iatrogenic Creutzfeld-Jakob Disease: An example of interplay between ancient fenes and modern medicine. Neurology 1994; 44:291-293.
    
    33. Palmer M. S, Dryden A. J, Hughes J. T, et al. Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob diseas. Nature1991;352:340-343.
    
    34. Van Everbroeck B, Green AJ, Pals PH, et al. Decreased levels of amyloid-beta 1-42 in cerebrospinal fluid of Creutzfeldt-Jakob disease patients. J Alzheimer Dis 1999; 1:419-424.
    
    35. Van Everbroeck B, Quoilin S, Boons J, Martin JJ, Cras P. A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 2003; 74:1210-1214.
    
    36. Otto M, Wiltfang J, Cepek L, Neumann M, Mollenhauer B, Steinacker P,Ciesielczyk B, Schulz-Schaeffer W, Kretzschmar HA, Poser S. Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease.Neurology. 2002; 58:192-197.
    
    37. E Kapaki, K Kilidireas, G P Paraskevas, et al. Highly increased CSF tau protein and decreased P-amyloid (1-42) in sporadic CJD: a discrimination from Alzheimer's disease? J Neurol Neurosurg Psychiatry 2001; 71:401-403.
    
    38. Skinningsrud A, Stenset V, Gundersen AS, Fladby T. Cerebrospinal fluid markers in Creutzfeldt-Jakob disease. Cerebrospinal Fluid Res. 2008 ; 5:14.
    39.Satoh K,Shirabe S,Tsujino A,Eguchi H,Motomura M,Honda H,Tomita I,Satoh A,Tsujihata M,Matsuo H,Nakagawa M,Eguchi K.Total tau protein in cerebrospinal fluid and diffusion-weighted MRI as an early diagnostic marker for Creutzfeldt-Jakob disease.Dement Geriatr Cogn Disord.2007;24:207-212.
    40.Van Everbroeck B,Boons J,Cras P.Cerebrospinal fluid biomarkers in Creutzfeldt-Jakob disease.Clin Neurol Neurosurg.2005;107:355-360.
    41.Ghetti B,Dlouhy SR,Giaccone G,et al.Gerstmann-Straussler-Scheinker disease and the Indiana kindred.Brain Pathol 1995;5:61-75.
    42.Ghetti B,Tagliavini F,Giaccone G,et al.Familial Gerstmann-Straussler-Scheinker disease with neurofibrillary tangles.Mol Neurobiol 1994;8:41-48.
    43.Otto M,Wiltfang J,Tumani,et al.Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Neurosci Lett 1997;225:210-212.
    44.Green AJ,Thompson EJ,Stewart GE,et al.Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease.J Neurol Neurosurg Psychiatry 2001;70:744-748.
    45.Krasnianski A,Schulz-Schaeffer WJ,Kallenberg K,et al.Clinical findings and diagnostic tests in the MV2 subtype of sporadic CJD.Brain 2006;129:2288-2296.
    46.孔繁军,马涤辉,张昱.痴呆与脑脊液Tau蛋白含量的关系.吉林大学学报(医学版)2002;28:511-513.
    47.Hou X,Gao C,Zhang B,et al.Characteristics of polymorphism of 129th amino acid in PRNP among Han and Uighur Chinese.Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 2002;16:105-108.
    48.Ohkubo T,Sakasegawa Y,Asada T,et al.Absence of association between codon 129/219 polymorphisms of the prion protein gene and Alzheimer's disease in Japan.Ann Neurol 2003;53:409-412.
    49.Cuadrado-Corrales N,Jimenez-Huete A,Albo C,et al.Impact of the clinical context on the 14-3-3 test for the diagnosis of sporadic CJD.BMC Neurol 2006;26:6-25
    1.Prusiner SB.Prions.Proc Natl Acad Sci.1998;95:13363-13383.
    2.Aguzzi A,Montrasio F,Kaeser PS.Prions:health scare and biological challenge.Nat Rev Mol Cell Biol,2001;2:118-126.
    3.Harris DA.Cellular biology of prion diseases.Clin Microbiol Rev.1999;12:429-444.
    4.Prusiner SB,Scott MR,DeArmond SJ,Cohen FE.Prion protein biology.Cell.1998;93:337-348.
    5.Glatzel M,Stoeck K,Seeger H,Luhrs T,Aguzzi A.Human prion diseases:molecular and clinical aspects.Arch Neurol.2005;62:545-552.
    6.Aguzzi A,Polymenidou M.Mammalian prion biology:one century of evolving concepts.Cell.2004;116:313-327.
    7.Glatzel M,Ott PM,Linder T,Gebbers JO,Gmur A,Wust W,Huber G,Moch H,Podvinec M,Stamm B,Aguzzi A.Human prion diseases:epidemiology and integrated risk assessment.Lancet Neurol.2003;2:757-763.
    8.Collins SJ,Lawson VA,Masters CL.Transmissible spongiform encephalopathies.Lancet.2004;363:51-61.
    9.Collinge J.Prion diseases of humans and animals:their causes and molecular basis.Annu.Rev.Neurosci.2001;24:519-550.
    10.孙瑞红,林世和.脑脊液中特殊蛋白的检测与Creutzfeldt-Jakob病.临床神经病学杂志,2007;20:234-235.
    11.Budka H,Aguzzi A,Brown P,et al.Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease(CJD) and other human spongiform encephalopathies(prion diseases).Brain Pathol 1995;5:459-466.
    12.Collins SJ,Lawson VA,Masters CL.Transmissible spongiform encephalopathies.Lancet 2004;363:51-61.
    13.Meissner B,Ko"hler K,Ko"rtner K,et al.Sporadic Creutzfeldt-Jakob disease:magnetic resonance imaging and clinical findings.Neurology 2004;63:450-456.
    14.李桂苓,刘远德.中枢神经系统疾病的脑脊液实验诊断进展.中国实验诊断学 2008;1:139-142.
    15.Celis JE,Gesser B,Rasmussen HH,et al.Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: the transformed amnion cells (AMA) master database and its link to genome DNA sequence data. Electrophoresis 1990; 11:989-1071.
    
    16. Martin H, Patel Y, Jones D, et al. Antibodies against the major brain isoforms of 14-3-3 protein: an antibody specific for the N-acetylated amino-terminus of a protein. FEBS Lett 1993; 336:189.
    
    17. Aksamit AJ. Cerebrospinal fluid 14-3-3 protein: variability of sporadic Creutzfeldt-Jakob disease, laboratory standards, and quantitation. 2003;60:803-804.
    
    18. Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol. 2000; 40:617-647.
    
    19. Green AJ, Ramljak S, Muller WE, Knight RS, Schroder HC. 14-3-3 in the cerebrospinal fluid of patients with variant and sporadic Creutzfeldt-Jakob disease measured using capture assay able to detect low levels of 14-3-3 protein. Neurosci Lett. 2002; 324:57-60.
    
    20. Sanchez JC, Guillaume E, Lescuyer P, et al. Cystatin C as a potential cerebrospinal fluid marker for the diagnosis of Creutzfeldt-Jakob disease.Proteomics 2004; 4:2229-2233.
    
    21. Van Everbroeck B, Quoilin S, Boons J, Martin JJ, Cras P. A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease.J Neurol Neurosurg Psychiatry. 2003; 74:1210-1214.
    
    22. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, et al. Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 1998; 43:32-40.
    
    23. Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro Cuesta J, Knight RS,Bernheimer H, Cardone F, Delasnerie-Laupretre N, Cuadrado Corrales N,Ladogana A, Bodemer M, Fletcher A, Awan T, Ruiz Bremon A, Budka H,Laplanche JL, Will RG, Poser S. Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology. 2000;55:811-815.
    
    24. Huang N, Marie SK, Livramento JA, Chammas R, Nitrini R. 14-3-3 protein in the CSF of patients with rapidly progressive dementia. Neurology. 2003;61:354-357.
    
    25. Cossu G, Melis M, Molari A, Pinna L, Ferrigno P, Melis G, Zonza F, Spissu A.Creutzfeldt-Jakob disease associated with high titer of antithyroid autoantibodies:case report and literature review.Neurol Sci.2003;24:138-140.
    26.Zerr I,Schulz-Schaeffer WJ,Giese A,Bodemer M,Schr(o|¨)ter A,Henkel K,Tschampa HJ,Windl O,Pfahlberg A,Steinhoff BJ,Gefeller O,Kretzschmar HA,Poser S.Current clinical diagnosis in Creutzfeldt-Jakob disease:identification of uncommon variants.Ann Neurol.2000;48:323-329.
    27.Buee L,Bussiere T,Buee-Scherrer V,et al.Tau protein isoforms,phosphorylation and role in neurodegenerative disorders.Brain Res Brain Res Rev 2000,33:95-130.
    28.Avila J,Lucas JJ,Perez M,Hemandez F.Role of tau protein in both physiological and pathological conditions.Physiol Rev.2004;84:361-384.
    29.Sj(o|¨)gren M,Vanderstichele H,Agren H,et al.Tau and Aβ42 in cerebrospinal fluid from healthy adults 21-93 years of age:establishment of reference values.Clin Chem 2001;47:101776-101781.
    30.Arai H,Morikawa Y,Higuchi M,Matsui T,Clark CM,Miura M,Machida N,Lee VM,Trojanowski JQ,Sasaki H.Cerebrospinal fluid tau levels in neurodegenerative diseases with distinct tau-related pathology.Biochem Biophys Res Comun 1997;236:262-264.
    31.孔繁军,马涤辉,张昱.痴呆与脑脊液Tau蛋白含量的关系.吉林大学学报(医学版)2002;28:511-513.
    32.Otto M,Wihfang J,Tumani H,et al.Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Neuroscience Letters 1997;225:210-212.
    33.Otto M,Esselmann H,Scuh-Shaefer W,et al.Neurology,2000;54:1099.
    34.Van Everbroeck B,Green AJ,Pals PH,et al.Decreased levels of amyloid-beta 1-42 in cerebrospinal fluid of Creutzfeldt-Jakob disease patients.J Alzheimer Dis 1999;1:419-424.
    35.Otto M,Wiltfang J,Cepek L,Neumann M,Mollenhauer B,Steinacker P,Ciesielczyk B,Schulz-Schaeffer W,Kretzschmar HA,Poser S.Tau protein and 14-3-3 protein in the differential diagnosis of Creutzfeldt-Jakob disease.Neurology.2002;58:192-197.
    36.Van Everbroeck B,Green ME,Vanmechelen E,et al.Phosphorylated tau in cerebrospinal fluid as a marker for Creutzfeldt-Jakob disease.J Neurol Neurosurg Psychiatry 2002;73:79-81.
    37.薛海波,张明园.阿尔茨海默病的脑脊液标志:总Tau蛋白,磷酸化Tau蛋白和Aβ42.国际精神病学杂志 2006;33:19-24.
    38.孙瑞红,林世和,于雪凡,赵节绪,江新梅,宋晓南.脑脊液磷酸化tau蛋白与总tau蛋白比值对散发性Creutzfeldt-Jakob病的诊断价值.脑与神经疾病杂志 2007;5:4-5.
    39.Beauddeux J,Dequen L,Foglietti M.Pathophysiologic aspects of S-100 beta protein:a new biological marker of brain pathology.Ann Biol Clin 1999;57:261-272.
    40.何英武.脑脊液特种蛋白测定的临床应用新进展.现代中西医结合杂志.2004;13:2079-2081.
    41.Beaudry P,Cohen P,Brandel JP,et al.14-3-3 protein,neuron-specific enolase,and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Dement Geriatri Cogn Disord 1999;10:40-46.
    42.Otto M,Stein H,Szudra A,et al.S-100 protein concentration in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.J Neurol 1997;244:566-570.
    43.Aksamit AJ Jr,Preissner CM,Homburger HA.Quantitation of 14-3-3 and neuron-specific enolase proteins in CSF in Creutzfeldt-Jakob disease.Neurology.2001;57:728-730.
    44.Kropp S,Zerr I,Schulz-Schaefer WJ,et al.Increase of neuron-specific enolase in patients with Creutzfeldt-Jakob disease.Neurosci Lett 1999;261:124-126.
    45.Weber T,Otto M,Bdemer M,et al.Diagnosis of Creutzfeldt-Jakob disease and related human spongiform encephalopathies.Biomed Pharmacother 1997;51:381-387.
    46.Kohira I,Tsuji H,Ishizu H,et al.Elevation of neuron-specific enolase in serum and cerebrospinal fluid of early stage Creutzfeldt-Jakob disease.Acta Neurol Scand 2000;102:385-387.
    47.Wiltfang J,Esselmann H,Smimov A,Bibl M,Cepek L,Steinacker P,Mollenhauer B,Buerger K,Hampel H,Paul S,Neumann M,Maler M,Zerr I,Kornhuber J,Kretzschmar HA,Poser S,Otto M.Beta-amyloid peptides in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease.Ann Neurol 2003;54:263-267.
    48.E Kapaki,K Kilidireas,G P Paraskevas,et al.Highly increased CSF tau protein and decreasedβ-amyloid(1-42) in sporadic CJD:adiscrimination from Alzheimer's disease? J Neurol Neurosurg Psychiatry 2001;71:401-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700