用户名: 密码: 验证码:
优质低应力金刚石复合片的高温高压合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优质低应力金刚石复合片的高温高压合成
     工具的发展是人类文明进步的动力,金刚石工具的诞生具有划时代的意义。金刚石复合片(:polycrvstalline Diamond c01npact,PDc),是在高温高压条件下金刚石颗粒之间生长粘结,形成高强夏致密结构的生长型金刚石聚晶(D—D结合)。同时依靠聚晶层与硬质合金基体(wc—co)的烧结复合,形成一体的复合材料。该材料具有金刚石的耐磨性和强夏以及硬质合金基体材料的韧性和可焊接性,是一种优良的切削工具与耐磨材料,广泛的应用于机械加工工具、石油与地质钻头、砂轮修整工具等。自20世纪70年代初以来,由于PDc材料具有一系列优异的性能和巨大的应用市场,国内外学者对其进行了广泛深入的研究。
     由于PDc材料因制造方法、烧结复合途径及机理不同,其产品性能也将表现出明显的差异。从应用现状可以看出,各种体系的PDc产品的耐磨性能是满足应用要求的基本指标,自锐性和抗冲击韧性这两个指标也提升到了重要位置。目前,PDc工具残余应力的大小已经成为评价其性能品质好坏的重要因素之一。PDc产生残余应力主要是由于金刚石与粘结剂之间的热膨胀系数差别较大,同时PDc烧结经过卸压和停温过程,应力会残留在PDc中。较大残余应力致使PDc工具出现复合界面脱层等失效问题,严重的影响其性能。Lin et a1.检测到PDc内部有巨大的残余应力(1.4(]Pa),c.atledge et a1.测试金刚石层不同区域的残余应力为0.87—1.3GPa。另外,制备PDc的过程中合成参数(温夏、金刚石粒径、粘结剂金属含量)对样品残余应力也会有影响,而鲜有这方面规律及机理的研究。针对于测试残余应力的方法,由于Ralman光谱测试应力具有无损样品、无需制样、聚焦尺寸小(1um)等优势,得到了人们广泛的应用。已经成功的计算了cvD金刚石薄膜的残余应力,而对高压烧结的金刚石体材料的应用还较少。
     因此,如何充分利用国产六面顶超高压技术和设备之优势,进一步优化反应腔体,更深入发展六面顶超高压技术和优化PDc合成工艺、界面及复合机理方面的研究,研制具有优异性能指标的低应力PDc材料,将成为超硬材料研究领域的一个重要方向。
     本论文利用国产六面顶压机,在高温高压条件下(HTHP,5.0—5.6GPa,1350—1500℃),开展了生长型优质低残余应力PDc的制备和性质研究。
     首先,采用金属合金(镍基、铁基合金)的高压熔渗技术成功制备了生长型PDc。并设计优化了高温高压下PDc样品的组装制备工艺,比采用传统制备PDc的混合粉末法工艺,金属溶剂比例更容易控制,可操作性强,PDc性能也有很大的改善。结合制备(?)8、(?)15mm规格的PDc,通过OM、sEM、EDs、xRD、Raman等测试手段,考察了不同合成参数(压力、温夏、时间、金刚石原料粒径等)对PDc样品中金刚石聚晶(PcD)层的生长及结合界面的组织结构特征的影响。对比研究了高压下不同金属溶媒制备PDc的特征。
     其次,讨论了PDc耐磨性能的影响因素及规律,重点考察了不同合成参数(压力、温夏、金刚石粒径等)及PcD层厚夏对合成PDc样品耐磨性能的影响。并把优质的PDc样品加工成了刀具。
     再次,采用微区拉曼光谱(micro—Raman spec订OSCopTyr)的双轴应力模型、流体静应力模型及x—rfdV diffraction(xRD)对PDc样品金刚石层的残余应力分布特征及形式进行了表征,研究了不同合成参数对PcD层残余应力的影响规律。同时针对PDc组装腔体稳定性的影响因素,给出了制备优质低应力PDc的基本原则。金属合金的熔渗相比于单质粘结剂的烧结方法,有效地降低了金刚石与粘结剂之间的热膨胀差别,同时相比混合粉末法能够按需提供适量的粘结剂比例含量,对制备低应力PDc起到了积极作用。制备PDc样品的应力在轴、径向上分布较均匀,残余应力形式为压应力。低应力PDc样品的金刚石层组织结构致密,物相成分有金刚石,金属合金,wc,corwrc特征峰的存在,没有金刚石石墨化碳的衍射峰。
     最后,提出了熔渗法烧结PDc的熔渗驱动力模型,通过xRD、sEM、EDs、Raman等测试手段研究了金刚石粘结生长(D—D成键)机制,并结合烧结PDc中高压物理化学反应研究其界面生长形式及复合机理,为金刚石复合片的烧结理论提供了参考依据。
     综上,采用高压熔渗技术制备了优质高耐磨、低应力的PDc,这种制备技术不仅对提高PDc材料的性能有理论指导作用,而且还可以对改善其他类体材料的烧结工艺有促进意义。
The development of tools is the motive force of human civilization, and the naissance of diamond tools has an epoch-making significance. Growth-type polycrystalline diamond compacts (PDC), consisting of a polycrystalline diamond (PCD)-Co layer with high strength D-D bond structure on a WC-Co substrate, are sintered at HPHT. The material properties of PDC include high hardness and strength, combined with moderate toughness of WC-Co alloy, which are widely used in a variety of drilling and machining applications. Since the early 1970s, the PDC material has been carried on extensive and in-depth research by domestic and foreign scholars, because of its excellent performance and great range of application markets.
     Because the sintering ways and compound mechanism of PDC materials are different, their product performance will also show obvious difference. It can be seen from the application situation the wear-resisting performance has satisfied the requirement of basic indices from composite cutter product in various system, and then self-sharpness and resistance impact have been both elevated to the important position. At present, one of the important factors to appraise the PDC tool is the residual stress, which is primarily due to the large mismatch in coefficients of thermal expansion between diamond and the solvent metals which arises from the pressure relief and the cooling of PDC. The practical applications indicate that oversize residual stress will result in shorter in life performance of PDC. Lin et al. showed that high residual compressive stresses (up to 1.40 GPa) may exist in the PCD layer. Catledge et al.also reported the PCD layer has an average compressive stress ranging from 0.87 to 1.30 GPa. In addition, sintering process parameters such as temperature, the diamond size and content of binder additive were all found to affect residual stress levels, but few researches have been carried about these aspects of the regularity and mechanism. Based on the many methods used, Raman spectroscopy is widely used in a variety of applications as testing the residual stress due to the advantage of nondestructive samples, no specimen preparation and focuses of small size (1 m). Despite considerable success of that the Raman method in stress characterization in CVD films, little attempt has been made to study stress in diamond composites.
     Therefore, how to fully use the advantages of domestic cubic-anvil high-pressure apparatus and its technology, further optimize the reaction cavities of PDC synthesis process, study on interface and compound mechanism more in-depth and develop excellent performance of PDC materials with low stress will become an important direction in the field of superhard materials researches.
     In this paper, the preparation and properties of high-quality growth-type PDC with low residual stress, which synthesized under high temperature and high pressure (HPHT, 5.0-5.6GPa, 1350-1500 ) in a china-type cubic-anvil high-pressure apparatus were carried out.
     First, the alloy iron nickel-based infiltration technique was used to prepare PDC.And the design of the PDC assembly technique was optimized under high temperature and pressure. The metal solvent ratio is easier to control and the maneuverability is stronger, which also has greatly improved on performance of the preparation of PDC than that of the traditional powder-mixed method technology. Combined with the PDC about 8 15mm of specifications, optical microscope (OM) scanningelectron microscopy (SEM) X-ray diffraction (XRD) and micro-Raman spectroscopy were used to investigate the effects of the growth behavior of PCD layer and interface microstructure of PDC. The preparation characteristics of PDC using different metal solvent under high-pressure were contrastively researched.
     Secondly, the effect factors and laws from the different synthetic parameters (pressure, temperature, diamond grain size, etc.) and thickness of PCD layer on wear-resisting performance impact of PDC samples were discussed. And the high-quality of PDC cutting tools was made.
     Again, the biaxial and hydrostatic stress model of micro-Raman spectroscopy and X-ray diffraction (XRD) were used to measure the distribution characteristics and form of residual stress in the diamond layers. The influence law from different synthesis parameters on the residual stress between PCD layers was represented. Considering the influence factors of the stability of PDC striking body, the basic preparation principles of the high-quality PDC with low stress were given. The metal alloy infiltrating method, compared to that of elemental binder, effectively reduced the thermal expansion difference and supplied an adequate proportion between the diamond and binder, which played a positive role to prepare PDC of low stress levels. In the preparation of PDC samples, residual stresses in the form of compressive stress are uniformly distributed on axial and radial. The diamond layer of PDC sample with low stress has high density structure. X-ray diffraction (XRD) performed on a PCD layer confirmed the presence of cubic diamond, alloy, WC, CoxWxC, no graphite phase was detected.
     Finally, the infiltration force model of PDC sintered by the infiltration method was put forward. XRD SEM EDS and Raman were used to study diamond growth (D-D bond) mechanism, and combined with high pressure physics chemistry reactions during sintering PDC, the interface growth forms and compound mechanism of PDC were also researched, which can provide reference basis for the PDC sintering theory.
     In conclusion, the high-pressure infiltration technique was used to synthesize high quality and wear-resisting PDC with low stress which not only has theory instruction function to improve the properties of PDC materials but also has promote significance to improve the sintering process of other types of body materials.
引文
[1]Almldaov A A.,Afanas’ev M S.,Kvaskov V B,et a1.Application of diamond inhigh technology[J]l Inorganic Materials,2004,40《1):50—70.
    [2]Koizumi S,Watanabe K,Hasegawa M,et a1.Ultraviolet Emission from a Diamondpn Junction[J]l Science,2001,292(8):1899—1901.
    [3]Lerner E J.Industrial diamonds gather strength[J]l The Industrial Physicist,2002,August/September 8-11.
    [4]Ekimov E A,Sidorovl V A,Bauer E D,et a1.Superconductivity in diamond[J]lNature Publishing Group,2004,428:542—545.
    [5]Yoder M N.In Diamond and Diamond-Like Films and Coatings,1—16,1991[c].New York=Plenum Press.C1991.
    [6]ChrisOwers,PhilipBex.工业金刚石的应用、效益与展望EJ],超硬材料与工程,2000,1:2.
    [7]Tillmann w Trends and market perspectives for diamond tools in the constructionindustry[J]l International Journal of Refractory Metals & Hard Materials,2000,8:30 1-306.
    [8]Hall H T Sintered diamond:A synthetic carbonado[J]l Science,1970,169:868—869.
    [9]Wentorf R H,Devries R C,Bundy F R Sintered superhard materials[J]l Science,1980,208:873—880.
    [10]Akaishi M,Yamaoka S,Tanaka J,et a1.Synthesis of sintered diamond with highelectrical resistivity and hardness[J]l JAm Ceram Soc,1987,70:237—239.
    [11]AkaishiM,Yamaoka S,Tanaka J,et a1.Synthesis of sintereddiamondwith ahighelectrical resitivity and high hardness[J].Mater Sci Eng:A,1988,105—106:5 17—523.
    [12]江文清,吕智,林峰,等.聚晶金刚石复合体的主要性能研究状况[J].表面技术,2006,35(5):65.
    [13]Matthew N L.The Electrochemistry of Diamond,A dissertation submitted to theUniversity of Bristol in accordance with the requirements of the degree of Doctorof Philosophy in the Faculty of Science,September C 200 1
    [14]FACT样本,台湾江信超硬材料有限公司,2003.
    [15]Bovenkerk H P,Bundy F P,Hall H L et a1.Preparation of diamond[J]l Nature,1959,184:1094.
    [16]Tetsuo IriAme,Ayako Kurio,Shizue Sakamoto,et,a1.Ultrahaxd polycrystallinediamond from graphite[J]l Nature,2003,421:599.
    [17]US,3141723[P]..
    [18]US,3239321[P]..
    [19]翟光辉.超硬材料烧结体制造[M].磨料磨具磨削研究所.1994.
    [20]柴津秋,王光祖.PDC的主要特性与应用[J]超硬材料工程,2007,19(5):40—41.
    [21]孙毓超,刘一波,王秦生.金刚石工具与金属学[M].北京:中国建材工业出版社,1999.
    [22]刘一波,陈哲,张而立等.金刚石工具国际市场现状的几点认识和建议[J]l超硬材料工程,2008,20(5):25—29.
    [23]Kenneth.A.Darrow.Method for production of Diamond compact Abrasive.US,3306,720[P].
    [24]Wilson William.I—Diamond and Cubic Boron Nitride Abrasive compacts andconglomerates.US,4219339[P].1980—08—26.
    [25]邓福铭.PDC超硬复合材料高压合成规律及其机理的研究[D].长沙:中南工业大学,1998.
    [26]李植华,郭永存,卢飞雄.金刚石制造[M].北京:机械工业出版社,1983.
    [27]Dyer,Henry B,Phaal C,et a1.Thermally stable diamond abrasive compact body.US,4789385[P].1988—12—06.
    [28]Bovenkerk,Harold R Method of making diamond compacts for rock drilling.US,4259090 EP].1981—03—31.
    [29]Dennis,Mahlon D.Cutting element having composite formed of cementedcarbide substrate and diamond layer and method of making same.US,4784023[P].1988—11—15.
    [30]福长修.新素材开发(?),1985,(6):30—33.
    [31]Tomlison P N,Wedlake R J.In:Comins N R and.Clark J B,Editors,SpecialtySteels and Hard Materials,New York:1983[c].
    [32]焦魁一.国外金刚石聚结体的研制技术[J].磨料磨具磨削,1987,(4):42—46.
    [33]于鸿昌,李尚洁.烧结型多晶金刚石中晶界物相的类型与数量对其某些物性的影响[J]高压物理学报,1989,(3):221—224.
    [34]Dan Belnap,Anhony Griffo,Homogeneous and structured PCD/WC—Co materialsfor drilling[J]l Diamond&Related Materials,2004,《13):1914—1922.
    [35]Minoru Akaishi,Shinobu Yamaoka,Fumihiro Ueda,et a1.Synthesis ofPolycrystalline Diamond Compact with Magnesium Carbonate and its P11ysicalPrope~ies[J]l Diamond&Related Materials,1996,《5):2-7.
    [36]Shamg J L,Minoru Akaishi,Toshikazu ohsawa,et a1.Sintering behaviour of thediamond—super invar alloy system at high temperature and pressure[J]l Journal ofmaterials science,1990,(25):4150—4156.
    [37]邓福铭,陈启武,黄培云.D—D结合型金刚石聚晶晶界结构及其生长模式[J],1999,19(1):63—66.
    [38]Walmsey J C,Lang A R Transmission electron microscopic observations ofdeformation and microtwinning in a synthetic diamond compact[J]l Journal ofMaterials Science Letters,1983,2:785—788.
    [39]Yazu S,Nishikawa L Nakai T et al,in Proceedings of International Conferenceon Recent Developments in Specialty Steels and Hard Materials,edited by CominsN R and Clark J B(Pergamon,Oxford,1983)P.449.
    [40]Walmsley J C,Lang A R.Ukra~ard Materials Application Technology,V01.3,edited by Paul Daniel.(DeBeers Industrial Diamond Division Ascot,1985)R 1 1.
    [41]Sung C M.A century of progress in the development of very high pressureapparatus for scientific research and diamond synthesis[J]l High Temperature—High Pressure.1997.29:.253—293.
    [42]姚裕成,胡光亚,佟学礼.从两面顶、六面顶、凹模的特点论我国合成金刚石装备大型化的方向[J]人工晶体学报,1999,28《1):103—107.
    [43]郭永存,李植华,张广云.金刚石的人工合成与应用[M].北京:科学出版社,1984.
    [44]Hall H T.Ultra high pressure,high temperature apparatus,the belt[J]l Rev.Sei.1ustrum,1960,31:125—131.
    [45]李志宏,赵清国,赵博,等.发展中的中国六面顶压机和人造金刚石[J]l金刚石与磨料磨具工程增刊,2006,11:1-6.
    [46]郝兆印,陈宇飞,邹广田.人工合成金刚石[M].长春:吉林大学出版社,1996.
    [47]胡继良.金刚石合成高压腔白云石内衬的研究[J]l探矿工程,1995,3:18.
    [48]贾晓鹏.金刚石合成的溶剂理论及当今行业热点问题的探讨.中国超硬材料研讨会南京会议论文集[c].南京,2001.
    [49]Bundy F P,Bovenkerk H P,Strong H M,et a1.Diamond—graphite equilibrium linefrom growth and graphitization ofdiamond[J],J.Chem.Phys.,1961,35:383—391.
    [50]赵大钢.关于PDC磨耗比的检测[J]l金刚石与磨料磨具工程,2000,4 (118):14.
    [51]Obraztsov A N,Timofeyev M A,Guseva M B,et a1.Compaxaive study ofmicrocrystalline diamond[J]Diamond and Related Materials,1995,4:968—971.
    [52]Zijsling D H.SPE Paper 13260,1984.
    [53]Gloowka DA,Stone C M.SPE Drilling Eng.,1986,1《3):201—214.
    [54]Lin T P,Hood M,Cooper G A.Residual stresses in polycrystalline diamondcompacts[J].JAm Ceram Soc,1994,77《6):1562—1568.
    [55]Vohra Y K,Catledge S A,Ladi R,et a1.Micro—Raman stress investigations andX—ray diffraction analysis of polycrystalline diamond《PCD)tools[J]l DiamondRelatMater,1996,5:1159—1165.
    [56]Ferreira N G Abramof E,.Corat E J,et a1.Residual stresses and crystalline qualityof heavily boron--doped diamond films analysed by micro--Raman spectroscopy andX—ray diffraction[J]l Carbon,2003,41《6):1301—1308.
    [57]Chowdhury S,Laugier M L Henry.XRD stress analysis of CVD diamondcoatings on SiC substrates[J]l J Int J Refractory Met Hard Mater,2007,25《1):39—45.
    [58]Duramd O,Bisaxo R,Brierley C J.Residual stresses in chemical vapor depositionfree—standing diamond films by X—ray diffraction analyses[J]l Materials Scienceand Engineering A,2000,228(2):217—222.
    [59]Chen K H,Lai Y L,Lin J C,et a1.Micro—Ramam for diamond film stress analysis[J]l Diamond Relat Mater,1995,4:460—463.
    [60]Windischmann H,Gray K J.Stress measurement of CVD diamond films[J]lDiamond Relat Mater,1995.4:837—842.
    [61]Windischmann H,Epps G F,Cong Y,et a1.Intrinsic stress in diamond filmspreparedbymicrowaveplasmaCVD[J]l JApplPhys,1991,69:2231-2237.
    [62]VonKaenel Y,Stiegler J,Michler J,et a1.Stress distribution in heteroepitaxialchemical vapor deposited diamond films[J]l J Appl Phys,1997,81:1726—1736.
    [63]Nugent K w_Prawer S.Confocal Ramam strain mapping of isolated single CVDdiamond crystals[J]l Diamond Relat Mater,1998,7:215-221.
    [64]Monika Wieligor,Zerda T w Surface stress distribution in diamond crystals indiamond—silicon carbide composites[J]l Diamond Relat Mater,2008,17:84—89.
    [65]Jia H S,Ma H A,Jia X R Research on polycrystalline diamond compact《PDC)with low residual stress prepared using nickel—based additive[J]l Int J Refract MetHard Mateg 201 1,29(1):64—67.
    [66]Jia H S,Ma H A,Guo w_et a1.HPHT preparation and Micro—Ramancharacterization of polycrystalline diamond compact with low residual stress[J]lSci China PhyS Mech Astron,2010,53(8):1445—1448.
    [67]Xu G P,Chen e w_Yin Z M,et a1.The effect ofthickness ofdiamond layer onresidual stresses in polycrystalline diamond compact[J]l Chin J high press phys,2009,23(1):24—30.
    [68]Meng e H,Li Y J.Handbook of Abrasives Technical[M].Beijing:WeaponIndustry Press,1993.
    [69]Ma e F.Practical Handbook of Thermal Physical Properties[M].Beijing:ChinaAgricultural Machinery Press,1986.
    [70]ASM Metals Handbook,Properties and selection:nonferrous alloys and specialpurpose materials v01.2.9th ed.Beijing:Machinery Industry Press.1979.
    [71]方容川.固体光谱学[M].合肥:中国科技大学出版社,2003.
    [72]Prawer S,Nemanich R J.Raman spectroscopy of diamond and doped diamond[J].Phil Trans R Soc LondA,2004,362:2537—2565.
    [73].Harman T C,Cahn J H,Logan M J.Measurement of thermal conductivity byutilization ofthe peltier effect[J]l J.Appl.Phys.,1959,30:135 1.
    [74]Zhu P w, Imai Y,Isoda Y et a1.High Thermoelectric Properties of PbTe Dopedwith Bi2Te3 and Sb2Te3[J]l Chin.PhyS.Lett.,2005,22:2103—2105.
    [75]陈石林,陈启武,陈梨.聚晶金刚石复合体界面组织及界面反应的研究[J]l矿冶工程,2003,23(6):84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700