用户名: 密码: 验证码:
三肇凹陷扶杨油层断裂系统及控藏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆外围油田勘探开发主要重点集中在长垣及其以东的区域,主要目的层为扶余和杨大城子油层。三肇凹陷扶杨油层经历了预探、评价、试验阶段,提交探明含油面积304.97 km~2,探明地质储量17130.7×10~4t,未动用储量15932×10~4t。总体表现为‘资源探明率低'、‘探明储量动用率低'特点。做为今后主要接替产能的扶杨油层,评价力度逐年加大,虽然经过油藏描述、开发前期的优选布井,扶杨油层钻井成功率仍然较低,主要原因是钻遇水砂或储层发育差而报废。钻探成功率低的根本原因是扶杨油层地质条件复杂,主要体现在三个方面:一是断裂系统复杂;二是三肇凹陷扶杨油层处于物源交汇区,河道展布规律不清;三是二者时空耦合与油气成藏关系复杂。基于扶杨油层成藏的三个主要矛盾,改变传统石油地质的研究模式,从断裂系统出发,剖析断裂与砂体、与油气关系,探索‘用断裂系统'找油的方法。为此本文在全面收集三肇凹陷扶杨油层地震、钻井、试油和开发动态数据的基础上,深入剖析断裂发育特征、活动规律及演化历史,系统分析断裂控藏机制及油气富集规律,明确了扶杨油层下一步勘探方向。
     扶杨油层断裂走向以南北向为主、规模小、密度大、平面分布不均、断层组合类型多样、具有密集成带的特征,不同方位断裂密集带具有不同的成因机制:北北西和北北东向断裂密集带是受基底断裂和斜拉作用(扭动)产生的;近南北向断裂密集带是同向铲式基底断裂及其水平拆离作用的结果;近东西向断裂密集带为差异伸展作用形成的‘调节型'断裂密集带。三肇凹陷断裂具有7个形成活动时期:早白垩世早期、青一段沉积时期、姚家组沉积时期、嫩江组一二段沉积时期、嫩江组末期、明水组末期和古近系末期。基于断裂形成活动时期,认为扶杨油层由4类不同活动规律的断层构成:即坳陷期断裂、断陷期形成坳陷期继续活动的断裂、断陷期形成坳陷期和反转期均活动的断裂和坳陷期形成构造反转期继续活动的断裂,其中第3、4类断层为油源断层,且多为断裂密集带的边界断层。基于三肇凹陷南部F1油层组‘单砂体级'等时地层格架建立和沉积微相研究,认为河道砂体主要为北东向展布,油源通断断层以近南北向为主,断层与河道斜交构成有利的断层—岩性圈闭。断裂密集带不是主要的富油构造,首次提出‘油主要聚集在油源断层下盘河道砂中',断裂密集带为‘V'字型‘地堑'式断层组合,是构造相对低部位;油源断层多为断裂密集带的边界断层,断裂密集带不是‘倒灌'油运移的指向区,油主要向阻力较小的下盘方向充注。因此油源断层下盘河道砂是主要的富集区域,油源断层控制的‘地垒'更有利于油富集。按着‘避开断裂密集带,在油源断层控制的地垒或断阶上'找有利评价区原则,提出‘59个评价目标区',进一步明确了下一步勘探目标。
Daqing oilfield exploration and development of the external focus in the east of the placanticline and placanticline, the main purpose formations are the Fuyu and Yangdachengzi formation. The Fuyang formation of Sazhao depression experienced a pre-exploration, evaluation, the pilot phase, and the proved oil-bearing area is 304.97 km~2, proved geological reserves is 17130.7×10~4t, unproduced reserves is 15,932×10~4t. Overall performance as' low rate of proved resources', ' low rate of the using of proved reserves ' characteristics. As a major future production, the evaluation intensity of Fuyang formation increases year after year. Although through the reservoir description and placing of wells optimization in the early-stage of the development, the success drilling rate of Fuyang formation remains low, the main reasons are drilling water sand or poor abandoned reservoir. The main reason of the low success drilling rate is complex geological conditions of Fuyang formation, mainly in the following three aspects: First, fault system is complex; Second, Fuyang formation of Sanzhao depression lay in the intersection of the source area, the distribution of river is unclear; Third, it is both time and space coupled with the complex relationship between oil and gas accumulation. Based on the three major contradictions of the Fuyang formation oil and gas accumulation, change the traditional model of petroleum geology, start from the fault system, analysis the relationship between fault and sand, and the oil and gas, explore 'fault system using' method to finding oil. In this paper, based on the comprehensive collection of seismic, well drilling, testing for oil and development dynamic data of Sanzhao Depression Fuyang formation, we analysis faults growth characteristics, the action law and evolution history, analysis fault control reservoir mechanism and regular pattern of rich oil and gas concentration, and define the next step exploration direction of Fuyang formation.
     The characteristics of faults in F,Y oil layers are that the strike is main of NW, the scale is primarily small, the density is big, the plane distribution is uneven, the fault combination type diverse and they crowded distribute as belt. The belts of faults which strike is NNW and NNE are the result caused by the fundamental faults and Cable-Stayed role (twisting); The belts of faults concentration have different genetic mechanisms: submeridional zone of faults are the cause of synthetic listric fundamental faults and their horizon decoupling function;. The belts of faults which strike is WE are the "regulation" belts of faults caused by differential extension function. The faults in Sanzhao depression are formed in 7 period: Initial early Cretaceous, the period of qn1 sedimentary, the period of Yaojia formation sedimentary, the period of n1 and n2 sedimentary, the last period of Nenjiang formation, the last period of Mingshui formation and the last period of Paleogene 1pK7(?) EK3R_(?) .It is thinked that F,Y oil layers are constituted by faults of 4 differential activity rule based on faults activity periods, which are formed in downwarping period, in downfaulted period keeping activity in downwarping period, in downfaulted period keeping activity in downwarping period and reversal period, and in downwarping period keeping activity in reversal period. The 3 type and 4 type of all the 4 types faults are which connect source rock and reservoir, and most of them are boundary faults of belts of fault zone. Based on the establishment of "single-sand" equitime formation framework of F1 oil group in Sanzhao depression, it is thinked that the mainly distribution of channel sands is EN, the faults which connect the source rock and reservoir are mainly SN, and oblique crossing of river and faults is favorable to form fault -lithologic traps. Belts of fault zones are not the main full oil structure. It is the first time to state that oil mainly accumulates in the footwall channel sand of the oil sources faults; belts of fault zones are the fault of "v" shaped "graben", and they are the construction of relatively low position; the oil sources faults are most the boundary faults, belts of fault zones are not the directed zone of oil-gas migration, and oil mainly migrates to the low plates which have Smaller resistance. Wherefore, the footwall channel sand of the oil sources fault are the main enrichment regional, and the "horst" which controlled by the oil sources fault is favorite to accumulate. It is proposd "59 evaluated target zone", which further clarified the next target for exploration, according to the principles of "avoiding fault-zone, in graben or horst which controlled by the oil sources fault" to look for favorable evaluation district.
引文
[1]酬望水,吕炳全,张文军,等.松辽盆地构造演化及成盆动力学探讨[J].地质科学,2005,40(1):16-31.
    [2]迟元林,云金表,蒙启安.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002,10一80.
    [3]Hellinger S J and Sclater J G.Some comments on the two layer extensional models for the evolution of sedimentary basins[J].Jour.Geophys.Res.,1983,88:825-827.
    [4]Mckenzie D.P..Some remarks on the development of sedimentary basins[J].Earth Planet.Sci.Lett.,1978,40:25-32.
    [5]Royden L.A..A simple method for analyzing subsidence and heat in extensional basins [J].In:Burrus J.ed.Thermal Modeling in Sedimentary Basins.1986,Paris:49 -73.
    [6]Gibbs A.D..Structural evolution of extensional basin margins[J].Geol.Soc.London,1982,141:609-620.
    [7]Salveson J.O..Variations in the oil and gas geology of rift basins.Egyptian General Petroleum Corp.,1976,5th Explor Symposium,(11):15-17.
    [8]Salveson J.O..Variations in the geology of rift basins -a tectonic model.Paper presented at Rio Grande Rift Symposium.1978,Santa Fe(New Mexico):257-271.
    [9]Falvey D.A..The development of continental margins in platetectonic theory.Journal of Association of Petroleum and Explosives Administration,1974,14:95-106.
    [10]云金表,金之钧,殷进垠.松辽盆地继承性断裂带特征及其在油气聚集中的作用.大地构造与成矿,2002,26(4):379-385.
    [11]张文军,胡望水,官大勇,等.松辽裂陷盆地反转期构造分析.中国海上油气,2004,16(4):230-234.
    [12]侯贵廷,冯大晨,王文明,等.松辽盆地的反转构造作用及其对油气成藏的影响.石油与天然气地质,2004,25(1):49-53.
    [13]韩守华,余和中.松辽盆地北部反转构造带与油气聚集的关系.大庆石油地质与开发,15(3):1-5.
    [14]胡望水.松辽盆地北部正反转构造与油气聚集.天然气工业,1996,16(5):20-24.
    [15]陈昭年,陈布科.松辽盆地反转构造与油气聚集.成都理工学院学报,1996,23(4):50-56.
    [16]陈昭年,陈发景.松辽盆地反转构造运动学特征.现代地质,10(3):390-396.
    [17]张功成,徐宏,刘和甫,等.松辽盆地反转构造与油气田分布.石油学报,17(2):9-14.
    [18]张功成,朱德丰.松辽盆地伸展和反转构造样式.石油勘探与开发,23(2):16-20.
    [19]罗笃清,云金表,李玉喜.松辽盆地的正构造反转及其形成机制探讨.大庆石油学院学报,1994,18(2):17-21.
    [20]胡望水,王燮培.松辽盆地北部变换构造及其石油地质意义.石油与天然气地质,1994,15(2):164-172.
    [21]刘德来,王伟,马莉.伸展盆地转换带分析-以松辽盆地北部为例.地质科技情报,1994,13(2):5-9.
    [22]高瑞琪,蔡希源.松辽盆地油气田形成条件与分布规律.石油工业出版社,北京:1997,12-40.
    [23]胡望水.松辽盆地“T2”断层系及青山口早期伸展裂陷.石油勘探与开发,1996,22(2):8-12.
    [24]刘德来,陈发景,温详泉.松辽盆地坳陷期T2断层成因机制分析.大庆石油学院学报,1996,20(1):23-26.
    [25]梅廉夫,费琪,徐思煌.松辽盆地“T2”天然水力断裂系统.地球科学-地质大学学报,1996,21:632.
    [26]吕延防,付广,高大岭,等.油气藏封盖研究[M].北京:石油工业出版社,1996,55-123.
    [27]黄薇,王雅峰,千革,等.松辽盆地北部卫星油田多类型油藏形成条件及分布规律.2004,23(5):30-32
    [28]吴河勇,梁晓东,向才富,等.松辽盆地向斜油藏特征及成藏机理探讨.中国科学(D辑),2007,37(2):185-191.
    [29]赵文智,邹才能,汪泽成,等.富油气凹陷“满凹含油”论—内涵与意义.石油勘探与开发,2004,31(2):5-13.
    [30]漆家福,夏义平,杨桥.油区构造解析.石油工业出版社,2004,25-59.
    [31]Wernicke B.,Burchfiel B.C..Modes of extensional tectonics.Journal of Structural Geology,16:845-851.
    [32]Bally A.W.,Bernoulli D.,Davis G.A.,et al..1981.Listric normal faults.Oceanologica Acta.Proceeding 26th International Geological Congress.Geology of Continental Margins Symposium.Paris:1980,87-101.
    [33]Gibbs A.D..Structural styles in basin formation.In:Tankard A.J.,Balkwill H.R.,Extensional tectonics and stratigraphy of the North Atlantic margins.1989,AAPG Memoir,46:81-93.
    [34]Gibbs A.D..Linked fault families in basin formation.Journal of Structural Geology,1990,12:759-803.
    [35]漆家福,杨桥,童亨茂.1997.构造因素对半地堑盆地层序充填的影响.地球科学,22(6):603-608.
    [36]Glennie,Boegner.Sole pit inversion tectonics.In L.V.Illing and G.D.Hobson,Petroleum geology of the continental shelf of Europe:London,Institute of Petroleum,1981,110-120.
    [37]Cooper M.A.and G.D.Williams.Inversion tectonics.Geological Society Special Publication,1989,44:375.
    [38]Williams G.D.,C.M.Powell,M.A.Cooper.Geometry and kinematics of inversion tectonics.In:M.A.Cooper and G.D.Williams eds.,Inversion tectonics.Geological Society Special Publication,1989,44:3-15.
    [39]McClay K.R..Analogue models of inversion tectonics.In:M.A.Cooper and G.D.Williams eds.,Inversion tectonics.Geological Society Special Publication,1989,44:41-59.
    [40]Mitra.Geometry and kinematic evolution of inversion structures.AAPG,1989,77(7):1159-1191.
    [41]M.O.Withjack,W.R.Jamison.Deformation Produced by Oblique Rifting.Tectonophysics,1986,126:99-124.
    [42]Virginie Tron and Jean-Pierre Brun.Experiments on oblique rifting in brittle-ductile systems.Tectonophysics,1991,188:71-84.
    [43]Olivier Dauteuil,Jean Pierre Brun.Oblique rifting in a slow-spreading ridge.Nature,1993,361:145-149.
    [44]O.Dauteuil,J.P.Brun.Deformation partitioning in a slow spreading ridge undergoing oblique extension:mohns Ridge,Norwegian Sea[J].Tectonics,1996,15(4):870-884.
    [45]周建勋,漆家福.曲折边界斜向裂陷伸展的砂箱实验模拟[J].地球科学—中国地质大学学报,1999a,24(6):630-634.
    [46]周建勋,漆家福.伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示[J].地质科学,1999b,34(4):491-497.
    [47]A.E.Clifton,R.W.Schlische,M.O.Withjack,et al..Influence of rift obliquity on fault-population systematics:results of experimental clay models[J].Journal of Structural Geology,2000,22:1491-1509.
    [48]Yossi Mart,Olivier Dauteuil.Analogue experiments of propagation of oblique rifts[J].Tectonophysics,2000,316:121-132.
    [49]周建勋,漆家福.伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示[J].地质科学,1999,34(4):491-497.
    [50]M.O.Withjack,Jon Olson,Eric Peterson.Experimental Models of Extensional Forced Folds.AAPG,1990,74(7):1038-1054.
    [51] C. Childs, S. J. Easton, B. C. Vendeville, et al. Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue[J]. Tectonophysics,1993, 228: 313-329.
    [52] Child C. , Watterson J. , Walsh J. J.. Fault overlap zones within developing normal fault systems. Journal of Geological Society of London, 1995, 152: 535-549.
    [53] P. Richard. Experiments on faulting in a two-layer cover sequence overlying a reactivated basement fault with oblique~slip[J]. Journal of Structural Geology, 1991, 13(4):459-469.
    [54] R. I. Higgins, L. B. Harris. The effect of cover composition on extensional faulting above re-activated basement faults: results from analogue modeling[J]. Journal of Structural Geology, 1997, 19(1): 89-98.
    [55] McClay K. R. .Thrust faults in inverted extensional basin. In: McClay K. R. eds. Thrust Tectonics. London: Chapman and Hall, 1992, 91-104.
    [56] Watterson J. 1986. Fault dimensions, displacements and growth. Pure and Applied Geophysics, 124: 365-373.
    [57] WALSH J J, WATTERSON J. 1988. Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10: 239-247.
    [58] Cowiepa, Scholz C H. 1992a. Displacements length scaling relationship for faults: Data synthesis and discussion. Journal of Structural Geology, 14: 1149-1156.
    [59] Cowie P A, Scholz C H. 1992b. Physical explanation for the displacements-length relationship for faults using a post-yield fracture mechanics model. Journal of Structural Geology, 14: 1133-1148.
    [60] Xu Shunshan, Nieto-samanniego, Li Dongxu. 2004. Relationship between fault length and maximum displacement and influenced factors. Earth Science Frontier, 11 (4):567-573.
    [61] Young-Seog Kima, David J. Sandersonb. 2005. The relationship between displacement and length of faults: a review. Earth-Science Reviews, 68: 317-334.
    [62] Antonellini, M. , Aydin, A.. 1994. Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bull, 78: 355-377.
    [63] Antonellini M. and Avdin, A.. 1995. Effect of faulting on fluid flow in porous sandstones: Geometry and spatial distribution. American Association of Petroleum Geologists Bulletin, 79: 642-671.
    [64] Caine, J. S. , Evans, J. P. and Forster, C. B.. 1995. Fault zone architecture and permeability structure. Geology, 24: 1025-1028.
    [65] Gisbon R. G.. 1998. Physical character and fluid-flow properties of sandstone derived fault zones, in: M. P. Coward, T. S. Daltaban, H. Johnson (Eds.), Structural Geology in Reservoir Characterization, Geol. Soc. Lond. Spec. Publ. 127: 83-97.
    [66] Kip Cerveny, Russell Davies, et al.. 2004. Reducing uncertainty with fault-seal analysis. Oilfield Review, 38-51.
    [67] Shipton and Cowie. 2001. Damage zone and slip-surface evolution over μm to km scales in high-porosity Navajo sandstone, Utah. Journal of Structural Geology, 23: 1825-1844.
    [68] Shipton and Cowie. 2003. A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology, 25:333-344.
    [69] Full james J R, Zijerveld J J, Franssen RCMW. 1997. Fault seal processes: systematic analysis of fault seals over geological and production time scales. In:Moller-Pedersen PK, Koestler AG(eds) Hydrocarbon seals-importance for exploration and production. Norwegian Petroleum Society. NPF Spec. Publ., 7:51-59.
    [70] V. F. Bense, E. H. Van den Berg, R. T. Van Balen. 2001. Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeology Journal, 11: 319-332.
    [71] Heynekamp M R, Goodwin L B, Mozley P S, Haneberg WC. 1999. Controls on fault-zone architecture in poorly lithified sediments,Rio Grande Rift,New Mexico:implications for fault zone permeability and fluid flow.In:Haneberg WC,Mozley PS,Casey Moore J,Goodwin LB(eds) Faults and subsurface fluid flow in the shallow crust.Am Geophys Union AGU Geophys Monogr 113:27-51.
    [72]Rawling GC,Goodwin LB,Wilson JL.2001.Internal architecture,permeability structure,and hydrologic significance of contrasting fault zone types.Geology,27:43-46.
    [73]Weber,K.J.and E.Daukoru.1975.Petroleum geology of Niger delta:Ninth World Petroleum Congress Transactions,2:209-221.
    [74]Smith D.A..1980.Sealing and nonsealing faults in Louisiana Gulf Coast Salt Basin.AAPG Bullitin,64:145-172.
    [75]Pittman E.D..1981.Effect of fault-related granulation on porosity and permeability of quartz sandstones,Simpson Group(Ordovician),Oklahoma:AAPG Bullitin,65:2381-2387.
    [76]Seeburger D.A..1981.Studies of natural fractures,fault zones permeability and a pore space permeability model:Ph.D.thesis,Stanford University,Stanford,California,243.
    [77]Seeburger D.A.,A.Aydin and J.L.Warner.1991.Structure of fault zones in sandstones and its effect on permeability(abs):AAPG Bullitin,75:669.
    [78]Marc Holland,Janos L.Urai,Wouter van der Zee,Helge Stanjek,Jan Konst- anty.2006.Fault gouge evolution in highly overconsolidated claystones.Journal of Structural Geology,28:323-332.
    [79]付晓飞,方德庆,吕延防,等.2005.从断裂带内部结构出发评价断层垂向封闭性的方法.地球科学,30(3):328-336.
    [80]付晓飞,宋岩,吕延防,等.塔里木盆地库车凹陷膏岩质盖层特征及与天然气保存.石油实验地质,2006,28(1):25-29.
    [81]Lindsay,N.G..1993.Outcrop studies of shale smears on fault surfaces.In:Murphy,F.C.,Walsh,J.J.,Watterson,J.(Eds.),Special Publication of the International Association of Sedimentologists,15:113.
    [82]Lehner FK,Pilaar WF.1997.0n a mechanism of clay smear emplacement in synsedimentary normal faults.In:Moller-Pedersen P,Koestler AG(eds) Hydrocarbon seals:importance for exploration and production.Elsevier,Amsterdam,NPF Spec Publ.,7:39-50
    [83]Fisher Q.J.,Knipe R.J..The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continential shelf.Marine and Petroleum Geology,2001,18:1063-1081.
    [84]Bouvier JD,Kaars-Sijpesteijn CH,Kluesner DF,Onyejekwe CC,Pal RC.1989.Three-dimensional seismic interpretation and fault sealing investigations,Nun River field,Nigeria.AAPG Bull.73:1397-1414.
    [85]Jev,B I,C H Kaars-Sijpersteijn,M P A M Peters,N L Watts and J T Wilkie.Akaso field,Nigeria:use of intergrated 3-D seismic,fault slicing,clay smearing,and RFTpressure data on fault trapping and dynamic leakage.AAPG Bulletin,1993.77:1389-1404
    [86]J.Constantin,J.B.Peyaud,P.Verg_ely,M.Pagel,J.Cabrera.2004.Evolution of the structural fault permeability in argillaceous rocks in a polyphased tectonic context.Physics and Chemistry of the Earth,29:25-41
    [87]张义杰.2003.准噶尔盆地断裂控油的流体地球化学证据.新疆石油地质,24(2):100-106.
    [88]沈传波,李祥权,杜学斌.2003.流体包裹体在油田断裂研究中的某些应用.大庆石油地质与开发,22(4):4-6.
    [89]杨巍然,怅文推.1996.断裂性质与流体包裹体组合特征.地球科学,21(3):285-290.
    [90]卢双舫,付广,王朋岩,等.天然气富集主控因素的定量研究.石油工业出版社,北京:2002,4-13.
    [91]华保钦.1995.构造应力场、地震泵与油气运移.沉积学报,13(2):77-85.
    [92]付广,吕延防,于丹.我国不同类型盆地高效大中型气田形成的主控因素.地球科学-中国地质 大学学报,2007,32(1):82-88.
    [93]Sibson,R H et al..1975.Seismic pumping-a hydrothermal fluid transport mechanism,Jour.Geol.Sci.,131C6):653-660.
    [94]Hooper E C D.1991.Fluid migration along growth faults in compacting Sediments.Jour.Petrol.Geol.,4(2):161-180.
    [95]华保钦.1995.构造应力场、地震泵与油气运移.沉积学报,13(2):77-85.
    [96]Roberts S J,NunnJ A.1995.Episodic fluid expulsion from geopressured sediments.Marine and Petroleum Geology,195-204.
    [97]Roberts,S.,J.Nunn,L.Cathles,F.Cipiriani.1996.Expulsion of abnormally pressured fluids along faults.Journal of Geophysical Research,101:28231-28252.
    [98]闫福礼、贾东、卢华复.1998.东营凹陷油气运移的地震泵作用.石油与天然气地质,20(4),295-298.
    [99]邱楠生,金之钧.2000.油气成藏的脉动式探讨.地学前缘,7(4):561-567.
    [100]李明诚.2002.对油气运聚研究中一些概念的再思考.石油勘探与开发,29(2):13-16.
    [101]Losh S,Walter L,Meulbroek P,Martini A,Cathles L and Whelan J.2002.Reservoir fluids and their migration into the South Eu2gene Island Block 330 reservoirs,offshore Louisiana.AAPG Bull.,86(8):1463-1488.
    [102]郝芳,邹华耀,杨旭升,王敏芳.2003.油气幕式成藏及其驱动机制和识别标志.地质科学,38(3):413-424.
    [103]郝芳,邹华耀,方勇,曾治平.2004.断-压双控流体流动与油气幕式快速成藏.石油学报,25(6):38-47.
    [104]解习农,王增明.2003.盆地流体动力学及其研究进展.沉积学报,21(1):19-23.
    [105]李明诚.2000.石油与天然气运移研究综述.石油勘探与开发,27(4):3-9.
    [106]李明诚.2004.油气运移基础理论与油气勘探.地球科学,29(4):379-383.
    [107]Hunt J M.1990.Generation and migration of petroleum from abnormal pressured fluid compartment[J].AAPG Bull.,74(1):1-2.
    [108]Cartwright J A.1994.Episodic basin wide fluid expulsion from geopressured shale sequence in the North Sea basin.Geology,22(4):447-450.
    [109]罗晓容.2001.油气初次运移的动力学背景与条件.石油学报,22(6):24-29.
    [110]邓运华.2005.断裂—砂体形成油气运移的“中转站”模式.中国石油勘探,6:14-17.
    [111]赵孟军,王招明,张水昌,等.2005.库车前陆盆地天然气成藏过程及聚集特征.地质学报,79(3):413-422.
    [112]Hindle A D.1997.Petroleum migration pathways and charge concentra- tion:a three 2 dimensional model.AAPG Bulletin,81:1451-1481.
    [113]罗群,庞雄奇,姜振学.2005.一种有效追踪油气运移轨迹的新方法——断面优势运移通道的提出及其应用.地质论评,51(2):156-162.
    [114]宋岩,夏新宇,王震亮,王毅,胡圣标.2001.天然气运移和聚集动力的耦合作用.科学通报,46(22):1906-1910.
    [115]柳广弟,李剑,李景明,等.2005.天然气成藏过程有效性的控制因素与评价方法.天然气地球科学,16(1):1-6.
    [116]付广,孙永河,吕延防.2006.输导通道类型对天然气聚集效率的影响.地质论评,52(2):236-243.
    [117]Gox S.1995.faulting progresses at high fluid pressures:An example of fault valve behavior from the Wattle Gully fault,Victoria,Australia.Journal of Geophysical Research 1995,100:12841-12859.
    [118]Steven L.,Lorraine L.,Martin S.,et al.1999.Vertical and lateral fluid flow related to a large growth fault.South Lugene Island Block 330 field,Offshore Louisiana.AAPG,83:244-276.
    [119]姜振学,庞雄奇,曾溅辉,王洪玉,罗群.2005.油气优势运移通道的类型及其物理模拟实验研究.地学前缘,12(4):507-516.
    [120]吴胜和,曾溅辉,林双运,等.层间干扰与油气差异充注.石油实验地质,2003,25(3):285 -289.
    [121]邱楠生,万晓龙,金之钧,等.渗透率级差对透镜状砂体成藏的控制模式.地球科学-中国地质大学学报,2003,30(3):48-52.
    [122]孙宝珊.1996.铲(犁)式断裂控油模式概析.地质力学学报,2(4):68-72.
    [123]姜素华,曾溅辉,李涛,等.断层面形态对中浅层石油运移影响的模拟实验研究.中国海洋大学学报,2005,35(2):245-248.
    [124]邓运华.2004.张-扭断裂与油气运移分析--以渤海油区为例.中国石油勘探,2:33-37.
    [125]付晓飞库车坳陷北带逆掩断层在天然气运聚成藏中的作用.中国海上油气.2004,16(3):161-165
    [126]库车坳陷北带天然气聚集成藏的关键因素.石油勘探与开发.2004,31(3):22-25.
    [127]库车坳陷典型构造天然气运移过程物理模拟.石油学报.2004,25(5).
    [128]付立新,王东林,肖玉永.2000.伸展断层作用对油气二次运移的影响.石油大学学报(自然科学版),24(4):71-74.
    [129]孙宝珊.1996.铲(犁)式断裂控油模式概析.地质力学学报,2(4):68-72.
    [130]贾东,卢华复,魏东涛,陈竹新,贾承造,魏国齐.2002.断弯褶皱和断展褶皱中的油气运移聚集行为.南京大学学报(自然科学),38(6):747-755.
    [131]付晓飞,王朋岩,申家年,等.简单斜坡油气富集规律.地质论评.2006,52(4):522-531.
    [132]向才富,夏斌,解习农,等.2004.松辽盆地西部斜坡带油气运移主输导通道.石油与天然气地质,25(2):205-215.
    [133]王鸿祯.Megastages in the tectonic development of Asia.Science in china,1980.
    [134]王鸿祯.中国地壳构造发展的主要阶段.地球科学-中国地质大学学报,1982.
    [135]王骏、王东坡等,东北亚沉积盆地的形成演化及其含油气远景,地质出版社,1997.
    [136]高瑞祺、程学儒、文享范等,松辽盆地北部不同成因类型天然气地化特征和早期资源评价,大庆石油管理局,1989.
    [167]高瑞祺、牛克智、李庶琴等,松辽盆地北部深层地质特征与致密砂岩气藏形成条件,大庆石油勘探开发研究员院,1990.
    [138]程裕淇主编,中国区域地质概论,地质出版社,1994.
    [139]郭占谦,松辽盆地的类型及形成与演化,地球科学1998,23(增刊).
    [140]迟元林、李景明等,松辽盆地莺山-庙台子断陷深层油气综合评价,石油勘探开发科学研究院廊坊分院,2000.
    [141]陈发景、王德发,松辽盆地徐家围子断陷石油地质综合评价及勘探目标选择,大庆油田责任有限公司勘探开发研究院,2000.
    [142]高名修.中国东部盆地系与美国西部盆地山脉构造对比及其成因机制探讨[A].见:朱夏.中国中新生代盆地构造和演化[M].北京:科学出版社,1983.65-77.
    [143]刘和甫,沉积盆地地球动力学分类及构造样式分析,地球科学,1993,18(6):704.
    [144]刘和甫.中国沉积盆地演化与旋回动力学环境[J].地球科学,1996,21(4):345-356.
    [145]刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘,2000,7(4):477-486.
    [146]陈发景,赵海玲,陈昭年,等.中国东部中-新生代伸展盆地构造特征及地球动力学背景[J].地球科学,1996,21(4):357-365.
    [147]陈文涛、张晓东、陈发景.松辽盆地晚侏罗世火山岩分布与油气.中国石油勘探,2001.
    [148]朱德丰,吴相梅,张庆晨.松辽盆地构造演化对油气运聚及成藏的控制作用,科研报告,2000:10-40.
    [149]殷进垠,刘和甫,迟海江.松辽盆地徐家围子断陷构造演化.石油学报,2002,23(2):26-29.
    [150]付晓飞,王朋岩,吕延防等.松辽盆地西部斜坡北段构造特征及对油气成藏的控制.地质科学,2007(待刊).
    [151]王璞郡,杜小弟,王俊,等.1995.松辽盆地白垩系年代地层研究及地层时代划分.地质学报,69(4):372-380.
    [152]方立敏,李玉喜,殷进垠.松辽盆地断陷末期反转构造特征与形成机制.石油地球物理勘探,2003,38(2):190-193.
    [153]任延广,陈均亮,冯志强,等.喜山运动对松辽盆地含油气系统的影响.石油与天然气地质,2004,25(2):185-190.
    [154]大庆油田石油地质志编写组.中国石油地质志(卷二).大庆、吉林油田上册.1987,115-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700