用户名: 密码: 验证码:
渤海南部渤中A油田储层三维地质建模与油藏数值模拟一体化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤中A油田位于渤海南部海域,渤南凸起西侧倾伏端,构造上北临渤中凹陷,南靠黄河口凹陷,呈现由断裂控制的披覆半背斜构造形态。由于南北侧分别紧邻黄河口和渤中两个富生烃凹陷,并存在与油气运移相匹配的断层活动,该构造具备了极为优越的油气地质条件。同时,渤中A油田具有油藏类型复杂,含油层系多、油水关系复杂、储层连通性差等特点。复杂的油藏地质特征给准确预测油气储量以及制定整体开发方案带来很大困难。因此,系统精细地解剖油气藏及内部结构,揭示油气分布规律,建立储层三维空间定量分布模型,进一步真实、直观地再现地下地质结构及储层特征,定量描述储层参数的空间非均质性,设计数值模拟网格系统,将精细的地质模型转换为油藏数值模拟静态模型,对渤中A油田整体开发方案的优化设计调整具有重要意义。
     采用多学科综合一体化原则,以科学的地质理论及三维地质建模方法为依据,充分利用地震、钻井、测井、试井及分析化验等原始资料,在基础地质、测井综合解释、地震储层横向预测等研究基础上,应用先进的三维可视化地质建模软件——PetrelTM,建立渤中A油田高精度的确定性和随机性三维地质模型,并在一定的控制条件下,模拟出各种可能的变化过程,然后根据具体目的进行选择,得出最合理的地质模型,并在模型粗化的基础上进行油藏数值模拟研究。以更新产量预测指标,指导开发方案的制定,开展全面的、深入细致的研究。主要研究成果与认识如下:
     1)区内主要发育着曲流河沉积、辫状河沉积、三角洲沉积和冲积扇沉积等多种沉积类型,砂泥岩沉积类型多样。明化镇下段发育曲流河环境下的点坝、天然堤、泛滥平原微相;馆陶组发育辫状河沉积环境下的心滩、溢岸沉积、泛滥平原微相;东营组发育三角洲沉积环境下的分流河道及河口坝微相。
     2)应用新井解释分析资料,验证和调整评价阶段乃至开发方案实施阶段储层描述所应用的地质知识,更新地质模型,描述不同类型油藏的储层特征,表征油气水分布及定量描述储层参数的空间非均质性,实现三维地质建模。通过对多个等概率随机模型进行优化排队,评价影响储层三维地质模型的不确定因素,进行地质模型优化。优选储层、储量拟和与地质储量相近的一组模型粗化提供给油藏数值模拟器。
     3)油藏类型复杂,含油层系多,单层油层厚度薄,含油井段长,达1000多米,压力差异大;而且Nm1、Ng01、Ng02油气层储量较小,大多数为孤立油层或油气层,初期开采价值不大。为此确定合理的开发策略是,先动用开采NgⅠ、NgⅡ、Ngm、NgⅣ、Ed1和Ed2六个油组;Nm1、Ng01、Ng02油层以及气层原则上初期不射开,而等到后期产能递减阶段上返回采。
     4)理论公式计算以及数值模拟研究表明,允许合理的流动压力10MPa,临界流压6MPa;合理生产压差控制在2MPa以内,最大不宜超过8MPa。
     5)油层层内、层间连通性差,上下盘油水关系复杂;而且该油田水体能量较充分,地层压力下降缓慢。注水开采和衰竭开采的数值模拟对比表明,注水提高采收率的效果很小,与衰竭式开采方式的采收率接近,应进行衰竭式开采。
     6)对影响开发效果的不确定因素,比如数模网格尺寸、岩石总体积、渗透率、纵向连通性、岩石压缩系数、束缚水饱和度、油水过渡带高度和表皮系数等因素进行了敏感性分析评价,考虑敏感因素对开发水平所造成的影响。
     7)利用建立的地质模型,设计优化投产方案七个。模拟预测结果显示,提液方案的开采效果均好于不提液方案的开采效果;采取滑套依次打开的工作制度,层间干扰在一定程度上减小了,稳产期也有所延长。筛选优化投产方案为:初期采油速度接近3%,开采18年后的采出程度11.7%。
     8)数值模拟结果表明,该油田的采出程度较低。分析主要有以下原因:(1)孤立油藏多,油水关系复杂、动用程度低;(2)离边底水的距离近,水淹快;(3)含有油层系多,单层油层厚度薄,含油井段长,压力差异大,窜流和层间干扰严重。
     通过建立渤中A油田高精度三维地质模型,包括三维地质结构模型、确定性、随机性沉积相模型、相控岩石物理属性模型、粗化三维地质模型,并在一定的控制条件下,模拟出各种可能的变化过程,然后根据具体目的而进行选择,得出最合理的地质模型,并在模型粗化的基础上进行油藏数值模拟研究,更新产量预测指标,指导开发方案的制定,并为渤中A油田开发方案的优化调整提供技术支持。
Bo zhong A Oilfield is located in the south Bohai and the block is located in the west pitch side of Bonan Uplift. It adjoins Bozhong Uplift on the north and nexts to Huanghekou Sag on the south. The structure presents draping semi anticline pattern which is controlled by fault. There are two rich hydrocarbon generation depression next to Bozhong A Oilfield and the faulting and oil-gas migration exist meanwhile, which make the structure have superior geological conditions. Moreover, Bozhong A Oilfield has some characteristic, such as complicated reservoir type, many oil-bearing strata, complex oil-water relationship, bad reservoir connectivity. Complex geologic feature brings lots of difficult to calculate oil and gas reserves and formulate whole development project. Therefore, describing reservoir and inner structure subtly, revealing the law of oil and gas distribution, constructing3D quantitate distribution model of reservoir, reappearing geologic structure and reservoir characteristic truly and visually, describing non-homogeneity of reservoir parameter, designing numerical simulation net system, transforming the elaborate geological model into numerical simulation static model, they have important significance to optimize and adjust development program of Bohai A Oilfield.
     Adopting multidisciplinary integration principle, according to geological theory and3D geological modeling theory, utilizing seismic, drilling, logging, testing and analytical test data, based on research of geology, logging data comprehensive explanation, reservoir prediction, advanced3D visual geology modeling software, which is called Petrel TM, is used to construct elaborate certainty and randomness3D geology model. In some certain condition, probable change process is confirmed, then according to the specific purpose, the most reasonable geological model is selected and obtained. On the basis of selected model, numerical simulation research can be carried out, output predict target is updated, formulating the development strategy can be guided, the whole and deep study can be carried out. The main research results and cognition follows:
     1) Meandering stream deposit, braided river deposit, delta deposit and alluvial fan deposit develop in research area. The type of sand-mudstone are varied. Point bar, natural levee, flood plain of meandering stream environment develop in the bottom of Minghuazhen Strata; river island, overflow facies, flood plain of braided river deposit environment develop in Guantao Strata; distributary channel, estuary dam of delta deposit environment develop in Dongying Strata.
     2) By ranking some equal probability model, the uncertain factor of3D geological model is evaluated and the model is optimized. The optimized reservoir stratum should be distributed reasonably. A set of model, in which reserves fitting and geological reserve are closely, should be provided to reservoir numerical part.
     3) The reservoir type is very complex and there are many oil-bearing series in the reservoir, but the single pay sand is very thin. Oiliness well section is long and it is up to1000m and pressure difference is big; moreover, the reserve of Nmi, Ngo1, Ngo2is relative small, many of which are isolate pay sand or oil and gas reservoir. The value of exploitation is not high in initial stage. Therefore, the rational development strategy is confirmed, producing Ngi, NgⅡ, NgⅢ, NgⅣ, Ed1and Ed2first; Nml, Ngo1, Ngo2are not perforated early stage in principle, when going into productivity decreasing stage, corresponding strata should be perforated to produce.
     4) The calculate result based on theory formula and numerical simulation research indicate that the rational flow pressure is10MPa, critical flow pressure is6MPa, rational productive pressure should be controlled2MPa below and the biggest value can't be pass8MPa.
     5) The connectivity of inner layer and interlayer is bad. The relationship between oil and water is complex. The water energy of this oilfield is abundant and formation pressure decreases slowly. The comparison result between water flooding and natural depletion shows that the effect of injecting water is not well and its recovery is closely to the recovery of natural depletion. Therefore, natural depletion should be adopted.
     6) The uncertain factors of influencing development effect are analyzed and assessed, which are net size of numerical simulation, the whole volume of rock, permeability, longitudinal connectivity, coefficient of compressibility, irreducible water saturation, the height of oil-water belt zone, skin factor. According to the assessed results we can estimate the influence of those factors to development effect.
     7) Using established geological model, seven productive strategies are designed. The simulation predict result indicates that the producing effect of increasing volume is better than not increasing volume, interlayer interference phenomenon decreases in some extent when adopting turning on sliding sleeve successively and the time of producing stably is extended. The screened producing strategy is that rate of oil production is about3%in early stage and recovery percent of reserves is up to11.7%after producing18years.
     8) The numerical simulation result shows that recovery percent of reserves is low. There are three reasons as follows:(1) there are many isolated reservoir, the relationship between oil and water is complex, the degree of producing reserves is low;(2) the distance to boundary water and bottom water is small and water invades quickly.(3) there are many oil-bearing series in the reservoir, but the single pay sand is very thin. Oiliness well section is long. The difference of pressure is big. Fluid channeling and interlayer interference phenomenon are serious.
     By establishing high-precision3D geological model of Bozhong A Oilfield, including3D geological structure model, certainty and randomness sedimentary model, rock physics model controlled by phased, inaccurate3D geological model, in some certain condition, probable change process is confirmed, then according to the specific purpose, the most reasonable geological model is selected and obtained.On the basis of selected model, numerical simulation research can be carried out, output predict target is updated, formulating the development strategy can be guided and it can provide technical support to optimization and adjustment of development strategy of Bozhong A Oilfield.
引文
[1]乔德武,任收麦,邱海峻,等.中国油气资源勘探现状与战略选区[J].地质通报,2011,30(2/3):187-196.
    [2]张抗.中国油气产区战略接替形势与展望[J].石油勘探与开发,2012,39(5):513-523.
    [3]邱中建,赵文智,胡素云,等.我国油气中长期发展趋势与战略选择[J].中国工程科学,2011,13(6):75-80.
    [4]邱中建,邓松涛.中国油气勘探的新思维[J].石油学院,2012,33(1):1-5.
    [5]康玉柱.中国油气资源开发的战略思考[J].科技导报,2012,30(22):1.
    [6]Dickinson W R. Plate tectonics and sedimentation [A].Plate Tectonics and Sedimentation[C].Tulsa: Spec. Publ. Soc. Econ. Plaoont. Miner,22,1974.1227.
    [7]Ershov A V,Brunet M F, Korotaev M V,et al.Late Cenozoic burial history and dynamics of the northern Caucasus molasse basin:implications for foreland basinmodeling[J]Tectonophysics,2011, 313(1-2):219-241.
    [8]Beaumont C.PlatformSedimentation[A]//11 thInternational sedimentology congress,abstract:inter-national association of sedimentologists.Hamilton,1982.
    [9]Mitrovica J X, Beaumont C, JARIVS G T. Tilting of continental interiors by the dynamical effects of subduction[J].Tectonics,2010,8(5):1079-1094.
    [10]中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:电力·油气·核能·环境卷[M].北京:科学出版社,2011.
    [11]张新安,张迎新.让天然气在国家能源安全中发挥更大作用(一)——中国天然气资源战略研究[J]国土资源情报,2007(9):1-6.
    [12]胡文瑞,翟光明,李景明.中国非常规油气的潜力和发展[J].中国工程科学,2010,12(5):25-29.
    [13]胡文瑞.中国非常规天然气资源开发与利用[J].大庆石油学院学报,2010,34(5):9-16.
    [14]Sinclair H D.Flysch to molasse transition in peripheral foreland basins:The role of passive mar-gin versus slabbreakoff[J].Geology,2009,25(12):1123-1126.
    [15]Flemmings P B,Jordan T E.Stratigraphic modelling of foreland basin:interpreting thrust deform-ation and litho sphererheology[J]Geology,1990,18(3):430-434.
    [16]Guan SW,Wang X,Yang SF, et al.3-D structural analysis on the Kuqa's Qiulitag anticline zone of the southern Tianshan Mountains,China[J].Geological Review,2009,49 (5):464-473.
    [17]陈耕.中国石油安全形势与对策思考[J].中国石油石化,2004(12):729.
    [18]冯明,曹成润,陈力,等.对我国油气资源潜力与对策的思考[J].地质与资源,2005,14(1):78-80.
    [19]潘继平.对中国油气可持续供应战略的思考[J].国际石油经济,2002(10):27-32.
    [20]潘志坚,胡永乐,胡杰.国内外油气资源形势分析[J].国际石油经济,2002(11):28-31.
    [21]车长波,潘继平,唐晓川.关于我国油气资源发展战略的思考[J].中国矿业,2004(2):7-10.
    [22]卜善祥,吕宾.关于我国建立石油储备的思考[J].资源·产业,2003,5(4):372-39.
    [23]潘继平,金之钧.中国油气资源潜力及勘探战略[J].石油学报,2004,25(2):1-6.
    [24]戴金星,夏新宇,卫延召.中国天然气资源及前景[J].石油与天然气质,2001,22(1):1-8.
    [25]田在艺.中国石油工业的发展[J].石油实验地质,2001,23(1):5-7.
    [26]姜在兴,王卫红,杨伟利.21世纪中国石油勘探战略展望[J].石油大学学报,2002,19(2):1-5.
    [27]潘继平,金之钧.中国油气资源潜力及勘探战略[J].石油学报,2004,25(2):1-6.
    [28]翟光明.21世纪中国油气资源远景[J].新疆石油地质,2002,23(4):271-278.
    [29]张抗.渤海海域和滩海勘探工作的新进展及发展方向[J].石油学报,2002,23(5):1-5.
    [30]邱中建,方辉.对我国油气资源可持续发展的一些看法[J].石油学报,2005,26(2):1-7.
    [31]梁生正,张以明,李旭,等.渤海湾盆地油气地质与勘探[J].中国石油勘探,2006,4(2):1-7.
    [32]康竹林.中国大中型气田概论[M].北京:石油工业出版社,2000.
    [33]邓运华.渤海湾盆地凹陷—凸起油气聚集的差异性[J].中国海上油气(地质),1999,13(6):401-405.
    [34]薛永安,余宏忠,项华.渤海湾盆地主要凹陷油气富集规律对比研究[J].中国海上油气(地质),2007,19(3):145-148.
    [35]Koedertiz L F, Simon A D. A technique for generating grid-dependent reservoir descriptive data[C]// SPE 6509,1977.
    [36]Wang J. Reservoir description:exploration stage[M]. Bei-jing:Petroleum Industry Press,1996(in Chinese).
    [37]Haldorsen H H, Lake L W.A new approach to shale man-agement in field scale simulation modelsfC] //SPE 10976,presented at the 57th Annual Fall Technical Conference andExhibition of the SPE, New Orleans,1982.
    [38]Delfiner P, Chile J P. Conditional simulations:a new MonteCarlo approach to probabilistic evaluation of hydrocarbon inplace[C]//SPE 6985,1977.
    [39]徐长贵,周心怀,杨波,等.渤中凹陷石南陡坡带构造-岩性复合圈闭的形成及分布规律[J].现代地质,2009,23(5):887-893.
    [40]傅强,夏庆龙,周心怀,等.渤中凹陷古近系沙河街组相对高孔渗储层成因分析:以QHD35-2-1井为例[J].中国海上油气,2010,22(4):221-224.
    [41]谢武仁,邓宏文,王洪亮,等.渤中凹陷古近系层序格架内的成岩作用[J].断块油气田,2008,15(2):23-26.
    [42]张琴,朱筱敏,钟大康,等.山东东营凹陷古近系碎屑岩储层特征及控制因素[J].古地理学报,2004,6(4):493-501.
    [43]蒋凌志,牛嘉玉,张庆昌,等.渤海湾盆地深部有利储层发育的主控因素[J].地质论评,2009,55(1):73-78.
    [44]黄正吉,李友川.渤海湾盆地渤中坳陷东营组烃源岩的前景[J].中国海上油气(地质),2002,16(2):119-123.
    [45]郭永华,周心怀,李建平,等.渤中凹陷北部QHD34-4-1井钻探的油气地质意义[J].中国海上油气,2008,20(6):367-369.
    [46]李友川,黄正吉,张功成.渤中坳陷东下段烃源岩评价及油源研究[J].石油学报,2001,22(2):45-48.
    [47]王飞宇,李洋冰,曾花森,等.渤海湾盆地渤中坳陷气油比的控制因素及勘探意义[J].中国海上油气,2006,18(5):290-295.
    [48]文志刚,唐友军,李浮萍,等.渤中凹陷凝析油地球化学特征及油源研究[J].石油天然气学报(江汉石油学院学报),2005,27(3):293-295.
    [49]包建平,张功成,朱俊章,等.渤中凹陷原油生物标志物特征与成因类型划分[J].中国海上油气,2006,16(1):12-17.
    [50]李浮萍,文志刚,唐友军,等.渤中凹陷古近系有效气源岩评价[J].石油天然气学报(江汉石油学院学报),2006,28(1):16-18.
    [51]王涛等.中国东部裂谷盆地油气藏地质[M].北京:石油工业出版社,1997.
    [52]侯贵廷,钱祥麟,蔡东升.渤海湾盆地中、新生代构造演化研究[J].北京大学学报(自然科学版),2001,37(6):845-850.
    [53]龚再升,王国纯,贺清.新近系是渤中坳陷及其周围油气勘探的主要领域[J]中国海上油气.地质,2000,14(3):145-156.
    [54]杨孝.渤中地区古近系构造层序地层分析与有利区带预测[D].中国地质大学(北京),2006.
    [55]周士科,魏泽典,邓宏文,等.渤中凹陷古近系构造层序研究[J].中国海上油气,2006,18(4):237-240.
    [56]Wang J H, Zhou Y, Gao H Y. Kriging geological mappingtechnique[M].Beijing:Petroleum Industry Press,1999(inChinese).
    [57]Haldorsen, Helge H, Damsleth, et al. Stochastic modeling[C]//SPE 20321, Journal of Petroleum Technology, Volume42, Number 4, April,1990.
    [58]Damsleth, Elvind, Tjolsen. Two-stage stochastic model applied to a North Sea Reservoir[C]//SPE 20605, Journal of Petroleum Technology, Volume 44, Number 4, April,1992.
    [59]Journel A G. Geostatistics for reservoir characterization[C]//SPE 20750,1990.
    [60]Gao G. Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF[C]//SPE 93324,SPE Reservoir Simulation Symposium,31 January-2 February, the Woodlands, Texas,2005.
    [61]康毅力,张浩,游利军.致密砂岩微观孔隙结构参数对有效应力变化的响应[J].天然气工业,2007,27(3):335-342.
    [62]康毅力,罗平亚.中国致密砂岩气藏勘探开发关键工程技术现状与展望[J].石油勘探与开发,2007,34(2):239-245.
    [63]苏娜,段永刚,于春生.微CT扫描重建低渗透气藏微观孔隙结构——以新场气田上沙溪庙组储层为例[J].石油与天然气地质,2011,32(54):792-796.
    [64]陈晓军,陈伟,段永刚,等.油藏Voronoi网格化的研究[J].西南石油大学学报(自然科学版),2010,32(2):7-13.
    [65]Jimenez E, Idrobo E A, Ernandez J, et al. Optimizing estimates of probabilistic reserves from production trends using a Bayesian approach[C]//SPE 94886, SPE Hydrocarbon Economics and Evaluation Symposium,3-5 April, Dallas, Texas,2005.
    [66]Jerry L F, Kerans, Charles, et al. Technology today series article[C]//SPE 82071, June,2003.
    [67]Tang H, Ji H C. Incorporation of spatial characteristics intovolcanic facies and favorable reservoir prediction[C]//SPE90847, presented at the 2004 SPE Annual Technical Conference and Exhibition, Houston,26-29 September.
    [68]彭军,游李伟,汪彦.TK625井区鹰山组碳酸盐岩储层精细对比研究[J].天然气工业,2006,26(6):36-38.
    [69]彭军,陈果,郑荣才.百色盆地东部古近系那读组湖相灰岩储层特征[J].地球学报,2005,26(6):557-563.
    [70]欧成华,董兆雄,魏学斌.柴达木盆地干柴沟—咸水泉地区中—深层成岩演化及其对储集体性能的影响[J].古地理学报,2011,13(2):85-95.
    [71]欧成华,李传浩,吴清玉.乌尔禾油田中三叠统克上组储层表征方法研究[J].西南石油大学学报,2007,29(2):85-88.
    [72]薛培华.河流点坝相储层模式概论[M].北京:石油工业出版社,1991.
    [73]李阳.河道砂储层非均质模型[M].北京:科学出版社,2001.
    [74]陈德坡,王延忠,柳世成,等.孤东油田七区西馆陶组上段储层非均质性及剩余油分布[J].石油与天然气地质,2004,25(5):539-581.
    [75]邓新颖,殷旭东,尹承棣.特高含水期剩余油分析方法[J].断块油气田,2004,11(5):54-56.
    [76]Du Qinglong etal."A New Method for Predicting Interwell Remaining Oil Distribution in Multilayer Sandstone Reservoir"[J].2003.SPE80554:1-5.
    [77]林承焰.剩余油形成与分布[M].山东,东营:石油大学出版社,2000.
    [78]陈永生.油藏流场[M].北京:石油工业出版社,1998.
    [79]魏纪德,杜庆龙,林春明,等.大庆油田剩余油的影响因素及分布[J].石油与天然气地质,2001,22(1):57-59.
    [80]孙梦茹,周建林,崔文富,等.胜坨油田精细地质研究[M],北京:中国石化出版社,2004.
    [81]Alister C. M., Lars M. F.and Anne-Lise H..Stochastic Modeling of Incised Vally Geometries[J]. AAPG,1998,(82)6:1156-1172.
    [82]Weber Graafe W J E, Ealeg P T. Geological Modeling for Simulation Studies[J]. AAPG,1989,(73) 11:1436-1444.
    [83]J. D. Doyle and M. L. Sweet. Three-Dimensional Distribution of Lithofacies, Bounding Surfaces,Porosity,and Permeability in a Fluvial Sandstone-Gypsy Sandstone of Northern Oklahoma[J].AAPG,1995,(79) 1:70-96.
    [84]吴胜和,金振奎,黄沧钿,等.储层建模[M].北京:石油工业出版社,1999.
    [85]Miall A D. Reservoir Heterogeneity In Fluvial Sandstone Lessons From Outcrops Studies[J]. AAPG,1988,72 (6):682-697.
    [86]顾家裕等著.沉积相与油气[M].北京:石油工业出版社,1994.
    [87][法]O.塞拉著,肖义越译.测井资料地质解释[M].北京:石油工业出版社,1992.
    [88]李庆明,鲁国甫,陈程.储层建筑结构要素的综合识别[J].河南石油,1998,3:13-17.
    [89]M.H.马克西莫夫,魏智等译.油田开发地质基础[M].北京:石油工业出版社,1980.
    [90]吴元燕,陈碧珏.油矿地质学[M].北京:石油工业出版社,1996.
    [91]Buryakovsky,L.A. Method and Software for Numerical Simalation of Reservoir Properties of Oil and Gas-bearing Rocks[J].Computer & Geoscience,1993, No.6:803-815.
    [92]于兴河,李剑峰等著,碎屑岩系储层地质建模及计算机模拟[M].北京:地质出版社,1996.
    [93]刘泽容等著,油藏描述原理与方法技术[M].北京:石油工业出版社,1993.
    [94]R. Eschard, P.Lemouzy, C. Bacchiana etc. Combining Sequence Stratigraphy, Geostatistical Simulations, and Production Data for Modeling a Fluvial Reservoir in the Chaunoy Field (Triassic, France) [J]. AAPG,1998, (82) 4:545-568.
    [95]袁奕群等著.黑油模型在油田开发中的应用[M].北京:石油工业出版社.1995.
    [96]王平等.复杂断块汕田详探与开发[M].北京:石油工业出版社,1994.
    [97]王乃举等.中国油藏开发模式总论[M].北京:石油工业出版社,1999.
    [98]Parke A. Dickey, Petroleum Development Geology[M], PENN WELL,1981.
    [99]王家华,高海余.克里金地质绘图技术[M].北京:石油工业出版社,1999.
    [100]Spalburg M. Bayesian uncertainty reduction for log evaluation[C]//SPE 88685, Abu Dhabi International Conference and Exhibition,10-13 October, Abu Dhabi, United Arab Emirates,2004.
    [101]Vega L. Scalability of the deterministic and Bayesian approaches to production-data integration into reservoir models[C]//SPE 88961, SPE Journal, Volume 9, Number 3, September,2004.
    [102]Teixeira R. Bayesian characterization of subsurface lithofacies and saturation fluid[C]//SPE 108027, Latin American&Caribbean Petroleum Engineering Conference,15-18 April,Buenos Aires, Argentina,2007.
    [103]Ogele C, Daoud A M, McVay D A, et al, Integration of volumetric and material balance analyses using a Bayesian framework to estimate OHIP and quantify uncertainty[C]//SPE 100257, SPE Europec/EAGE Annual Conference and Exhibition,12-15 June, Vienna, Austria,2006.
    [104]侯树杰.常规条件下油藏数值模拟数据可视化展示方法[J].油气地质与采收率,2012,19(3):57-59.
    [105]高伟.大芦湖油田樊18-3块低渗透油藏数值模拟研究[J].中国石油和化工标准与质量,2012,21(8):178-179.
    [106]闫长新.高含水后期油藏数值模拟技术[J].油气田地面工程,2012,31(8):92-93.
    [107]李娇娜,马艳平,施尚明,等.古城稠油油田BQ10断块剩余油分布数值模拟研究[J].油科学技术与工程,2012,12(18):157-160.
    [108]李科,胡罡.基于Eclipse实现油藏数值模拟自动控制的方法[J].计算机与现代化,2012,12(1):4356-4359.
    [109]韩家新,乔立宁.基于油藏数值模拟方法的储层随机建模技术的研究[J].信息与电脑,2012,22(9):127-129.
    [110]Correa A C, Ramey Jr H J. A Method for Pressure Build-up Analysis of Drillstem Tests [A]. SPE 16802,1987,529-541.
    [111]Syaefuddin K, Bailey T. Geological modelling:backbone in developing a mature oil field (Jorang Field Case)[C]//SPE68640, SPE Asia Pacific Oil and Gas Conference and Exhibition,17-19 April, Jakarta, Indonesia,2001.
    [112]Doyen P M, Guidish T M,Buyi M H. Monte Carlo simulation of lithology from seismic, data in a channel-sand reservoir[C]//SPE 19588,1998.
    [113]李建芳,韩大匡,邓宝荣.窗口技术在油藏数值模拟中的应用[J].石油勘探与开发,2003,30(6):86-88.
    [114]孙焕泉,贾俊山孙国.胜利油区勘探开发论文集[M].北京:地质出版社,2001.
    [115]谢爽,董伟,李国艳,等.Eclipse数据格式向Surfer数据格式转换及应用[J].海洋地质动态,2010,26(9):48-54.
    [116]彭小龙,刘学利,杜志敏.缝洞双重介质数值模型及渗流特征研究[J].西南石油大学学报:自然科学版,2009,31(1):61-64.
    [117]刘广天,李保振.局部网格粗化与加密技术在大底水油藏数值模拟中的应用[J].科学技术与工程,2012,12(13):3207-3210.
    [118]潘玲黎,童凯军,聂玲玲,等.气顶油藏水平井开发油藏数值模拟研究[J].天然气勘探与开发,2011,34(4):56-59.
    [119]吴畏.苏德尔特油田潜山油藏数值模拟研究[J].特种油气藏,2011,18(2):82-85.
    [120]于荣泽,王楷军,卞亚南,等.特低渗透油藏变渗透率场油藏数值模拟研究[J].西南石油大学学报:自然科学版,2011,33(5):98-103.
    [121]张少波.特高含水期剩余油分布的油藏数值模拟研究——以八面河油田面一区开发为例[J].长江大学学报(自然科学版),2010,7(3):218-219.
    [122]何文样,马清.用油藏数值模拟法优化特低渗透储层开发方案[J].中国科技信息,2010,7(23):20-21.
    [123]邓江洪.油藏数值模拟方法在复杂小断块油藏开发调整中的应用[J].江汉石油职工大学学报,2011,24(6):50-53.
    [124]林军,王平,胡虎踞,等.油藏数值模拟技术在砾岩油藏中高含期调整中的应用——以克拉玛依油田八区克上组油藏为例[J].新疆石油天然气,2010,6(4):55-59.
    [125]许维娜,安燕,颜江,等.油藏数值模拟技术在陆梁油田开发中的应用[J].中外能源,2011,16(10):61-66.
    [126]Kazemi Alireza, Stephen Karl D.油藏数值模拟自动历史拟合方法——以Nelson油田为例[J].石油勘探与开发,2012,39(3):326-337.
    [127]Silva ML.Drillstem Test Pressure Analysis Considering Several Flow Geometries and Reservoir Models [A].SPE 19844,1989,763-776.
    [128]陈兆芳,张建荣,陈月明,等.油藏数值模拟自动历史拟合方法研究及应用[J].石油勘探与开发,2003,30(4):82-84
    [129]朱焱·提高油藏数值模拟历史拟合精度的方法[J]·石油勘探与开发,2008,35(2):225-229·
    [130]邓宝荣,袁士义,李建芳,等.计算机辅助自动历史拟合在油藏数值模拟中的应用[J].石油勘探与开发.2003,30(1):71-74.
    [131]盖英杰,吕德灵,郭元灵·高含水期油藏分阶段数值模拟[J].油气采收率技术,2000,7(1):54-56.
    [132]谢海兵,马远乐,桓冠仁,等·非构造网格油藏数值模拟方法研究[J].石油学报,2001,22(1):63-66.
    [133]King M J, Burn K S, et al. Optimal Coarsening of 3D reservoir modelfor flow simulation. SPE95759,2005.
    [134]Nilsson J, Gerritsen M, Younis R. A novel adaptive anisotropic grid framework for efficient reservoir simulation, SPE93243,2005.
    [135]Joshi S D. Production forecasting methods for horizontal wells. SPE 17580,2006.
    [136]Liu Shun, Han Fengrui, Zhang Kai, et al. Well test in-terpretation model on power-law non-lonear percolation pattern in low-permeability reservoirs[C]. SPE 132271,2010.
    [137]Blasingame T A. The characteristic flow behavior of low-permeability reservoir systems[C]. SPE 114168,2008.
    [138]Macini P, Mesini E, Viola R. Non-Darcy flow:Laboratory measurement sinun consolidated porousmedia[C].SPE113772,2008.
    [139]Maschio C, Schiozer D J. Assisted history matching using streamline simulation[J]. Petroleum Science and Technology,2005,23(7):761-774.
    [140]Mezghani M, Fornel A, Langlais V, et al. History matching and quantitative use of 4D seismic data for an improved reservoir characterization[R]. SPE 90420,2004.
    [141]Roggero F, Ding D Y, Berthet P, et al. Matching of production history and 4D seismic data: Application to the Girassol Field,Offshore Angola[R]. SPE 109929,2007.
    [142]Kazemi A, Stephen K D. Optimal parameter updating in assistedhistory matching of the Nelson field using streamlines as a guide[R].SPE 131540,2010.
    [143]Agarwal B, Blunt M J. A streamline-based method for assisted history matching applied to an Arabian Gulf field[J]. SPE Journal,2004,9(4):437-449.
    [144]Oliveira R, Bampi D, Sansonowki R C. Marlim field:incorporating 4D seismic in the geological model and application in reservoir management decisions[C]//SPE 108062, Latin A-merican& Caribbean Petroleum Engineering Conference,15-18 April, Buenos Aires, Argentina,2007.
    [145]Shaw A L, Cunningham A B, Johnson S R. Comparison of stochastic and deterministic geologic models used in reservoir simulations for the Endicott field, Alaska[C]//SPE 26072,SPE Western RegionalMeeting,26-28May, Anchorage,Alaska,1993.
    [146]Emerick A, Moraes R G, Rodrigues J R. History matching 4D seismic data with efficient gradient-based methods[C]//SPE 107179, EUROPEC/EAGE Conference and Exhibition,11-14 June, London, U.K.,2007.
    [147]Enchery G, Le Ravalec-Dupin M, Roggero F. An improved pressure and saturation downscaling process for a better integration of 4D seismic data together with production history[C]//SPE 107088, EUROPEC/EAGE Conference and Exhibition,11-14 June, London, U.K.,2007.
    [148]彭小龙,杜志敏,陈小凡.千米桥潜山凝析气藏开发数值模拟研究[J].西南石油学院院报,2002,24(1):38-39.
    [149]胡永乐,李保柱.凝析气藏开采方式的选择[J].天然气地球科学,2003,14(5):398-401.
    [150]王光兰,李允,李治平.温八区块凝析气藏开发数值模拟研究[J].天然气工业,2000,20(5):61-63.
    [151]刘全稳.试论地球公转自转导致球面路壳的北移[J].新疆石油质,1989,10(4):86-90.
    [152]刘全稳,陈景山,严宁珍,等.油气质点运移方向探讨[J].西南石油学院学报,2001,23(1):14-17.
    [153]刘全稳,陈景山,沈守文.大气海洋油气质点受力分析[J].成都理工学院学报,2000,27(3):268-275.
    [154]刘全稳,陈国民,徐剑良,等.油气运移受力分析全球观[J].天然气工业,2005,25(2):36-38.
    [155]刘全稳,赵金洲,陈景山.地球动力与运动[M].北京:地质出版社,2001.
    [156]刘全稳,赵金洲,陈景山.地球原动力[M].北京:地质出版社,2001.
    [157]刘全稳.理论地质学导论[M].北京:地质出版社,2006.
    [158]刘全稳,陈景山,赵金洲.地球膨胀运动的参数算法与膨胀阶段划分[J].西南石油学院学报,2002,24(1):42-46.
    [159]刘全稳.油气圈闭评价与管理系统[M].北京:石油工业出版社,2000.
    [160]刘全稳,李洪玺,程绪彬,等.正峰油气藏概述(Ⅰ)[J].天然气工业,2006,26(9):44-48.
    [161]刘全稳,雷向阳,程绪彬,等.正峰油气藏概念(Ⅱ)[J].天然气工业,2006,26(10):45-48.
    [162]刘全稳,陈景山,赵金洲,等.地球的强中纬力[J].新疆石油地质,2001,22(2):167-172.
    [163]张哨楠,丁晓琪.鄂尔多斯盆地南部延长组致密砂岩储层特征及其成因[J].成都理工大学学报(自然科学版),2010,37(4):386-394.
    [164]张哨楠.沙特鲁卜哈里盆地Unayzah组砂岩储层特征[J].沉积学报,2010,28(5):945-952.
    [165]张哨楠.四川盆地西部须家河组砂岩储层成岩作用及致密时间讨论[J].矿物岩石,2009,29(4):34-38.
    [166]张廷山,陈晓慧,刘治成,等.峨眉地幔柱构造对四川盆地栖霞期沉积格局的影响[J].地质学报,2011,85(8):1251-1263.
    [167]张廷山,陈晓慧,姜照勇,等.泸州古隆起对贵州赤水地区早、中三叠世沉积环境和相带展布的控制[J].沉积学报,2008,26(4):583-592.
    [168]张廷山,陈晓慧,刘治成.四川盆地东南部早三叠世地震事件沉积及其地质意义[J].沉积学报,2012,30(3):477-489.
    [169]王兴志,李凌,方少仙,等.佳县—子洲地区太原组砂体成因及对储层的影响[J].西南石油学院学报,2001,23(3):1-4.
    [170]王兴志,张帆,蒋志斌,等.四川盆地东北部飞仙关组储层研究[J].地学前缘,2008,15(1):117-122.
    [171]王兴志,张帆,马青,等.四川盆地东部晚二叠世—早三叠世飞仙关期礁、滩特征与海平面变化[J].沉积学报,2002,20(2):249-254.
    [172]陈景山,周彦,彭军,等.富县探区低孔低渗砂体的成因类型与层内非均质模式[J].沉积学报,2007,25(1):53-57.
    [173]陈景山,彭军,周彦,等.基准面旋回层序与油层单元划分关系[J].西南石油大学学报,2007,29(2):162-165.
    [174]彭军,郑荣才,陈景山.百色盆地那读组层序分析与生储盖组合[J].沉积学报,2002,20(1):106-111.
    [175]彭军,汪彦,张齐,等.保山盆地羊邑组二~三段高分辨率层序地层分析[J].西南石油大学学报(自然科学版),2008,30(1):165-169.
    [176]彭军,汪彦,游李伟,等.陆相断陷湖盆扇三角洲高分辨率层序分析[J].天然气工业,2006,26(5): 24-26.
    [177]钟金银,颜其彬,杨辉廷,等.鄂尔多斯盆地南部奥陶系气藏成藏期次[J].新疆地质,2012,30(4):447-450.
    [178]王永东,颜其彬.鄂尔多斯盆地南部张家滩油页岩资源应用前景[J].西北大学学报(自然科学版),2012,42(3):453-458.
    [179]陈洪德,侯明才,林良彪,等.不同尺度构造一层序岩相古地理研究思路与实践[J].沉积学报,2010,28(5):894-905.
    [180]田景春,陈洪德,覃建雄,等.层序—岩相古地理图及其编制[J].地球科学与环境学报,2004,26(1):6-12.
    [181]陈洪德,田景春,刘文均,等.中国南方海相震旦系—中三叠统层序划分与对比[J].成都理工学院学报,2002,29(4):249-255.
    [182]李仲东,郝蜀民,李良,等.鄂尔多斯盆地上古生界压力封存箱与天然气的富集规律[J].石油与天然气地质,2007,28(4):466-472.
    [183]李仲东,张健,江兴福,等.川东北飞仙关组鲕滩气藏压力与成藏特征研究[J].矿物岩石,2009,29(4):39-44.
    [184]沈忠民,刘四兵,吕正祥,等.川西坳陷中段陆相地层水纵向变化特征及水—岩相互作用初探[J].沉积学报,2011,29(3):495-502.
    [185]沈忠民,刘涛,吕正祥,等.川西坳陷侏罗系天然气气源对比研究[J].高校地质学报,2008,14(3)577-582.
    [186]沈忠民,潘中亮,吕正祥,等.川西坳陷中段须家河组天然气地球化学特征与气源追踪[J].成都理工大学学报,2009,23(3):36-41.
    [187]徐国盛,吴庆勋,孟昱璋,等.四川盆地嘉陵江组岩相古地理与聚钾中心预测[J].物探化探计算技术,2012,34(1):62-72.
    [188]徐国盛,赵异华.川东开江古隆起区石炭系气藏成藏机理剖析[J].石油实验地质,2003,25(2):158-163.
    [189]徐国盛,刘树根,袁海锋,等.川东地区石炭系天然气成藏动力学研究[J].石油学报,2005,26(4):12-16.
    [190]徐国强,李国蓉,刘树根,等.塔里木盆地早海西期多期次风化壳岩溶洞穴层[J].地质学报,2005,79(4):557-568.
    [191]徐国强,刘树根,武恒志,等.海平面升降周期性变化与岩溶洞穴层序次关系探讨[J].沉积学报,2005,26(2):316-322.
    [192]陈洪德,徐胜林,林良彪,等.龙门山造山带晚三叠世构造隆升的分段性及层序充填响应[J].沉积学报,2011,29(4):622-630.
    [193]刘全稳.地球磁场起源[J].成都理工大学学报:自然科学版,2010,37(3):289-307.
    [194]刘全稳,陈景山,沈守文,等.海流的形成演化与作用力定义[J].成都理工学院学报,2000,27(3):352-358.
    [195]刘全稳.地球磁场的特性与分类研究[J].地学前缘,2011,18(5):283-288.
    [196]刘全稳,王威,李臻.地球磁场起源之粒子起电问题研究[J].地学前缘,2012,19(6):260-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700