用户名: 密码: 验证码:
HCN4在微波辐射致大鼠窦房结损伤中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的和意义:随着微波技术的飞速发展和信息时代的来临,人们在享受便捷生活的同时,也面临着微波污染的危害。此外,微波技术在军事上的应用发展迅速,它不仅能严重破坏敌方电子设备,同时也能造成机体损伤。心脏传导系统是微波辐射敏感的靶标之一,SAN是心脏传导系统最重要的组成部分。然微波辐射致SAN损伤规律及量效关系未明,其致伤机制尚未见报道。HCN4可调控P细胞的起搏电流及维持其电生理功能。SAN组织中HCN4的异常表达可能是各种SAN病变发生的分子基础之一,而HCN4及其调控可能在微波辐射致大鼠SAN损伤中发挥重要作用。因此,研究微波辐射致SAN损伤中HCN4的改变、调控及其意义,将为深入研究微波辐射致心脏损伤的分子机制和防治措施提供新靶标和思路,为寻找敏感诊断指标和制定防护标准提供实验依据。
     材料和方法:(1)大鼠SAN定位及组织结构观察:采用二级Wistar成年大鼠20只,对右心房及与之相连的近段上腔静脉做水平连续切片,对切片行HE、Masson染色,光镜下观察连续切片,定位SAN并观察组织结构。(2)大鼠SAN超微结构观察:采用二级雄性Wistar成年大鼠10只,依据SAN位置、组织结构特点分两步取材,经树脂定向包埋,半薄切片甲苯胺蓝预染,光镜下定位后,再行超薄切片,透射电镜观察SAN超微结构。(3)微波辐射对大鼠SAN功能和结构的影响研究:采用平均功率密度为0、5、10、50mW/cm~2的脉冲微波辐射160只二级雄性Wistar大鼠,辐射时间为6min,于辐射前、辐射后即刻、7d、14d、28d、3m、6m和9m,采用多道生理记录仪检测大鼠ECG的变化;于辐射后1d、7d、14d、28d、3m、6m、9m、12m,采用光镜和电镜观察大鼠SAN组织结构和超微结构变化;采用Masson染色、天狼猩红染色和图像分析技术,观察SAN组织胶原纤维含量的动态变化规律。(4)微波辐射后大鼠SAN组织HCN4改变及其调控机制研究:采用ISH、IHC和图像分析等方法,检测50mW/m2微波辐射后大鼠SAN组织中HCN4及其上游分子β1-AR、M2-AchR基因和/或蛋白的表达变化。(5)微波辐射对原代培养乳鼠SAN细胞的损伤效应及机制研究:以体外原代培养的SAN细胞为研究对象,采用倒置显微镜、AFM、LSCM、IF等技术,观察微波辐射对细胞形态结构、搏动特征、细胞膜结构、细胞内[Ca~(2+)]及HCN4表达的影响。
     结果:(1)正常成年大鼠SAN位置和组织学特点:正常成年大鼠SAN位于上腔静脉与右心耳交界区及其以上的上腔静脉壁内,呈马蹄形/C形;大鼠SAN组织结构疏松,主要含有P细胞、T细胞和少量心房肌细胞,间质胶原纤维含量丰富。(2)正常成年大鼠SAN超微结构观察:甲苯胺蓝预染半薄切片的方法简便迅速,着色效果好,可有效缩短定位时间。电镜观察显示,大鼠SAN内主要含有两种细胞。①P细胞:胞体小,胞浆丰富,细胞器含量少;肌原纤维含量少,杂乱分布于细胞膜附近,几乎不含肌节;②T细胞:胞体较P细胞大,细胞器含量较多,肌原纤维可见明显肌节,常沿细胞纵轴排列,分布于细胞膜附近。(3)微波辐射对大鼠SAN功能的影响:5mW/cm~2组未见明显异常;10和50mW/cm~2微波辐射后大鼠SAN功能受损,主要表现为:心率呈先加快后减慢趋势;P波振幅降低;ECG出现窦性心律不齐、SAN内游走性心律和房性心律失常等。(4)微波辐射后大鼠SAN组织结构变化:5mW/cm~2组未见明显异常;10和50mW/cm~2微波辐射后1d,表现为P、T细胞水肿;T细胞排列呈波浪状改变;14~28d损伤最重,表现为细胞排列紊乱,部分细胞胞浆嗜酸性染色增强,核固缩深染;3m~6m损伤减轻呈恢复趋势,仍有部分细胞呈水肿状态;9m~12m表现为实质细胞减少,间质胶原纤维增多及脂肪浸润。以上改变尤以50mW/cm~2组最为显著。(5)微波辐射后大鼠SAN超微结构变化:5mW/cm~2组未见明显异常;10和50mW/cm~2微波辐射后1d~28d表现为P、T细胞线粒体最早受累,出现肿胀,嵴断裂,甚至空化;肌原纤维局灶性溶解、断裂;可见P、T细胞核染色质浓缩、边集;细胞膜小凹减少或消失;血管周围间隙增宽、水肿;6m~12m表现为实质细胞退行性变,间质胶原原纤维增多、脂肪浸润。以上改变尤以50mW/cm~2组最为显著。(6)微波辐射致大鼠SAN损伤后HCN4、β1-AR、M2-AchR变化:50mW/cm~2微波辐射后1d~28d,大鼠SAN组织中HCN4mRNA表达上调(P<0.05或P<0.01),3m表达下调(P<0.05);HCN4蛋白于辐射后1d~28d表达增加(P<0.05或P<0.01),3m~6m表达降低(P<0.05);β1-AR mRNA于辐射后1d~3m表达上调(P<0.05或P<0.01);β1-AR蛋白于辐射后1d~3m表达增加(P<0.05或P<0.01);M2-AchR蛋白于辐射后1d~6m表达增加(P<0.05或P<0.01)。(7)微波辐射后体外培养SAN细胞形态结构、搏动特征变化:正常SAN细胞呈长梭形,伸出伪足或突起与周围细胞连接成片,呈单个细胞搏动,搏动速度快,节律规则。10和50mW/cm~2微波辐射后,SAN细胞搏动明显减慢且节律不规则,细胞肿胀变圆,伪足和突起减少。50mW/cm~2微波辐射后即刻SAN细胞内[Ca~(2+)]升高(P<0.05),细胞膜表面可见穿孔现象。(8)微波辐射致体外培养SAN细胞损伤后HCN4表达改变:50mW/cm~2微波辐射后即刻,SAN细胞中HCN4蛋白表达显著减弱(P<0.01),12h表达显著增强(P<0.05)。
     结论:(1)成年大鼠SAN特殊的位置提示:大鼠SAN取材时一定要保留上腔静脉近心段;两步法前固定取材有助于大鼠SAN电镜标本的制作。(2)10、50mW/cm~2微波辐射导致大鼠SAN功能障碍、组织结构和超微结构损伤,上述改变与微波辐射剂量呈正相关。(3)10、50mW/cm~2微波辐射可导致培养的SAN细胞形态结构损伤和搏动下降,且与微波辐射剂量呈正相关。(4)HCN4异常表达可能是微波辐射致SAN损伤的重要致伤分子之一。(5)SAN组织β1-AR高表达可能通过促进HCN4表达加重微波辐射后SAN组织损伤过程;M2-AchR高表达可能通过抑制HCN4表达促进微波辐射致SAN损伤后的修复过程。(6)细胞膜穿孔、细胞内钙超载、HCN4的高表达是微波辐射致SAN损伤的重要机制。
Objective and Significance: With the advent of information era and the high speeddevelopment of microwave technology, people are accessible to the hazard of microwavepollution as well as the conveniences it brings about. Besides, microwave technology also saw itsincreasing development and application in military fields. It can not only severely damage theenemy’s electronic devices, but also do harm to the body. Conducting system of heart is one of thetargets sensitive to microwave radiation. However, as the essential component of heart conductingsystem, SAN’s pattern of damage from microwave radiation and their dose-effect relationshipremained unclear, and the damaging mechanism was uncovered. HCN4can regulate pacemakercells’ pacing current and maintains their physiologic functions. The abnormal expression of HCN4in the SAN tissues may be a molecular basis of a variety of SAN pathological changes, whileHCN4and its regulation may play an important role in rats’ SAN damage after microwaveradiation. It is followed that the study of the HCN4change, its regulation and significance in theSAN’s damage from microwave radiation will provide a new thought thread and target for thefurther study of molecular mechanism and protective measures of microwave radiation damage toheart. Meanwhile it can provide experimental evidence for the identification of sensitive diagnosisindex and the formulation of protective criteria.
     Materials and Methods:(1) Positioning of rats’ SANs and observation of their organizationalstructure: Twenty second-class adult Wistar rats were used to conduct the horizontal serial sectionsof the right atrium and the associated proximal segment of the superior vena cava. Serial sectionswere stained by HE and Masson staining and subsequently observed by light microscopy to locatethe position of SAN and to observe its organizational structure.(2) Observation of rats’ SAN’sultrastructure: Based on the SAN location and organizational characteristics,10second-class adultmale Wistar rats were taken to get the materials in two steps, the semi-thin sections werepre-stained by toluidine blue after the resin directed embedding and positioned through lightmicroscope. Following ultrathin sectioning, SAN ultrastructure was observed by the transmissionelectron microscopy.(3) Study of the effect of microwave radiation on rats’ SAN function andstructure:160Wistar rats were exposed to a pulse microwave field (0,5,10and50mW/cm~2) for6minutes. Multi-channel polygraph was applied to detect the change of ECG in rats beforemicrowave exposure and immediately,7,14,28days and3,6,9months after microwave radiation.Light microscopy and electron microscopy were used to observe the organizational structure andultrastructure of rats’ SAN at1d,7d,14d,28d,3m,6m,9m,12m after microwave exposure.Masson staining, Sirius red staining and image analysis techniques were applied to observe thedynamic development of the content of collagen fiber in rats’ sinoatrial nodes.(4) Research on thechange of HCN4in rats’ SAN tissue and the regulation mechanism after microwave radiation: ISH, IHC and image analysis were used to detect the changes in the gene or protein expression ofHCN4, β1-AR, M2-AchR in rat’s SAN tissues after50mW/m2microwave radiation.(5) Researchon the damaging effect and mechanism of microwave radiation on primary culture SAN cells:SAN cells primarily cultured in vitro were taken to do the research. Inverted microscope, AFM,LSCM and IF were used to observe the effect of microwave radiation on cells’ morphosis,pulsation features, membrane’s structure, the content of Ca~(2+)inside the cells and the expression ofHCN4.
     Results:(1) SAN’s position and histological feature of normal adult rat: Adult rats’ SANswere located in the junctional zone of superior vena cava and right atricle and on the inner-wall ofsuperior vena cava above the junctional zone. The adult rats’ SANs were shaped like the horseshoeor the letter ‘C’. The rats’ SANs, being loose in structure and rich in interstitial collagen fiber,mainly contain P cells, T cells and a small amount of atrial muscle cells.(2) Observation ofSAN’s ultrastructure of adult rats: The toluidine blue prestained semi-thin sections is a rapidand efficient method, which can effectively shorten the positioning time. The electron microscopyshowed that two types of cells were present in the rat SAN: P cells and T cells. With a small cellbody, P cell was rich in cytoplasm but poor in organelle. There were a small number of myofibrilswhich were messily distributed nearby the cell membrane and almost free of sarcomeres. T cellhad a bigger cell body and more organelles than P cell and the myofibrils. With visible sarcomeres,were often arranged along the cell longitudinal axis and close to the cell membrane.(3) Effect ofmicrowave radiation on SAN’s function. There were no significant change in the5mW/cm~2group but appeared some damage to SAN’s functions in the10and50mW/cm~2groups, whichwere mainly as follows: the heart rate tended to accelerate and then slow down; the amplitude of Pwave was decreased; the ECG showed sinus arrhythmia, sinoatrial node wandering heart rhythmand atrial arrhythmia, etc.(4) Structural changes in rats’ SAN tissues after microwaveradiation: There was no significant change in the group of5mW/cm~2. But in the10and50mW/cm~2groups, changes could be observed like edema in P and T cells, wavy changes in T cells,increasing of acidophilia staining in the cytoplasm of P and T cells, and karyopyknosis andanachromasis from1to28days after microwave exposure. From3to6months, the damagestended to lessen and recover but there were still some cells in the edematous state, and from9to12months, parenchyma cells began to decrease and interstitial collagen fibers were increased, andthere appeared fatty infiltration. Changes above were remarkably observed in the group of50mW/cm~2.(5) SAN’s ultrastructural changes after exposure to microwave radiation. Therewas no significant change in the group of5mW/cm~2. In the period of1to28days, mitochondriaof T cells and P cells in the10and50mW/cm~2groups were the earliest to be effected to appearswelling, crista breakage, and even cavitation; then came the focal dissolution and even breakageof myofibrils, and concentration of nuclear chromatin of P and T cells to the edge, followed by thewidening and edema of perivascular canal, and the reduction or disappearance of foveolas ofmembrane. In the period of6to12months, there came degeneration in parenchyma cells, increase of interstitial collagen fibrils and fatty infiltration.(6) Changes in HCN4, β1-AR, and M2-AchRin rats’ SAN tissues injured by50mW/cm~2microwave radiation. The expression of HCN4mRNA began to be up-regulated at1to28days (P<0.05or P<0.01) and down-regulated at3months (P<0.05).The expression of HCN4protein was increased at1to28days (P<0.05orP<0.01) and was decreased at3to6months (P<0.05). The expression of β1-AR mRNA wasup-regulated at1d to3m (P<0.05or P<0.01) while the expression of β1-AR protein was increasedat1d to3m (P<0.05or P<0.01). The expression of M2-AchR protein was increased after1d~6m(P<0.05or P<0.01).(7) Changes in cellular morphosis and pulsation feature of SAN cellscultured in vitro after microwave exposure. The normal cell of SAN was shaped like longspindle, sticking out pseudopodia or apophysis and connected with the cells around, and beatrhythmically in single with a high speed. But immediately after the exposure to10and50mW/cm~2microwave, the cells of SAN began to beat significantly slower and irregular and tendedto become swollen and rounding, with pseudopodia or apophysis reducing. Besides, the contentsof Ca~(2+)inside the cells of SAN rose immediately after50mW/cm~2microwave exposure, andperforation could be observed in the surface of membrane.(8) Changes in the expression ofHCN4in the vitro cultured SAN cells after microwave radiation. The expression of HCN4protein was weakened significantly immediately after50mW/cm~2microwave radiation (P<0.01)and was strengthened significantly after12hours (P<0.05).
     Conclusion:(1) The special location of SANs in adult rats indicated that the proximal segmentof superior vena cava must be reserved when taking SANs from rats and the two-step methodbefore positioning was helpful for the making of electron microscope specimens of rats’ SANs.(2)Exposure to10and50mW/cm~2microwave radiation can lead to dysfunction and damage toorganizational structure and ultrastructure of rats’ SANs. The above changes are positivelycorrelated to microwave radiation dose.(3) Exposure to10and50mW/cm~2microwave can lead todamage to morphosis and reduction of pulsation ability of cultured SAN cells, which arepositively correlated to microwave radiation dose.(4) The abnormal expression of HCN4is likelyto be one of the important vulnerating molecules in the damaging process of microwave radiationto SANs.(5) In the tissue of SAN, the high expression of β1-AR is likely to aggratate SAN’sinjuries resulted from microwave radiation by stimulating the expression of HCN4while the highexpression of M2-AchR is likely to promote the recovery of SAN’s injuries from microwaveradiation by inhibiting the expression of HCN4.(6) The perforation of membrane, the overloadingof intracellular Ca~(2+), and the high expression of HCN4are important mechanisms leading to SANinjury resulted from microwave radiation.
引文
[1]刘文魁,庞东.电磁辐射的污染及防护与治理.科学出版社,2003,第1版:117-120.
    [2] Jauchem JR. Exposure to extremely-low-frequency electromagnetic fields and radiofrequencyradiation: cardiovascular effects in humans. International archives of occupational andenvironmental health,1997,70(1):9-21.
    [3]王德文,彭瑞云.电磁辐射的损伤与防护.中华劳动卫生职业病杂志,2003,21(5):321-322.
    [4]潘敏鸿,彭瑞云,高亚兵,等. S波段高功率微波辐射对大鼠心脏结构与功能的影响研究.中国体视学与图像分析,2004,9(3):147-151.
    [5]邓桦,王德文,彭瑞云,等.脉冲微波辐照对实验动物心脏损伤的病理学研究.畜牧兽医学报,2006,37(1):56-60.
    [6] M Nnikk R, Pandey S, Larsson HP, et al. Hysteresis in the Voltage Dependence of HCNChannels. The Journal of general physiology,2005,125(3):305-326.
    [7] Kitzman DW, Edwards WD. Age-related changes in the anatomy of the normal human heart.Journal of Gerontology,1990,45(2): M33-40.
    [8]郭志坤.现代心脏组织学.北京:人民卫生出版社,2007,第1版,133-143.
    [9] Sanchez-Quintana D, Cabrera J, Farre J, et al. Sinus node revisited in the era ofelectroanatomical mapping and catheter ablation. Heart,2005,91(2):189-194.
    [10]潘琳.实验病理学技术图鉴.科学出版社,2012,第1版:85-86.
    [11] Marvin W, Chittick VL, Rosenthal JK, et al. The isolated sinoatrial node cell in primaryculture from the newborn rat. Circulation Research,1984,55(2):253-260.
    [12]赵根然,凌凤东.大鼠窦房结光镜和电镜观察.西安医科大学学报,1991,12(4):297-299.
    [13]张炎,凌凤东.新生SD乳鼠窦房结的光镜观察.解剖学杂志,1998,21(1):31-36.
    [14]李澈,陈彩云.大鼠窦房结中央区细胞类型的形态特征和数量分析.解剖学杂志,1998,21(5):402-407.
    [15]吴庚华,朱永泽,孙庆荣,等.大鼠心脏窦房结电镜取材定位的探讨.中国临床解剖学杂志,2007,25(3):31-32.
    [16]杨红霞,常芸.力竭运动后不同时相大鼠心脏窦房结ADAMTS-1的变化.中国运动医学杂志,2011,30(5):437-441.
    [17] Du Y, Huang X, Wang T, et al. Downregulation of neuronal sodium channel subunits Nav1.1and Nav1.6in the sinoatrial node from volume-overloaded heart failure rat. Pflügers ArchivEuropean Journal of Physiology,2007,454(3):451-459.
    [18]黄欣,马爱群,杨佩,等.大鼠窦房结电压门控钠通道不同亚型的表达及其对心率的影响.南方医科大学学报,2007,27(1):52-55.
    [19] Chandrasiri N. Histopathological re-study of the human cardiac conduction system incoroners' autopsies. Medicine, science, and the law,1985,25(1):29-36.
    [20]丁建松,汪雪生,徐燕英,等.900MHz微波辐射对鸡胚心脏的影响.环境与职业医学,2008,25(1):51-53.
    [21]康维强,宋达琳,葛志明.现代分子心血管病学.人民卫生出版社,2011,第1版:124-128.
    [22]吴庚华,朱永泽,孙庆荣,等.大鼠心脏窦房结电镜取材定位的探讨.中国临床解剖学杂志,2007,25(3):31-32.
    [23]吴洪娟,周力,李桂芝,等.肥大细胞电镜半薄切片染色方法.电子显微学报,2012,5(16):452-454.
    [24] Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure.Cardiovascular research,2000,47(4):658-687.
    [25]郭继鸿.心电图学.人民卫生出版社,2002,第1版:353-377.
    [26] Huber R, Schuderer J, Graf T, et al. Radio frequency electromagnetic field exposure inhumans: Estimation of SAR distribution in the brain, effects on sleep and heart rate.Bioelectromagnetics,2003,24(4):262-276.
    [27] Sait ML, Wood AW, Sadafi HA. A study of heart rate and heart rate variability in humansubjects exposed to occupational levels of50Hz circularly polarised magnetic fields. Medicalengineering&physics,1999,21(5):361-369.
    [28]林锦明,李敏,黄丽蓉,等.对讲机微波辐射对作业人员心电图的影响.环境与健康杂志,2008,25(6):529-531.
    [29]李焕英,张东辉,林锦明,等.对讲机微波辐射对作业人员心脑功能影响的研究.中国职业医学,2005,32(5):27-30.
    [30]郭鹞,陈景藻.电磁辐射生物效应及其医学应用.第四军医大学出版社,2002,第1版:55-60.
    [31] Jauchem JR, Frei MR. Body heating induced by sub\resonant (350MHz) microwaveirradiation: Cardiovascular and respiratory responses in anesthetized rats. Bioelectromagnetics,1997,18(4):335-338.
    [32]黄玉堂,王继英,王宁.大功率微波全身加温疗法安全性的观察与分析.医学综述,2007,13(23):1849-1850.
    [33] Jehenson P, Duboc D, Lavergne T, et al. Change in human cardiac rhythm induced by a2-Tstatic magnetic field. Radiology,1988,166(1):227-230.
    [34]卢喜烈.301临床心电图学.科学技术文献出版社,2009,第1版:983-993.
    [35] Liem L, Mead RH, Shenasa M, et al. In Vitro and In Vivo Results of Transcatheter MicrowaveAblation Using Forward‐Firing Tip Antenna Design. Pacing and clinical electrophysiology,1996,19(11):2004-2008.
    [36] Agha-Mir-Salim P, Rauhut O, Merker H-J. Electron and fluorescence microscopicinvestigations on composition and structure of the epithelial basement membrane of thehuman inferior nasal concha. European archives of oto-rhino-laryngology,1993,250(7):401-407.
    [37]张炎,凌凤东.窦房结形态学研究进展.解剖科学进展,1998,4(3):204-210.
    [38]李澈.窦房结.北京医科大学出版社,2001,第1版:5-6.
    [39]徐鹏霄,李积胜.大鼠心窦房结超微结构水平的老龄变化观察.武警医学,1999,10(2):63-68.
    [40]陈仁辉,李永宏.心脏传导系统异常所致猝死的研究进展.皖南医学院学报,2004,23(3):219-221.
    [41]宋一璇,姚青松,高修仁,等.12例心电图异常患者的传导系统病理改变观察.中华心血管病杂志,2006,34(3):231-235.
    [42]王春梅,黄晓峰,杨家骥.细胞超微结构与超微结构病理基础.第四军医大学出版社,2004,第1版:11-40.
    [43]史景泉,陈意生,卞修武.超微病理学.化学工业出版社,2005,第1版:1-4.
    [44]张雪岩,彭瑞云,高亚兵,等.抗辐灵对微波辐射致大鼠心脏损伤保护作用的探索研究.中国体视学与图像分析,2012,17(2):167-172.
    [45]张静,彭瑞云,王水明,等.长期低剂量微波辐射对大鼠血清生化和心脏结构的影响研究.军事医学,2011,35(5):351-354.
    [46]郭继鸿.老年性心律失常.临床心电学杂志,2010,19(1):58-67.
    [47] Stieber J, Hofmann F, Ludwig A. Pacemaker channels and sinus node arrhythmia. Trends inCardiovascular Medicine,2004,14(1):23-28.
    [48] Zicha S, Fernández-Velasco M, Lonardo G, et al. Sinus node dysfunction andhyperpolarization activated (HCN) channel subunit remodeling in a canine heart failure model.Cardiovascular research,2005,66(3):472-481.
    [49]张洪涛,于建宪,张七一,等.心源性猝死者窦房结病理学观察和HCN4, Cx45的表达及其意义.现代生物医学进展,2009,9(23):4480-4483.
    [50] Fan X, Chen Y, Xing J, et al. Protective effects of adenosine in rabbit sinoatrial nodeischemia–reperfusion model in vivo: control of arrhythmia by hyperpolarization-activatedcyclic nucleotide-gated (HCN)4channels. Journal of Ethnopharmacology,2011,38(3):1723-1731.
    [51] Baruscotti M, Difrancesco D. Pacemaker channels. Annals of the New York Academy ofSciences,2006,1015(1):111-121.
    [52]汪艳丽.窦房结细胞自律性与超极化激活起搏电流关系的研究进展.医学综述,2011,17(12):1778-1780.
    [53] Brown H, Difrancesco D, Noble S. How does adrenaline accelerate the heart. nature,1979,280(7):235-236.
    [54] Fan X, Chen Y, Xing J, et al. Blocking effects of acehytisine on pacemaker currents (I f) in sinoatrial node cells and human HCN4channels expressed inXenopus laevis oocytes. Journal of Ethnopharmacology,2012,139(1):42-51.
    [55] Difrancesco D. The role of the funny current in pacemaker activity. Circ Res,2010,106(3):434-446.
    [56] Santoro B, Wainger BJ, Siegelbaum SA. Regulation of HCN channel surface expression by anovel C-terminal protein-protein interaction. The Journal of neuroscience,2004,24(47):10750-10762.
    [57]李海玲.与心律失常相关的microRNAs研究现状.国际心血管病杂志ISTIC,2010,37(5):268-271.
    [58] Stillitano F, Lonardo G, Zicha S, et al. Molecular basis of funny current (I f) innormal and failing human heart. Journal of molecular and cellular cardiology,2008,45(2):289-299.
    [59] Baruscotti M, Difrancesco D. Pacemaker channels. Annals of the New York Academy ofSciences,2004,1015(1):111-121.
    [60] Verkerk AO, Van Ginneken ACG, Wilders R. Pacemaker activity of the human sinoatrial node:Role of the hyperpolarization-activated current, If. International journal of cardiology,2009,132(3):318-336.
    [61] Singh SK, Hajeri PB. RNA interference: from basics to therapeutics. Molecular and CellularTherapeutics,2012,107-115.
    [62] Muto T, Ueda N, Opthof T, et al. Aldosterone modulates If current through gene expression incultured neonatal rat ventricular myocytes. American Journal of Physiology-Heart andCirculatory Physiology,2007,293(5): H2710-H2718.
    [63] Graf EM, Heubach JF, Ravens U. The hyperpolarization-activated current If in ventricularmyocytes of non-transgenic and β2-adrenoceptor overexpressing mice. NaunynSchmiedeberg's archives of pharmacology,2001,364(2):131-139.
    [64] Difrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellularcyclic AMP. Nature,1991,351(5):145-147.
    [65] Difrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate. Drugs,2007,67(Suppl2):15-24.
    [66] Difrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells.nature,1986,324(12):470-473.
    [67] Difrancesco D, Ferroni A, Mazzanti M, et al. Properties of the hyperpolarizing-activatedcurrent (if) in cells isolated from the rabbit sino-atrial node. The Journal of Physiology,1986,377(1):61-88.
    [68] Strasser R, Krimmer J, Braun-Dullaeus R, et al. Dual sensitization of the adrenergic system inearly myocardial ischemia: independent regulation of the β-adrenergic receptors and theadenylyl cyclase. Journal of molecular and cellular cardiology,1990,22(12):1405-1423.
    [69] Germack R, Leon‐Velarde F, Barra RV, et al. Effect of intermittent hypoxia oncardiovascular function, adrenoceptors and muscarinic receptors in Wistar rats. Experimentalphysiology,2002,87(4):453-460.
    [70] Kakinuma Y, Ando M, Kuwabara M, et al. Acetylcholine from vagal stimulation protectscardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction ofHIF-1α. FEBS letters,2005,579(10):2111-2118.
    [71]张鹤梧.低场强微波对人体心电图的影响.中华劳动卫生职业病杂志,1995,13(5):286-287.
    [72]潘敏鸿,彭瑞云,高亚兵,等.高功率微波辐射后大鼠心脏β1肾上腺素能受体和M2胆碱能受体表达的变化.中华劳动卫生职业病杂志,2005,23(3):172-174.
    [73]邓桦,王德文,彭瑞云,等.微波对心肌细胞膜受体及离子通道影响的研究.中国公共卫生,2003,19(12):1469-1470.
    [74] Song Z, Zhong L, Tong S, et al. Primary culture and identification of sinoatrial node cellsfrom newborn rat. CHINESE MEDICAL JOURNAL-BEIJING-ENGLISH EDITION-,2003,116(3):465-468.
    [75]张炎,凌凤东. SD乳鼠窦房结细胞原代分散培养的光电镜研究.解剖学报,1999,30(3):237-240.
    [76] Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and withoutproliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic responseto isoproterenol. Circulation Research,1982,50(1):101-116.
    [77]管思彬,马爱群,蒋文慧.原代培养乳鼠窦房结细胞的形态学及表面抗原研究.西安交通大学学报(医学版),2009,30(3):288-291.
    [78] Schweizer PA, Yampolsky P, Malik R, et al. Transcription profiling of HCN-channel isotypesthroughout mouse cardiac development. Basic research in cardiology,2009,104(6):621-629.
    [79] Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular pathway for the localizedformation of the sinoatrial node. Circulation Research,2007,100(3):354-362.
    [80] Baruscotti M, Robinson RB. Electrophysiology and pacemaker function of the developingsinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology,2007,293(5): H2613-H2623.
    [81] Brioschi C, Micheloni S, Tellez JO, et al. Distribution of the pacemaker HCN4channelmRNA and protein in the rabbit sinoatrial node. Journal of molecular and cellular cardiology,2009,47(2):221-227.
    [82] Wiese C, Grieskamp T, Airik R, et al. Formation of the sinus node head and differentiation ofsinus node myocardium are independently regulated by Tbx18and Tbx3. CirculationResearch,2009,104(3):388-397.
    [83] Espinoza-Lewis RA, Yu L, He F, et al. Shox2 is essential for the differentiation ofcardiac pacemaker cells by repressing Nkx2-5. Developmental biology,2009,327(2):376-385.
    [84] Liu J, Dobrzynski H, Yanni J, et al. Organisation of the mouse sinoatrial node: structure andexpression of HCN channels. Cardiovascular research,2007,73(4):729-738.
    [85] Maltsev VA, Rohwedel J, Hescheler J, et al. Embryonic stem cells differentiate in vitro intocardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mechanisms ofdevelopment,1993,44(1):41-50.
    [86] Osterhoudt KC, Henretig FM. Sinoatrial node arrest following tetrahydrozoline ingestion.Journal of Emergency Medicine,2004,27(3):313-314.
    [87]宋一璇,胡小领,姚青松,等.人窦房结胶原纤维比例与分型年龄变化的研究.解剖学杂志,2000,23(4):306-310.
    [88] Berridge MJ. Elementary and global aspects of calcium signalling. Journal of experimentalbiology,1997,200(2):315-319.
    [89]孙祝美.心肌细胞与钙离子调控.广州医药,2008,39(3):1-3.
    [90] Zaugg CE, Wu ST, Lee RJ, et al. Importance of calcium for the vulnerability to ventricularfibrillation detected by premature ventricular stimulation: Single pulse versus sequential pulsemethods. Journal of molecular and cellular cardiology,1996,28(5):1059-1072.
    [91]黄丽,赵士弟,葛敏,等.细胞内高钙对小鼠小脑浦肯野细胞动作电位编码的影响.蚌埠医学院学报,2009,34(12):1053-1056.
    [92]范新荣,马季骅,万伟,等.胞内高钙诱发豚鼠心室肌细胞电紊乱.中国科学:生命科学,2011,41(1):38-45.
    [93] Xie L-H, Chen F, Karagueuzian HS, et al. Oxidative Stress–Induced Afterdepolarizations andCalmodulin Kinase II Signaling. Circulation Research,2009,104(1):79-86.
    [94] Menendez R. Three molecular mechanisms to explain some biological effects ofelectromagnetic fields and hypogravity. Medical hypotheses,1999,52(3):239-245.
    [95]潘敏鸿,彭瑞云,王水明,等. S波段高功率微波辐射对原代培养乳鼠心肌细胞的影响.中华放射医学与防护杂志,2006,26(6):625-627.
    [96] Kesari KK, Kumar S, Behari J. Pathophysiology of microwave radiation: Effect on rat brain.Applied biochemistry and biotechnology,2012,166(2):379-388.
    [97]左红艳,王德文,彭瑞云,等.电磁辐射对原代培养海马神经元的损伤效应及其机制探讨.生物物理学报,2007,23(1):47-53.
    [98]赵亚丽,马洪波.微波照射对小鼠海马细胞膜ATPase活性和离子通道的影响.航天医学与医学工程,2003,16(1):36-40.
    [99]张清俊,杨昌林,罗丽华,等.高功率微波辐射对小鼠心肌氧化应激及ATPase的影响.航天医学与医学工程,2012,25(3):176-179.
    [100]冯作化.医学分子生物学.人民卫生出版社,2005,第1版:26-30.
    [101]王江,张骅,邓斌.交变电场作用下细胞膜离子通道电流的趋肤效应.天津大学学报:自然科学与工程技术版,2004,37(9):792-796.
    [102]李刚,杨英超,林凌,等.电磁场的生物效应的研究现状与展望.生命科学仪器,2008,6(3):3-7.
    [103] Weaver JC. Electroporation of cells and tissues. Plasma Science,2000,28(1):24-33.
    [104] Gailey P, Easterly C. Cell membrane potentials induced during exposure to EMP fields.Electromagnetic biology and medicine,1994,13(2):159-165.
    [105] Tom BC, Efstratiadis SN, Katsaggelos A. Motion estimation of skeletonized angiographicimages using elastic registration. Medical Imaging,1994,13(3):450-460.
    [106]邓桦,王德文,彭瑞云,等.高功率脉冲微波和电磁脉冲辐照对心肌细胞膜电穿孔效应及机理的研究.生物医学工程学杂志,2005,22(4):672-676.
    [107]徐井华,李强.原子力显微镜的工作原理及其应用.通化师范学院学报,2013,34(1):22-24.
    [108]李刚,李丹丹,李媛媛,等.不同强度工频磁场对皮层神经元瞬时外向钾离子通道的影响.生物化学与生物物理进展,2012,38(11):1036-1042.
    [109]杨丽,乔晓艳,董有尔.磁场生物效应的研究现状与展望.中国医学物理学杂志,2009,26(1):1022-1024.
    [110] Ellerkmann R, Remy S, Chen J, et al. Molecular and functional changes in voltage-dependentna+ channels following pilocarpine-induced status epilepticus in rat dentategranule cells. Neuroscience,2003,119(2):323-333.
    [111] Aweda M, Meindinyo R, Gbenebitse S. Micro-wave radiation exposures affect cardiovascularsystem and antioxidants modify the effects. Adv Appl Sci Res,2011,2(2):246-251.
    [112] Sharma AB, Sun J, Howard LL, et al. Oxidative stress reversibly inactivates myocardialenzymes during cardiac arrest. American Journal of Physiology-Heart and CirculatoryPhysiology,2007,292(1): H198-H206.
    [1] James TN. Cardiac conduction system: fetal and postnatal development. The AmericanJournal of Cardiology,1970,25(2):213-226.
    [2] James TN. The sinus node. The American Journal of Cardiology,1977,40(6):965-986.
    [3]宋一璇,姚青松,王慧君,等.成人心传导系统的超微结构.解剖学研究,2002,24(1):21-23.
    [4]吴洪海,苏庆,吴庚华,等.毕格狗窦房结P细胞的形态学观察.扬州大学学报:农业与生命科学版,2005,26(2):18-20.
    [5]李澈,陈彩云.大鼠窦房结中央区细胞类型的形态特征和数量分析.解剖学杂志,1998,21(5):402-407.
    [6]武俊芳,郭志坤,汪艳丽,等.家猫窦房结的光镜观察.解剖学研究,2007,29(6):454-456.
    [7]李明振,王小雪,段丽娟,等.猪心窦房结组织学观察.新乡医学院学报,2001,18(1):27-29.
    [8] James TN. Anatomy of the cardiac conduction system in the rabbit. Circulation Research,1967,20(6):638-648.
    [9] Opthof T, De Jonge B, Mackaay AJC, et al. Functional and morphological organization of theguinea-pig sinoatrial node compared with the rabbit sinoatrial node. Journal of molecular andcellular cardiology,1985,17(6):549-564.
    [10] Opthof T, De Jonge B, Masson-Pevet M, et al. Functional and morphological organization ofthe cat sinoatrial node. Journal of molecular and cellular cardiology,1986,18(10):1015-1031.
    [11]康维强,宋达琳,葛志明.现代分子心血管病学.人民卫生出版社,2011,第1版:124-128.
    [12]李澈.窦房结.北京医科大学出版社,2001,第1版:10-11.
    [13]罗斌,宋一璇.窦房结主间质形态学改变与年龄的相关研究.中华心血管病杂志,1995,23(4):288-291.
    [14]尉传社,凌凤东,孔祥云.豚鼠心传导系的形态学研究(Ⅰ)——豚鼠窦房结,房室结及房室束等的光镜观察.蚌埠医学院学报,2001,26(1):3-6.
    [15]李永华,宋治远,张志辉,等.兔窦房结的光镜和电镜观察.重庆医学,2008,37(6):624-625.
    [16]郭志坤.现代心脏组织学.人民卫生出版社,2007,第1版:92-96.
    [17]成令忠.组织学.北京:人民卫生出版社,1994,第2版:467-470.
    [18]宋一璇,吴义方.成人窦房结的透射电镜观察.解剖学杂志,2001,24(1):6-10.
    [19] Masson-Pévet M, Gros D, Besselsen E. The caveolae in rabbit sinus node and atrium. Celland tissue research,1980,208(2):183-196.
    [20]宋一璇,姚青松,王慧君,等.成人心传导系统的超微结构.解剖学研究,2002,24(1):21-23.
    [21]赵根然,凌凤东.大鼠窦房结光镜和电镜观察.西安医科大学学报,1991,12(4):297-299.
    [22]陈金典,杨月鲜,赵根然.新生儿窦房结的亚微形态观察.中华医学杂志,1988,68(6):348-348.
    [23]张朝佑,袁桂琴,李文镇,等.成人窦房结的亚显微构造.解剖学报,1980,11(4):412-412.
    [24]赵根然,杨月鲜,陈金典.狗窦房结位置形态和亚微结构.中华心血管病杂志,1989,17(6):357-357.
    [25] Kwong KF, Schuessler RB, Green KG, et al. Differential expression of gap junction proteinsin the canine sinus node. Circulation Research,1998,82(5):604-612.
    [26] Dobrzynski H, Li J, Tellez J, et al. Computer three-dimensional reconstruction of thesinoatrial node. Circulation,2005,111(7):846-854.
    [27] Fedorov VV, Hucker WJ, Dobrzynski H, et al. Postganglionic nerve stimulation inducestemporal inhibition of excitability in rabbit sinoatrial node. American Journal ofPhysiology-Heart and Circulatory Physiology,2006,291(2): H612-H623.
    [28]周圣华,宋治远.兔窦房结组织急性损伤后缝隙连接蛋白CX45CX43表达的研究.心肺血管病杂志,2005,24(2):111-113.
    [29] Liu J, Dobrzynski H, Yanni J, et al. Organisation of the mouse sinoatrial node: structure andexpression of HCN channels. Cardiovascular research,2007,73(4):729-738.
    [30]高天礼.心脏的起搏传导系统.生物学通报,1985,6(11):21-24.
    [31] Noma A, Irisawa H. Membrane currents in the rabbit sinoatrial node cell asstudied by thedouble microelectrode method. Pfl¨1gers Archiv European Journal of Physiology,1976,364(1):45-52.
    [32]Brown H, Difrancesco D, Noble S. How does adrenaline accelerate the heart. nature,1979,280(7):235-236.
    [33] Difrancesco D, Borer JS. The funny current: cellular basis for the control of heart rate.Drugs,2007,67(Suppl2):15-24.
    [34] Fan X, Chen Y, Xing J, et al. Blocking effects of acehytisine on pacemaker currents (I f) in sinoatrialnode cells and human HCN4channels expressed inXenopus laevis oocytes. Journal of Ethnopharmacology,2012,139(1):42-51.
    [35]Difrancesco D. The role of the funny current in pacemaker activity. Circ Res,2010,106(3):434-446.
    [36] Santoro B, Wainger BJ, Siegelbaum SA. Regulation of HCN channel surface expression bya novel C-terminal protein-protein interaction. The Journal of neuroscience,2004,24(47):10750-10762.
    [37]Accili E, Proenza C, Baruscotti M, et al. From funny current to HCN channels:20years ofexcitation. News in physiological sciences,2002,(17):32-37.
    [38] Rosenbaum T, Gordon SE. Quickening the Pace: Looking into the Heart of HCN Channels.Neuron,2004,42(2):193-196.
    [39] Brioschi C, Micheloni S, Tellez JO, et al. Distribution of the pacemaker HCN4channelmRNA and protein in the rabbit sinoatrial node. Journal of molecular and cellular cardiology,2009,47(2):221-227.
    [40]Chandler NJ, Greener ID, Tellez JO, et al. Molecular architecture of the human sinus nodeinsights into the function of the cardiac pacemaker. Circulation,2009,119(12):1562-1575.
    [41] Thollon C, Bedut S, Villeneuve N, et al. Use‐dependent inhibition of HCN4by ivabradineand relationship with reduction in pacemaker activity. British journal of pharmacology,2007,150(1):37-46.
    [42]李海玲.与心律失常相关的microRNAs研究现状.国际心血管病杂志ISTIC,2010,37(5):268-271.
    [43] M Nnikk R, Pandey S, Larsson HP, et al. Hysteresis in the Voltage Dependence of HCNChannels. The Journal of general physiology,2005,125(3):305-326.
    [44] Difrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellularcyclic AMP. Nature,1991,351(5):145-147.
    [45] Difrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial nodecells. nature,1986,324(12):470-473.
    [46] Difrancesco D, Ferroni A, Mazzanti M, et al. Properties of the hyperpolarizing-activatedcurrent (if) in cells isolated from the rabbit sino-atrial node. The Journal of Physiology,1986,377(1):61-88.
    [47]Schweizer PA, Yampolsky P, Malik R, et al. Transcription profiling of HCN-channelisotypes throughout mouse cardiac development. Basic research in cardiology,2009,104(6):621-629.
    [48]Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular pathway for the localizedformationof the sinoatrial node. Circulation Research,2007,100(3):354-362.
    [49] Baruscotti M, Robinson RB. Electrophysiology and pacemaker function of the developingsinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology,2007,293(5): H2613-H2623.
    [50]Wiese C, Grieskamp T, Airik R, et al. Formation of the sinus node head and differentiationof sinus node myocardium are independently regulated by Tbx18and Tbx3. CirculationResearch,2009,104(3):388-397.
    [51]Espinoza-Lewis RA, Yu L, He F, et al. Shox2 is essential for the differentiation ofcardiac pacemaker cells by repressing Nkx2-5. Developmental biology,2009,327(2):376-385.
    [52]管思彬,马爱群,蒋文慧.原代培养乳鼠窦房结细胞的形态学及表面抗原研究.西安交通大学学报(医学版),2009,30(3):288-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700