用户名: 密码: 验证码:
全球主要沙漠区大气沙尘气溶胶含量变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙尘气溶胶已经成为与CO2增温相对应的、重要的地球制冷剂之一,它以地球化学过程的方式将陆地、海洋和大气有机地结合起来,并成为了研究全球物质循环及气候变化的关键环节。目前的研究普遍认为大气中沙尘气溶胶主要来源于沙尘暴过程,然而一些观测事实特别是27年沙漠地区气溶胶指数(AI)的分布表明仅沙尘暴过程无法解释气溶胶指数的日、月变化。全球主要沙漠区气溶胶指数的分布显示,在沙尘暴发生频次明显减少的月份内,沙漠区的气溶胶指数依旧很大,这说明除沙尘暴外另有其他起沙机制影响大气中沙尘气溶胶含量的变化。热对流与尘卷风联合的起沙机制可能是主要的原因之一。然而我们对尘卷风的野外观测和研究在目前近乎为空白,无法直接对它进行分析,只能采用间接方法。研究表明热对流和尘卷风的形成都与太阳辐射密切相关,太阳辐射的变化可以间接反映尘卷风对大气中沙尘的供给。通过对影响气溶胶指数的太阳辐射、沙尘暴和降水量的分析,有可能使我们对沙漠地区大气沙尘的来源及变化的原因有新的认识,对这一科学问题的回答,不但可以解释模拟的沙尘通量远低于观测值的问题,而且有助于我们对沙尘的来源、沉降及环境效应等重大科学问题的理解或认识。
     本文利用27年气溶胶指数资料,分析了撒哈拉、阿拉伯半岛、南亚、中国和澳大利亚等全球5个主要沙漠区大气沙尘气溶胶指数的时空分布,并结合对太阳辐射、沙尘暴、降水量等资料的分析,探讨了沙漠区大气沙尘气溶胶含量的变化及其原因。其主要研究结果如下:
     (1)五个主要沙漠区的气溶胶指数几乎全年都在0.7以上,且高于其他非沙漠区。特别是沙尘暴发生期间,大量沙尘被扬起进入大气层,气溶胶指数显著增大,显然沙尘暴对沙漠区气溶胶指数的时空分布有着重要影响。然而在沙尘暴频次明显减少时,沙漠区的气溶胶指数值仍保持较高,这说明热对流和尘卷风可以向大气中输送沙尘。
     (2)南、北半球沙漠区的太阳辐射和气溶胶指数在日变化、月变化上都有非常高的一致性,呈现显著的正相关。北半球沙漠区的气溶胶指数均在6月份左右达到峰值,而此时地处南半球的澳大利亚沙漠,其气溶胶指数是低值,相应的太阳辐射也很低,且两者存在明显的正相关关系。由此可排除气溶胶指数与太阳辐射存在假相关的可能,表明了太阳辐射是影响沙漠地区沙尘气溶胶含量主要的因子之一,同时也说明由太阳辐射诱发的热对流和尘卷风对大气中沙尘的含量有很大贡献。
     (3)沙尘暴和尘卷风以及热对流能扬起大量沙尘,沙尘AI值变大;而沙漠中季节性降水对大气中的沙尘气溶胶有一定清除作用,使沙尘AI值变小。沙尘AI与沙尘暴和太阳辐射存在正相关关系,而降水与沙尘AI存在负相关关系。
     (4)对5个主要沙漠区的气溶胶指数、太阳辐射、沙尘暴频次和降水量进行回归统计,发现它们可很好地拟合出气溶胶指数的变化趋势。
Dust aerosols with their cooling effect on earth surface are regarded as an Earth refrigerant contrary to the warming effect of carbon dioxide. Dust aerosls link land, sea and air in the geochemical processes, which is a key chain on global substance cycle and climate change. Currently, it is generally believed that dust aerosols are injected in the atmosphere during dust storms. Whereas, observations evidences, especially the27-year records of aerosol index(AI) of1979-2009, revealed that only dust storms can not explain the diurnal and monthly variation of observed dust aerosols. The AI-distribution over the major deserts of the world presented the high AI during the non-dust storm periods. This implies that the dust emission mechanisms except dust storms could lift dust aerosols into the atmosphere. These dust emission mechanisms include dust devils, convective plumes, and turbulent convection. It is difficult to observe dust devils and convective plumes with no available observation data for the current studies. However, the dust devils and convective plumes are driven by solar radiation. Therefore, the aerosol contributions of dust devils and convective plumes could implicitly be estimated in proportion to solar radiation. The analyses on the impacts of solar radiation、dust storm frequency and precipitation on the AI over the major deserts could interpret the underestimation of simulated dust emission fluxes and is also helpful in understanding the dust aerosol source, sedimentation and their environmental effects.
     We analyze the AI-varaitions over five major desert regions including Sahara、the Arabian Peninsula、South Asia、China and Australia based on27year observation data. We also discuss the dust emissions from the desert regions in association with solar radiation、dust storm frequency and precipitation. The study results are concluded as follows:
     (1) The annual AI values of almost over0.7in the five major desert regions and higher were higher than in other regions. During dust storm periods, a great quantity of dust aerosols emitted into the atmosphere with the significantly increasing AI. Although dust storms have an obvious influence on the tempo-spatial AI-distribution, the very high AI during non-dust storm periods was also observed over the global deserts contributed by dust devils and convective plumes.
     (2) Solar radiation and AI over the major deserts in both Northern and Southern Hemisphere showed the significant positive correlations in the diurnal and monthly variation. AI over desert regions in the Northern Hemisphere peaked around June, when the low AI of Australian desert regions in the Southern Hemisphere was accompanied with the solar radiation, which further confirmed the positive correlation between AI and solar radiation. It is suggested that solar radiation is one of the most important factors controlling dust aerosols over the desert regions. Dust devils and convective plumes triggered by solar radiation had a large dust contribution to the aerosols in the atmosphere.
     (3) High AI was resulted from the dust aerosols emitted by dust storm, dust devils and convective plumes. Nevertheless, precipitation could scavenge dust aerosols in the atmosphere reducing AI over the desert regions. Precipitation and AI had the negative correlations.
     (4) Based on regression statistics, the trend in AI could be well built by solar radiation, dust storm frequency and precipitation.
引文
Arimoto R., Duce R., Savoie D L, et al. Relationships among aerosol constituents from Asia and the north pacific during PEM-West [J]. J. Geophys. Res.,1996,101(D1):2011-2023.
    Goudie A. S. Dust storms in space and time[J]. Progress in Physical Geography,1983,7:502.
    Bhalotra Y. P. R. Will it be a dust storm or a thunderstorm? Indian Journal of Meteorology and Geophysics.,1954,5(3):290.
    Crutzen P J, Ramanat han V. The parasol perasol effect onclimate[J]. Science,2003,302: 1679-1681.
    Chiapello I, J M Prospero, J R Herman, et al. Detection of mineral dust over the north Atlantic ocean and Africa with the Nimbus 7/TOMS[J]. J. Geophys. Res.,1999,104(D8):9277-929.
    Chiapello I, Moulin C, Prospero J M. Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness [J]. J. Geophys. Res.,2005,110(D18S10):1-9.
    D'Almeida G A, Koepke P, Shettle E P. Atmospheric Aerosols:Global Climatology and Radioactive Characteristics [M]. Hampton, Virginia:Deepak Publishing,1991:55-59.
    Dalmeida G A. On the variability of desert aerosol radiative characteristics[J]. J. Geophys. Res., 1987,92:3017-3026.
    Duce R A. Sources, distributions and fluxes of mineral aerosols and their relationship to climate [J]. In:Heintzenberg, J. Ed. Aerosol Forcing of Climate. New York:John Wiley & Sons Ltd, 1995:43-72.
    Duce R A, Unni C K, Ray B J. Long rang atmospheric transport of soil dust from Asia to the Tropical North Pacific:Temporal variability[J]. Science,1980,209,1522-1524.
    Dave, J. V. Effect of aerosols on the estimation of total ozone in an atmospheric column from the measurements of its ultraviolet radiance[J]. J. Atmos. Sci.,1978,35,899-911.
    Eck T. F., Bhartia P.K., Hwang P.H., et al. Reflectivity of the Earth's surface and clouds in ultraviolet from satellite observations[J]. J. Geophys. Res.,1987,92(D8):4287-4296.
    Engelstaedter S., Tegen. I. Washington R. North African dust emissions and transport[J]. Earth Sci. Rev.,2006,79,73-100.
    Gao Y, Arimoto R, Zhou M Y, et al. Relationship between the dust concentrations over eastern Asia and the remote North Pacific [J]. J. Geophys. Res.,1992,97:9867-9872.
    Gao H, Washington R. The spatial and temporal characteristics of TOMS AI over the tarim basin, China [J]. Atmospheric Environment,2009,43(5):1106-1115.
    Hankin. E. H. On dust raising winds and descending currents[J]. Indian Met Memoirs,1921, 22:210-213.
    Hall F. F. Visibility reductions from soil dust in the western United States[J]. Atmospheric Environment,1981,15:1929-1933.
    Holben B.N., Eck T.F., Slutsker I., et al. A federated instrument network and data archive for aerosol characterization[J]. Remote Sensing of Environment,1998,66:1-16.
    Holben B.N., Tanre D., Smirnov A., et al. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET[J]. J. Geophys. Res.,2001,106:12067-12098.
    Herman J R, Bhartia P K, Ziemke J, et al. UV-B increase (1979-1992) from decrease on total ozone[J]. J. Geophys. Res.,1996,23:2117-2120.
    Herman J R, Bhartia P K, Torres O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data [J]. J. Geophys. Res.,1997,102(16):911-922.
    Herman J R, Celarier E. A. Earth's surface reflectivity climatology at 340-380nm from TOMS data [J]. J.Geophys. Res.,1997,102(28):003-012.
    Hsu N C, Herman J R, Bhartia P K. Detection of biomass burning smoke from TOMS measurements[J]. J. Geophys. Res.,1996,23:745-748.
    Herrmann L., Stahr K., Jahn R. The importance of source region identification and their properties for soil-derived dust:the case of Harmattan dust sources for eastern West Africa[J]. Contributions to Atmospheric Physics,1999,72,141-150.
    Hsu, N.C., Herman, J. R., Torres O., et al. Comparisons of the TOMS aerosol index with sun photometer aerosol optical thickness:results and applications[J]. J. Geophys. Res.,1999, 104,6269-6279.
    Idso S B, Ingram R S, Pritchard J M. An American Haboob Bullentin of the American Meteorological Society[J]. Am Met Soc Bull,1972,53(10):930-935.
    IPCC (Intergovern mental Panel on Climate Change). Radiative forcing of climate change and an evaluation of the IPCC 1992 emission scenarios[M]. Cambridge:Cambridge University Press,1994.
    Ives R L. Behavior of dust devils[J]. Am Met Soc Bull,1947,28:168-174.
    Jones P, Charlson R, Rodhe H. Aerosols in Climate Change 1994[M]. New York Cambridge Uniersity Press,1995.
    Jinyuan Xin, yuesi Wang, Z.Li, et al. AOD and Angstrom exponent of aerosols observed by the Chinese Sun Hazemerer Network from August 2004 to September 2005[J]. J. Geophys. Res., 2007,112,D05203.
    Krueger A J, Walter L S, Bhartia P K, et al. Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments[J]. J. Geophys. Res.,1995,100:14057-14076.
    Kaufman, Y. J., Koren I., Remer L. A., et al. Dust transport and deposition observed from the TERRA-MODIS space observations [J]. J. Geophys. Res.,2005 110, D10S12.
    Liu. G, Shao H., Coakley J. A., et al. Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX:Implication to aerosols'indirect redirect radiative effect[J]. J. Geophys. Res.,2003,108(D1),4006.
    Martin J H. Glacial-interglacial CO2 change:Theiron hypothesis[J]. Paleoceanography,1990, 5:1-13.
    Marie Ekstrom, Grant H. Mctainsh., Adrian Chappell. Australian dust storms:Temporal Trends and Relationships with Synoptic Pressure Distributions(1960-99)[J]. International Journal of Climatology, Int. J. Climatol.,2004,24:1581-1599.
    Metzger S M. Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site[D]. Univ. of Nev.,1999.
    Nkajima T, Akiko Higurashi, Nobuo Takeuchi, et al. Satellite and ground based study of optical properties of 1997 Indonesian forest fire aerosols[J]. Geophysical Research Letters,1999, 26:2421-2424.
    Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product[J]. Reviews of Geophysics,2002,40(3):1002-1032.
    Rea D K. The paleoclinatic record provided by eolian deposition in the deep sea:The geological history of wind [J]. J. Geophys. Res.,1994,32(2):159-195.
    Ryan J A, Carroll I J. Dust devils wind velocities:mature state[J]. J. Geophys. Res.,1970, 75:531-541.
    Shi G Y, Wang H, Wang B, et al. Sensitivity Experiments on the Effects of Optical Properties of Dust Aerosol on Their Radiative Forcing under Clear Sky Condition[J]. Journal of the Meteorological Society of Japan,2005,83:333-346.
    Sutton I. J. Haboob Quart[J]. Roy. Meteor.Soe.1925,51:25-30.
    Sinclair P C. Some Preliminary dust devil measurement[J]. Month Weather Rev,1964, 92:363-367.
    Torres O, Bhartia P K, Herman J R, et al. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements [J]. Journal of the Atmospheric Sciences,2002,59(3):398-413.
    Lawson T. J.. Haboob Structure at Khartoum[J]. J. of Weather,1971,26:105-112.
    Torres O, Herman J R, Bhartia PK, et al. Properties of the Mt.Pinatubo aerosols as derived from Nimbus 7 total ozone mapping spectrometer measurements[J]. J. Geophys. Res.,1995, 100:14003-11055.
    Torres O., Herman J. R., Bhartia K., Sinyuk A. Aerosol properties from EP-TOMS near UV observations[J]. Adv. Space Res.,2002,29(11):1771-1780.
    Torres O, Bhartia P K, Herman J R, et al. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation, theoretical basis[J]. J. Geophys. Res., 1998,103:17099-17110.
    Thomas littmann. Dust storm frequency in Asia:Climatic Control and Variability[J]. International Journal of Climatology,1991,11,393-412.
    WMO. Strategy for the Implementation of the Global Atmosphere Watch Programme (2001-2007) [R].WMO No.142. World Meteorological Organization. Geneva,2001.43-45.
    Wang Z, Akiemoto H, Uno I. Neut ralization of soil aerosol and it s impact on the distribution of acid rain over Esat Asia:observations and model results[J]. J. Geophys. Res.,2002,107.
    Washington R, Todd M, Middleto N J, et al. Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations[J]. Annals of the Association of American Geographers,2003,93(2):297-313.
    Yin Y, Levin Z, Reisin T G, et al. The effect of giant cloud condensation nuclei on the development of precipitation in convective clouds-A numerical study [J]. Atmos. Res,2000, 53(1/2/3):91-116.
    IPCC. Climate Change 2007:The Physical Science Basis[M]. Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA,2007.
    陈敏连,郭清台,徐建芬.黑风暴大气的研究和探讨[J].甘肃气象,1993,11(3):16-27.
    邓祖琴,韩永翔.一次强沙尘暴事件的TOMS资料分析[C].中国气象学会2008年年会干旱与减灾—第六届干旱气候变化与减灾学术研讨会分会场论文集,2008.
    邓学良.卫星遥感中国海域气溶胶光学特性及其辐射强迫研究[D].南京:南京信息工程大学,2008.
    高凤荣,李云.甘肃河西“5.19”黑风分析[J].甘肃气象,1989,7(1):13-17.
    高庆先,任阵海,李占青,等.利用EP/TOMS遥感资料分析我国上空沙尘天气过程[J].环境科学研究,2005,18(4):96-101.
    高卫东,姜巍,等.塔里木盆地地区沙尘气溶胶特征分析[J].干旱区资源与环境,2003,16(4):75-78.
    顾兆林,邱剑,鲁录义,等.尘卷风的研究进展[J].中国沙漠,2007,27(5):843-850.
    顾兆林,赵永志,郁永章,等.尘卷风的形成、结构和卷起沙尘过程的数值研究[J].气象学报,2003,61(6):751-760.
    何新星,王跃思,温天雪,等.2004年春季北京一次沙尘暴的理化特性分析[J].环境科学,2005,26(5):1-6.
    韩永翔,奚晓霞,宋连春,等.青藏高原沙尘及其可能的气候意义[J].中国沙漠,2004,24(5):587-592.
    韩永翔,奚晓霞,方小敏,等.亚洲大陆沙尘过程与北太平洋地区生物环境效应:以2001年4月中旬中亚特大沙尘暴为例[J].科学通报,2005,50(23):2649-2655.
    韩永翔,方小敏,宋连春,等.塔里木盆地中的大气环流及沙尘暴成因探讨—根据沙漠风积地貌和气象观测重建的风场[J].大气科学,2005,29(4):627-635.
    韩永翔,赵天良,宋连春,等.北太平洋地区春季粉尘的空间分布特征—观测及模拟研究[J].中国环境科学,2005,25(3):257-201.
    韩永翔,杨胜利,方小敏,等.塔里木盆地中的大气环流及昆仑山北坡的黄土堆积[J].中国沙漠,2006,26(3)351-355.
    韩永翔,陈勇航,方小敏,等.沙尘气溶胶对塔里木盆地降水的可能影响[J].中国环境科学,2008,28(2):102-106.
    韩永翔,张强,董光荣,等.沙尘暴的气候环境效应研究进展[J].中国沙漠,2006,26(2):307-311.
    金正润,牛生杰,河惠卿,等.利用EP/TOMS气溶胶指数分析中国和韩国的沙尘天气过程[J].中国沙漠,2009,29(4):750-756.
    刘菲.沙尘气溶胶辐射特性的初步研究[D].南京:南京信息工程大学,2006.
    刘东生.黄土与环境[M].北京,科学出版社,1985.
    刘毅,王明星,等.中国气溶胶研究进展,气候与环境研究[J].1999,4(4):406-414.
    雷文方,任丽新,吕伶秀,等.黑河地区沙漠气溶胶浓度和谱分布特征[J].高原气象,1993,12(2):170-179.
    雷向杰,李亚丽,杜继稳,等.陕西龙卷、尘卷风时空分布和日变化规律分析[J].2005, 20(2):99-101.
    宿兴涛.中国沙尘气溶胶研究新进展[J].气象与环境科学,2008,31(3):72-77.
    汪安璞.大气气溶胶研究新动向[J].环境科学,1999,18(1):10-15.
    吴枫,曹军骥,安芷生,等.最近25万年亚洲粉尘与北太平洋古生产力和大气CO2变化的联系[J].过程工程学报,2006,6(增2):75-80.
    王明星.大气化学(第二版)[M].北京:气象出版社,1999.
    王式功,杨德保,金炯,等.我国西北地区黑风暴的成因和对策[J].中国沙漠,1995,15(1):19-30.
    王式功,杨德保,周玉素,等.我国西北地区“94.4,,沙尘暴成因探讨[J].中国沙漠.1995,15(4):332-338.
    王明星,张仁建.大气气溶胶研究的前沿问题[J].2001,6(1):199-124.
    魏丽,沈志宝.大气沙尘气溶胶辐射特性的卫星观测[J].高原气象,1998,17(4):347-355.
    徐国昌,陈敏连,吴国雄.甘肃省"4-22"特大沙尘暴分析[J].气象学报,1979,37(4):26-35.
    夏祥鳌.中国北方地区沙尘气溶胶特性遥感分析[D].北京:中国科学院大气物理研究所,2002.
    徐建芬,牛志敏,陈伟民.我国西北地区4.5沙尘暴大气研究[J].中国沙漠,1996,16(3):281-286.
    辛金元,王跃思,李占清,等.中国大气气溶胶光学特性及其时空分布联网观测与研究(1)—太阳分光辐射观测网的建立和仪器定标分布[J].环境科学,2006,27(9):1697-1702.
    杨东贞,王超,温玉璞,等.1990年春季两次沙尘暴特征分析[J].应用气象学报,1995,6(1):18-26.
    延昊,矫梅燕,毕宝贵,等.国内外气溶胶观测网络发展进展及相关科学计划[J].2006,26(1):110-117.
    张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J].第四纪研究,2011,21(1):29-40.
    周任君.青藏高原上空臭氧的变化及其气候效应[D].北京:中国科学技术大学,2005.
    中国气象局监测网罗司编译.全球大气监测观测指南[M].北京:气象出版社,2003:34-50.
    庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.
    张军华,节泰,王美华.利用TOMS资料遥感沙尘暴的研究[J].高原气象,2002,21(5):457-465.
    朱福康,汤绪天.我国沙尘暴气的研究—全国沙尘暴天气研讨会综述[C].气象科技,1994, 1:10-13.
    张仁健,王明星,浦一芬.2000年春季北京特大沙尘暴物理化学特性的分析[J].气候与环境研究,2000,5(3):259-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700