用户名: 密码: 验证码:
固定化生物活性炭中优势菌群生物稳定性的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着饮用水水源污染日益严重,以生物活性炭为核心的饮用水深度处理技术受到人们广泛关注。采用人工培养优势菌群强化生物降解作用的固定化生物活性炭(IBAC)技术具有显著的优势,活性炭吸附作用和优势菌群生物降解作用大大提高了除污染效率。但由于是一个开放式的系统,IBAC在实际应用过程中易受到水质、水量冲击以及环境因素等影响,产生优势菌群生物稳定性受到破坏的问题,从而限制了其在供水行业推广应用。
     本研究针对北方某市原水水质状况,从影响IBAC工艺中优势菌群稳定性的各个关键环节入手,重点研究了优势菌群优化固定工艺条件、在活性炭表面的生长特性、活性炭性质和工艺条件对优势菌群稳定性的影响作用与优化控制、优势菌群的安全性控制等内容,为IBAC技术的实际工程应用提供技术支持。
     采用不同浓度梯度营养基质对优势菌群的生物活性进行了反复强化,提出了以生物活性达到300μg/mL作为优势菌群生物活性强化的指示终点。通过采用超声波预处理方法评价优势菌群在活性炭表面固定化性能,研究了优势菌群的优化固定条件,结果表明优势菌群最优固定化条件为:停留时间30min,循环4h、间歇2h的间歇式固定化方式,循环3次。
     将优势菌群固定于活性炭表面,通过采用PCR-DGGE和扫描电镜等技术,对优势菌群生长特性进行了深入研究,结果表明在启动初期优势菌群生物量与生物活性需经过约一周快速降低的过程,而后逐渐保持稳定,菌群生物活性保持在200μg/mL以上,生物量保持在10~6CFU/(g炭)量级,初期优势菌群在活性炭表面是以单个菌体的方式,附着在活性炭表面孔隙较多的粗糙部分;经过长期运行后,IBAC表面微生物的种类从初期8种,一年后增加到16种,且菌量均有不同程度的增加,但人工固定的优势菌仍然占据主导地位,优势菌群在活性炭表面形成大量生物膜,以团状絮状形式存在,且大部分呈单层分布。由于土著杂菌的低量持续侵入系统,出现土著菌群和优势菌群对营养基质的争夺竞争、分摊竞争以及劣势菌群的细胞自融过程,从而使优势菌群活性受到了一定的抑制,上层活性炭床耗氧速率从初始11×10~(-3) mgO_2 /(cm~3·h),18个月后下降到8×10~(-3)mgO_2 /(cm~3·h),下层活性炭床耗氧速率也从初始7.5×10~(-3)mgO_2/(cm~3·h),18个月后下降到6×10~(-3)mgO_2/(cm~3·h)。
     将优势菌群在五种不同种的活性炭表面固定,采用动态试验对其净水效能、微生物生长状况进行系统的研究,并应用统计分析方法解析了活性炭性质对优势菌群生物稳定性影响。结果表明,对优势菌群生物稳定性影响较大的活性炭性能指标主要为糖蜜值、碘值、丁烷值、pH值、平均粒径、有效粒径、均匀系数、摩擦系数和强度,其中糖蜜值为首要控制指标,在选择活性炭时需控制在150mg/g以上。
     针对臭氧投加量、炭池停留时间与反冲洗等主要工艺条件,利用中试系统,研究了其对优势菌群生物稳定性的影响作用与优化控制条件。试验结果表明,IBAC系统的优化工艺条件为:臭氧投加量2.34mg/L左右,炭池停留时间20min,气-水反冲,气冲强度采用10L/m~2·s,夏季气冲时间5min,冬季气冲时间采用3min,水冲强度采用12~15L/m~2·s,时间为8~10min。对优势菌群强化活性炭除污染性能进行了长期监测,结果表明与普通生物活性炭相比,IBAC去除UV_(254)、COD_(Mn)和TOC分别提高了15%以上,对THMFP的去除率平均提高11.23%,水中的有毒有害物质的种类和含量显著降低。
     针对优势菌群在应用过程中的生物安全性,从菌体自身的毒理学试验、石英砂垫层控制各种生物泄露、工艺出水的毒理学试验等多个角度进行了试验研究,结果表明优势菌群具有较高的生物安全性。应用活性炭碘值和静态试验方法,对优势菌群的生物再生作用进行评价,结果表明优势菌群可以有效的延长活性炭使用寿命,在达到活性炭吸附饱和之前IBAC至少可延长1年以上使用时间,而IBAC中的活性炭达到真性失效时,则要在3年以上。因此本研究建立的IBAC工艺具有处理效率稳定、操作管理简单、运行成本低的特点,它的推广必将带来显著的经济、社会和环境效益。
Drinking source water pollution is more and more serious, so it is widely concerned that drinking water advanced treatment to biological activated carbon as core. Immobilization biological activated carbon (IBAC) technology by immobilizating artificial cultivated dominant bacteria on activated carbon takes significant advantages and it improves the removal efficiency of organic contaminations depending on the adsorption of ctivated carbon cooperating with biological degradation of dominant bacteria. For open system, IBAC produces the problem of stabilization destruction due to vulnerable impact such as water quality, quantity and environmental factors in practical application, and it limites its broad application in the water industry.
     Aimming at the raw water quality conditions of the north city, the paper researchs effectively maintaining the biological stability of dominant bacteria from the various key of impacting biological stability of dominant bacteria, the major researches include that optimizing immobilization conditions of dominant bacteria, growth characteristics of dominant bacteria on activated carbon, influence and control of activated carbon property and process conditions to biological stabilization and security control of dominant bacteria and it provides technical support for project application of IBAC.
     Repeatedly enhancing biological activity of dominant bacteria by different concentration gradient nutrition substrate, it takes biological activity of 300μg/mL as the indicated end-point. By ultrasonic pretreatment to evaluate the immobilization characters of dominant bacteria, the optimizing immobilization conditions are researched. The results show that the optimizing immobilization conditions of dominant bacteria include the contact time 30 min, immobilization manner of cycling 4 h, intermittent 2 h and repeating three times.
     The growth characteristics of dominant bacteria on activated carbon are monitored at the long-term pilot-scale test by PCR-DGGE and SEM. The results show that at start-up period, there is a quickly reducing process in biomass and biological activity for about a week, then the biomass and biological activity gradually maintain stability for biological activity of 200μg/mL above and biomass quantity class of 10~6CFU/(g carbon) and the dominant bacteria immobilize on activated carbon in the form of single bacterium and in the rough part of activated carbon surface with more porous; after a long-term operation, the bacteria kinds of IBAC surface increase from 8 at initial stages to 16 after one year with different leves of biomass, but the artificial immobilized dominant bacteria still hold the advantaged position in plentiful biofilm and mission-floc formed on the activated carbon surface, mostly single-layer distribution. The aboriginal bacteria in low volume invasive system lead biological activity decreases of dominant bacteria in long-term slow downward for nutritional competition, sharing competitive and losing of disadvantage bacteria. The biological activity of upper and lower activated carbon deceases from 11×10~(-3)mg O_2/(cm~3·h) and 7.5×10~(-3)mgO_2/(cm~3·h)at initial stages to 8×10~(-3)mgO_2/(cm~3·h) and 6×10~(-3)mgO_2/(cm~3·h) after 18 months respectively.
     The water purification effect and growth characteristics of dominant bacteria are systematically researched at the dynamic test by immobilization dominant bacteria on 5 different types of activated carbon and the effect of activated carbon properties to biological stability is analyzed with statistical analysis methods. The results showed that the performance indexes of activated carbon greatly impact on biological stability mainly include molasses, iodine,butane, pH, average particle size, effective particle size, uniformity coefficient, friction coefficient, intensity, and molasses is primary control index of greater than or equal 150mg/g at selecting activated carbon.
     The effect of process conditions to biological stability including ozone dosage, EBCT and backwashing condition is researched by pilot-scale tests. The results show that the optimizing IBAC process conditions include ozone dosage of about 2.34mg/L, EBCT of 20min, air-water backwash, air backwashing intensity of 10L/m~2·s with backwashing time of 5min at summer and 3min at winter, water backwashing intensity of 12~15L/m~2·s with backwashing time of 8~10min. The enhanced removal organic pollutions by dominant bacteria are monitored in long-term and the results show that compared with BAC, IBAC improves removal rates of 15% above in UV_(254), COD_(Mn) and TOC respectively and 11.23% in THMFP. The IBAC effluence of toxic substances kinds and concentration has significantly decreases.
     Aimming at the bio-security of dominant bacteria in application the process, it has been researched from the bacterium toxicology tests, sand controlling various biological leak, effluence toxicology tests and other points and the results showed that the dominant bacteria has higher bio-security. Application of activated carbon iodine value and static test methods, the renewable role of dominant bacteria have been evaluated and the results show that the the life-time of activated carbon can be effectively extended by dominant bacteria. Before reaching adsorption saturation of activated carbon, IBAC may be extended at least 1 year and achieving true failure of activated carbon will need in more than 3 years.The IBAC process has distinct characteristics of stable treatment efficiency, simple operation and management, low-cost operation, so it will bring about significant promotion of the economic, social and environmental benefits.
引文
1王占生,刘文君.微污染水源饮用水处理.中国建筑工业出版社. 1999:64-77
    2何雨薇,邢会歌.我国城市水污染现状及其对策.水利科技与经济.2006,12(1):44-45
    3国家环境保护总局. 2006年中国环境状况(水环境). 2007:3-5
    4张永吉,周玲玲,刘志生等.水中天然有机物的分类特性及其卤代活性.环境科学.2005,26(1):104-107
    5 X.H Liu, Z.F Yang, L.S Wang, et al. Quantitative Structure-Property Relationship of Aromatic Sulfurcontaining Carboxylates. Journal of Environmental Sciences. 2003, 6:721-727
    6 M.L Rodriguez, J. Drtofrd. Estimation of Water Utility Compliance with Trihalomethane Regulations Using a Modeling Approach. Journal of Water Supply Research Technology-Aqua. 2000, 49(2):57-73
    7 Meagher, B. Richard. Phytoremediation of Toxic Elemental and Organic Pollutants. Current Opinion in Plant Biology. 2000, 3(2):153-162
    8 Kransner. The Occurrence of Disinfection by Products in U.S. drinking water. J.AWWA. 1989,81(8):41-53
    9张国杰,王栋,程时远.有机高分子絮凝剂的研究进展.化学与生物工程.2004,21(1):10-13
    10 H. Kubo, M.Yamada. Hepatocyte Growth Factor Induces Angiogenesis in Injured Lungs through Mobilizing Endothelial Progenitor Cells. Biochemical and Biophysical Research Communications. 2004, 324(3):276–80.
    11闫鹏,于梅,张姝.我国部分城镇饮用水源水有机物污染的研究概况.中国预防医学杂志. 2004,5(1):76-78
    12 T. Chen, J. Cui, Y. Liang, et al. Identification of Human Live Mitochondrial Aldehyde Dehydrogenase as a Potential Target for Microcystin-LR.Toxicology. 2006, 220(6):71-80.
    13赵晓联.国内微囊藻毒素毒理学研究进展.环境科学与技术. 2005, 28(12): 122-124
    14李长征,李捍东,刘琴等.微生物降解藻毒素的研究进展.环境科学与技术. 2006, 29(8):103-105
    15 P.C Hsu, W. Huang, W.J Yao, et al. Sperm Changes in Men Exposed to Polychlorinated Biphenyls and Dibenzofurans. JAMA, 2003, 289(22):2943-2944.
    16张燕,刘赟.环境内分泌干扰物生物学效应研究进展.国外医学:医学地理分册. 2005, 26(1): 32-35
    17岳舜琳.水质污染与人体健康.中国给水排水.1992,8(1):55-57
    18李贵宝,周怀东,刘晓茹.我国生活饮用水水质标准发展趋势及特点.中国水利. 2005, 9: 40-42
    19小文.我国首次制定生活饮用水标准.食品科技. 2007, 32(2):20
    20曾光明,黄瑾辉.三大饮用水水质标准指标体系及特点比较.中国给水排水. 2003, 19(7):30-32
    21王琳,王宝贞.饮用水深度处理技术.化学工业出版社. 2002:77-78
    22 M.C Minvielle, B.C Pazzani, M.A Cordaba, et al. Epidemiological Survey of Giardia and Blastocystis Hominis in a Argentinian Rural Community. Korean Journal of Parasitol. 2004,42 (3):121-127
    23张岚,陈昌杰,陈亚妍.我国生活饮用水卫生标准.中国公共卫生.2007, 23 (11):1281-1282
    24 J.G Hering, V.Q Chiu. Arsenic Occurrence and Speciation in Municipal Groundwater-Based Supply System. Journal of environmental engineering. 2000,47 (1):167-179
    25刘强,王晓昌,李世俊等.美国现行饮用水水质标准简介.给水排水. 2006,32(11):106-111
    26 EPA. Drinking Water Standards and for Regulated Contaminants: Surface water treatment rule. Environmental Protection Agency. 2006, 6:23-25
    27周云,何义亮.微污染水源净水技术及工程实例.化学工业出版社. 2003:20-21
    28 J.M Laine. Membrane Technology and its Application to Drinking Water Production. International Workshop on Membrane Applications for Water & Wastewater Treatment. 1999:145-153
    29鲁文清,刘爱林.饮用水消毒副产物研究进展.癌变.畸变.突变.2007,19 (3):181-183
    30 H.Y Wang, J.H Qu. Combined Bioelectrochemical and Sulfur AutotrophicDenitrification for Drinking Water Treatment. Water Research. 2005 (57):3767-3775.
    31 W.R Kusamran, N. Tanthasri, N. Meesiripan. Mutagenicity of the Drinking Water Supply in Bangkok.Asian Pacific Journal of Cancer Prevention. 2003, 4(1):31-38
    32 L.Sujbert, G.Racz, B.Szend, et al. Genotoxic Potential of by-products in Drinking Water in Relation to Water Disinfection: Survey of Pre-ozonated and Post-chlorinated Drinking Water by Ames-test. Toxicology. 2006, 219 (1/2/3):106-112
    33 Nigel J.D Graham. Removal of Humic Substances by Oxidation/Biofiltration Processes– A Review. Water Research. 1999,40(9):141-147
    34 J. Hu, S. Cheng, T. Aizawa. Products of Aqueous Chlorination of 17β-estradiol and their Estrogenic Activities .Environ Sci Technol. 2003, 37(24):5665-5670
    35 B.Z Wang. The Efficacy and Mechanism of Removal of Organic Substances from Water by Ozone and Activated Carbon.Water Science and Technology 1999, 30(1): 43-47
    36 Y. Wang, J.Hi Qu, R.C Wu, et al. The Electrocatalytic Reduction of Nitrate in Water on Pd/Sn-modified Activated Carbon Fiber Electrode. Water Research. 2006 (40):1224-1232
    37 P. Wentworth, J. Nieva, T C.akeuchi, et al. Evidence for Ozone Formation in Human Atherosclerotic Arteries. Science. 2003, 302(7):1053-1056
    38 Woo Hang Kim, Wataru Nishijima. Micropollutant Removal with Saturated Biological Activated Carbon (BAC) in Ozonation-BAC Process. Water Science and Technology.1997,36(12):283-298
    39 W. Nishijima, E.G Speitel. Fate of Biodegradable Dissolved Organic Carbon Produced by Ozonation on Biological Activated Carbon. Chemosphere. 2004, 56(2):113-119
    40 X. Zhao, R.F Hickey, T.C V oice. Long-term Evaluation of Adsorption Capacity in Biological Activated Carbon Fluidized Bed Reactor System. Water Research. 1999,33(13):2983-2991
    41 Anneli Andersson, Patrick Laureent. Impact of Temperature on Nitrification in Biological Activated Carbon (BAC) Filters Used for Drinking WaterTreatment. Water Research. 2001, 35(12):2923-2934
    42王亮,王磊,李风亭等.生物活性炭技术在水处理中的应用与发展.工业水处理. 2007, 27(7):1-4
    43聂凤明.生物活性炭技术在水处理中的应用现状与前景.南方冶金学院学报. 2005, 26(4):40-44
    44 M. Scholz, R. J. Martin. Ecological Equilibrium On Biological Activated Carbon. Water Research. 1997, 31(12): 2959-2968
    45 J.Y Hu, Z.S Wang.The Effect of Water Treatment Processes on the Biological Stability of Potable Water. Water Research. 1999, 33(11): 2587-2592
    46王琳,罗启芳.固定化微生物降解环境内分泌干扰物DBP.环境科学2003, 19(11): 1302-1303
    47王海,张甲耀,魏明宝.生物增强技术在生物修复中的应用.环境科学. 2003, 26(12): 81-83
    48 M. Scholz, R.J Martin. Ecological Equilibrium on Biological Activated Carbon. Water. Research. 1997, 31(12): 2959-2968
    49李伟光,安东.生物增强技术在饮用水深度处理中的应用.水处理信息报导.2005,(1):61-63
    50张金松.臭氧化-生物活性炭除微污染工艺过程研究.哈尔滨工业大学博士学位论文. 1995:87-89
    51李莉. IBAC菌种鉴定及用于大庆市水气厂饮用水深度净化的实验研究.哈尔滨工业大学硕士学位论文. 2006,6:78-89
    52马放,王宝贞.固定化生物活性炭除微污染有机物的实验研究.哈尔滨建筑大学学报. 1998,5:52-57
    53何延青,吴永强,刘俊良等.处理水中微污染有机物的工程菌的研究.环境工程. 2004, 22(4):60-61
    54于万波,周集体,于得贤等.臭氧—生物活性炭工艺处理有机微污染原水.净水技术. 2003, 22(6):20-23
    55安东,李伟光,崔福义等.固定化生物活性炭强化饮用水深度处理.中国给水排水. 2005, 21(4):9-12
    56安东,李伟光,宋佳秀等.臭氧生物活性炭对三卤甲烷生成势去除效能.哈尔滨工业大学学报. 2005, 37(11):1489-1491
    57张胜华,郭一飞,朱新锋.固定化生物活性炭深度处理白龟山水厂出水的净化效能研究.环境污染治理技术与设备. 2005, 6(8):72-74
    58李伟光,安东,崔福义等.生物降解与吸附作用协同去除卤乙酸生成势.中国环境科学. 2005, 25(1):61-64
    59谢丹平,尹华,彭辉.石油降解菌株的分离及其降解特性研究.上海环境科学. 2003, 22(12):951-954
    60王晨,马放,山丹等.固定化生物活性炭处理含硝基苯微污染水的可行性研究.环境科学. 2007, 28(7):1490-1495
    61张金松,董文艺,张红亮等.臭氧化-生物活性炭深度处理工艺安全性研究.给水排水. 2003, 29(9):1-4
    62金文标,马放.饮用水深度处理设备的净化效能.中国给水排水. 2002, 18(5):39-41
    63阳同惠,方燕红,曹明等. IBAC—GAC工艺用于饮用水深度处理的研究.给水排水. 2008, 34(4):41-45
    64马放,秦松岩,黄鹏.曝气式固定化生物活性炭深度处理滤池出水的净化效能研究.四川环境. 2005, 24(5):1-3
    65尹艳娥.新一代水处理技术研究-臭氧-生物活性炭纤维.同济大学博士学位论文. 2007, 3:56-78
    66张宇红,马放,杨基先. O3-IBAC技术应用于饮用水深度处理.给水排水. 2006, 32(6):115-118
    67 M.K Aleksandra, V.D Dick. Optimization and Significance of ATP Analysis for GAC Filter in Water Treatment. Water Research. 2004, 38(12):3971-3979
    68刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.中国建筑工业出版社. 2000:158-160
    69周春生,尹军. TTC-脱氢酶活性检测方法的研究.环境科学学报. 1996, 10(4): 400-405
    70乔铁军,张晓健.原位基质摄取速率法检测微生物活性.中国给水排水. 2002,18(7):80-82
    71 W.V Sigler, C. Miniaci, J. Zeyer. Electrophoresis Time Impacts the Denaturing Gradient Gel Electrophoresis-based Assessment of Bacterial Community Structure. Journal of Microbiol Methods. 2004, 57(6):17-22.
    72 J.R Thompson, L.A Marcelino, M.F Polz. Heteroduplexes in Mixed-template Amplifications: Formation, Consequence and Elimination by Reconditioning PCR'. Nucleic Acids Research. 2002, 30(5):2083-2088.
    73 J.P Hoek, J.A Hofman, A.Graveland, et al. The Use of Biological ActivatedCarbon for the Removal of Natural Organic Matter and Organic Micropollutants from Water. Water Science and Technology.1999,40(9): 257-264
    74任南琪,周大石,马放.水污染控制微生物学.黑龙江科技出版社.1993:75-78
    75 R.Narasimmalu, M.Osamu, I. Norifumi, et al. Variation in Microbial Biomass and Community Structure in Sediments of Eutrophicbays as Determined by Phospholipid Ester Linked Fatty Acids. Applied and Environment Microbial. 1992, 58(2): 562-571
    76马放.固定化生物活性炭除微量有机物的微生物学机理及其净化效能研究.哈尔滨工业大学博士论文. 1998: 45-49
    77 G. Collins, A.Woods, M.H Sharon, et al. Microbial Community Structure and Methanogenic Activity During Start-up of Psychrophilic Anaerobic Digesters Treating Synthetic Industrial Wastewaters. FEMS Microbiology Ecology. 2003, 46(1):159-170
    78 P. F Kemp, J.Y Aller. Bacterial Diversity in Aquatic and Other Environments: What 16SrDNA Libraries Can Tell Us. Fems Microbiology Ecology. 2004, 47(3):161-177.
    79 A.K Camper. Growth and Persistence of Pathogens on Granular Activated Carbon Filter. Applied and Environmental Microbiology in Drinking water. Journal AWWA. 1988,80(4): 321-329
    80 D.C Ellwood. Adhession of Microorganisms to Surfaces. London: Academic Press.1979:62-78
    81 D.C Savage, M. Fletcher. Bacterial Adhesion: Mechanisms and Physiological Significance. New York :Plenum Press.1985:197-206
    82 J. David, Pernitsky, R. Gordon, et al. Recovery of Attached Bacteria from GAC Fines and Implications for Disinfection Efficacy. Water Research. 1997,31(3):385-390
    83 Y. Takeuchi, Y. Suzuki, K. Mochidzuki. Biological Activated Carbon Treatment of Organic Water Containing Heavy Metal Ions at a High Salt Concentration. Process. SCEJ Kusyu Regional Meeting.1994: 125-126.
    84 R.Ahmad, A.Amirtharajah. Detachment of Particals During Biofilter Backwashing. Journal AWWA. 1998, 90(12):74-85
    85 I.T Miettinen, T. Vartiainen. Microbial Growth in Drinking Waters Treated with Ozone/Hydrogen Peroxide or Chlorine. Ozone Science and Engineering. 1998,20(12):303-315
    86 C.Takeuchi. Evidence for Ozone Formation in Human Atherosclerotic Arteries. Science. 2003, 30(2):1053-1056.
    87孙建平,李文红,马放等.固定化微生物对饮用水净化效能的研究.中国给水排水. 2000,16(2): 58-60
    88 V.D Kooij. Determining the Concentration of Easily Assimilable Organic Carbon in Drinking Water. Journal AWWA. 1992,74(10):540-545
    89 Y. Liu, Q.D Wang. Surface Modification of Biocarrier by Plasma Oxidation-Ferric Ions Coating Technique to Enhance Bacterial Adhesion. Journal of Environmental Science and Healthy. 1996,(3):869-879
    90 LeChevallier, M.W Welch. Full-Scale Studies of Factors Related to Coliform Regrowth in Dinking Water. Applied and Environmental Microbial. 1996,62(7): 2201-2211
    91 L.A Cipparone, A.C Diehl, G.E Speitel. Ozonation and BDOC Removal: Effect of Water Quality. Journal AWWA. 1997, 89(2):84-97.
    92李灵芝,王占生.臭氧-活性炭组合对饮用水中AOC的去除.环境科学与技术. 2003, 9(5):45-46.
    93 L.A Gary. Molecular Size Distribution of Dissolved Organic Mater. Journal AWWA.1992, 84(3):67-75.
    94 M.W LeChevallier. Coliform Regrowth in Drinking Water: A review. Journal AWWA. 1990, 82(8):69-75.
    95马军,石枫华.O3/H2O2氧化工艺去除水中硝基苯的研究.环境科学.2002, 23(5):67-71.
    96 Gil Grozes. Enhanced Coagulation: It’s Effect on NOM Removal and Chemical Costs. Journal AWWA.1995,89(5):78-89
    97 J.G Jacangelo.Selected Processes for Removing NOM: An Overview. Journal AWWA. 1995 (1):64-77.
    98马军,张涛,陈忠林等.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨.环境科学. 2005,26(2):78-82
    99 D. Susan, Richardson. Disinfection By-products and Other Emerging Contaminants in Drinking Water. Trends in Analytical Chemistry. 2003,22(10): 255-275
    100范洁.臭氧-生物活性炭深度处理饮用水安全技术研究.哈尔滨工业大学博士后研究报告. 2003, 10:120-121
    101 M. Kitis, T.K aranfil. The Reactivity of Natural Organic Matter to Disinfection Byproducts Formation and its Relation to Specific Ultraviolet Absorbance. Water Science and Technology. 2001,43(3): 9-16
    102 J.M Laine, D.Vail, P. Moulart. Status after 10 Years of Operation-overview of UF Technology Today.Conference on Membranes in Drinking and Industrial Water Production. L′Aquila: Desalination Publications. 2000,(1): 17-25
    103莫德清.臭氧在水处理中的制约因素及缓解措施.桂林工学院学报.2002, 22(3):366.
    104 T. Suzuki, Y. Watanabe, G. Ozawa. Performance of a Hybrid MF Membrane System Combining Activated Carbon Adsorption and Biological Oxidation.Conference on Membranes in Drinking and Industrial Water Production. L′Aquila: Desalination Publications. 2000,(2):87-94
    105 B. Kasprzyk-Hordern, M.J Zió?ek, Nawrocki. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Applied Catalysis B. Environmental. 2003,(6): 639-669
    106吴红伟,刘文君,王占生.臭氧组合工艺去除饮用水源水中有机物的效果.环境科学. 2000,21:29
    107王祖琴,李田.含溴水臭氧化过程中溴酸盐的形成与控制.净水技术.2001,20(2):7
    108岳舜琳.活性炭在饮用水处理中的应用.净水技术.2000,18(1):37-39
    109 J. Guo, J. Ma. AFM Study on the Sorbed NOM and its Fractions Isolated from River Songhua. Water Research, 2006, 40:1975-1984
    110 Krasner, S.W Glaze. Formation and Control of Bromate During Ozonation of Water Containing Bromide. Jour. AWWA.1993,85(1): 73-81
    111 C.J Volk, M.W LeChevallier. Impacts of the Reduction of Nutrient Levels on Bacterial Water Quality in Distribution System. Applied and Environmental Microbiology. 1999,65(11):4957-4966
    112 A.R Khan, R.Ataullah, A. Al-Haddad. Equilibrium Adsorption Studies of Some Aromatic Pollutants from Dilute Aqueous Solution on Activated Carbon at Different Temperatures. Journal of Colloid Interface Science.1997,19(4):154-165
    113李伟光,谭立国,何文杰等.臭氧-活性炭深度处理滦河水的试验研究.给水排水.2005,30(1):47-50
    114 J. Ma, M.H Sui. Effect of pH on MnOx/GAC Catalyzed Ozonation for Degradation of Nitrobenzene. Water Research. 2005,39(5):779-786
    115李来胜,祝万鹏,李中和.催化臭氧化吸附技术去除难降解污染物.中国给水排水. 2002,18(5):23-25
    116立本英机.活性炭的应用技术:其维持管理及存在问题.东南大学出版社. 2002:190-193
    117 U.V Gunten. Bromate Formation During Ozonation of Bromide-Contanining Waters Interaction of Ozone and Hydroxyl Radical Reactions. Environmental Science and Technology.1994, 28(7):1234.
    118 R.M John. Development of Mutagenic Compounds Form During Chlorination Humic Acid. Mutation Research. 1985,120(10):111-115
    119 T.A Bellar.The Occurrence of Oraganhalids in Chlorination Drinking Water. J.Am.Water work Assoc.1974,66(12):703
    120徐海宇.饮水中三卤甲烷形成机理预处理技术现状.上海环境科学. 1999,18 (12):568-570
    121 J.C Kruith, A.J Veer, J.P Hoek. Ozonation and Biological Activated Carbon in Dutch Drinking Water Treatment. Regional Conference on Ozone. Netherland.1996:85-101
    122张朝晖,吕锡武,吴今明.反冲洗方式对生物活性炭滤池生物量的影响.城市饮用水安全保障技术研讨会论文集. 2004: 316-320
    123孙昕,张金松.生物活性炭滤池的反冲洗方式研究.中国给水排水. 2002,18(2):14-17
    124乔铁军,张晓健,于鑫.反冲洗对饮用水生物活性滤池生物量的影响.给水排水. 2002, 28(12):16-20
    125 E. Orlandini, J.C Kruithof. Impact of Ozonation on Disinfection and Formation of Biodegradable Organic Matter and Bromate. Journal Water SRT-Aqua. 1997,46(1):20-30
    126 C.J Volk, M.W LeChevallier. Assessing Biodegradable Organic Matter. Journal AWWA. 2000,94(5):64-76
    127 N.Merlet, Y.Merlet. Removal of Organic Matter in BAC Filters: the Linkbetween BDOC and Chlorine Demand. Proceedings of AWWA Water Quality Technology Conference. U.S. 2001,(11):10-14
    128 W.G Li, W.F Zhu, B.N Lv, et al. Biodegradation of the Oil Hydrocarbons in Wastewater with Immobilized Microbiological Activated Carbon. Tsinghua Science and Technology.2004,9(6):731-736
    129马放,时双喜,杨基先等.固定化生物活性炭的形成及功能研究.哈尔滨建筑大学学报. 2000,33(1):46-50
    130 A. Sakoda, J.Z Wang. Microbial Activity in Biological Activated Carbon Bed by Pulse Responses. Water Science and Technology. 1996,34(5):213-222
    131 Cowman, G.A Singer. Effect of Bromide Ion on Haloacetic Acid Speciation Resulting from Chlorination and Chloramination of Aquatic Humic Substances. Environmental Science and Technology.1996,16(8) :16-30
    132 M. Mercedes, Ion Dranca. Effect of Adsorbate Polarity on Thermodesorption Profiles from Oxidized and Metal-impregnated Activated Carbons. Carbon. 2004, 42(12):2655-2659
    133 Lin C.Ka, T.Y Tsai. Enhanced Biodegradation of Petrochemical Wastewater Using Ozonation and BAC Advanced Treatment System. Water Research. 2001,35(3):699-704
    134 V. Camel, A. Bermond. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Water Research. 1998, 32(11):3208-3222
    135王邦厚,刘启祥,杨行广.一起山村腹泻水型爆发的流行病学调查分析.职业与健康. 2003, l9(l2):63-64
    136许英路,张秀霞,刘丹彤.一起水源污染引起急性细菌性肠炎爆发的调查报告.中国公共卫生管理. 2004,20(3):243-244
    137 H. Sekiguchi, M. Watanabe, T. Nakahara, et al. Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis. Applied and Environment Microbiol. 2002, 68:5142-5150.
    138张云霞,邢国平.生物活性炭滤池预处理微污染水源的研究.天津城市建设学院学报. 2003,9(1): 23-27
    139 D. Cook, G. Newcombe, P. Sztajnbok. The Application of Powdered Activated Carbon for Mib and Geosmin Removal: Predicting PAC Doses inFour Raw Waters. Water Research. 2001, 35(5):1325-1333
    140 J. Sketchell, G.H Peterson, N. Christofi. Disinfection By-product Formation after Biologically Assisted GAC Treatment of Water Supplies with Different Bromide and DOC Content. Water Research. 1995,29 (12):2635-2642
    141 G. Capar,ü.Yetis. Removal of THM Precursors by GAC: Ankara Case Study. Water Research. 2002,36:1379-1384
    142 N. Gerard. Stelma Jr, Dennis J. Lye, Bennett G. Smith, et al. Rare Occurrence of Heterotrophic Bacteria with Pathogenic Potential in Potable Water. International Journal of Food Microbiology. 2004,92:249-254
    143 M.M Kuypers, A.O Sliekers, G. Lavik, et al.Anaerobic Ammonium Oxidation by Anammox Bacteria in the Black Sea. Nature. 2003 , 422 (6932):608-611
    144 J. Bartram, J. Cotruvo, M. Exner, et al. Heterotrophic Plate Count Measurement in Drinking Water Safety Management. International journal of food microbiology. 2004,92: 241-247
    145翁元声.活性炭再生及新技术研究.给水排水. 2004,30(1):86-91
    146田晴,陈季华. BAC生物活性炭法及其在水处理中的应用.环境工程. 2006, 24(1):84-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700