用户名: 密码: 验证码:
军用突发OFDM系统的符号同步和信道估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着军事通信中高速数据传输业务的发展,正交频分复用(OFDM)技术作为一种频谱利用率高、能有效对抗多径衰落信道的调制技术将在军事通信领域发挥重要作用。在军事通信中,OFDM和跳频(FH)的结合,以及OFDM在猝发通信中的应用,可使系统具有抗干扰的能力,但同时也对符号同步和信道估计提出了更高的要求。以上两种系统均属于特殊的突发通信模式,这里统称为军用突发OFDM系统。论文从实用的角度出发,注重提高算法的鲁棒性和高效性,对军用突发OFDM系统的符号同步和信道估计算法进行研究。论文的主要工作有以下4个方面:
     1、分析了基于对称相关的定时度量的统计分布,为符号同步算法的改进和性能分析提供了理论依据。
     通过分析指出,具有共轭对称结构的前导经过多径信道时,在第1条路径的能量较小的情况下利用定时度量的峰值作为同步估计的依据时会产生定时偏移,从而引起符号间干扰(ISI)和载波间干扰(ICI)。因此,基于共轭对称前导的符号同步算法不适宜采用对称相关定时度量的峰值作为符号同步估计的依据。
     2、针对具有重复共轭对称结构的前导,综合利用基于延迟相关的定时度量和基于对称相关的定时度量设计出一种新的符号同步算法,并进一步利用前导的重复特性构造延迟相乘,设计出一种低计算复杂度的符号同步算法。
     将基于前导延迟相关特性的定时度量作为搜索窗开关度量,在该度量超过一定门限的范围内对基于对称相关的定时度量进行峰值搜索,并在此基础上向前一定范围通过设置门限搜索出功率可能不是最强的第1条路径。其中,门限是在理论分析的基础上进行设置的,不需要借助实验仿真来确定,也避免了需要对计算出的定时度量值进行统计的办法得到,因此既提高了时域中符号同步估计的性能,又有利于快速建立起较为精确的符号同步。进一步地,综合利用延迟相关定时度量、对称相关定时度量和延迟相乘设计符号同步方法,可以在减小计算量的同时仍保持良好的符号同步估计性能,有利于符号同步估计的快速实现。
     3、对于伪噪声(PN)序列加权的前导,分析了现有定时度量的统计分布,结合基于前导循环前缀(CP)的延迟相关定时度量和基于PN序列相关特性的定时度量设计出一种自适应符号同步算法,并进一步提出了一种新的PN序列加权前导结构。
     基于CP的延迟相关定时度量可抑制噪声和数据符号对符号同步估计的影响,且自适应的符号同步方案增强了基于PN序列加权前导的符号同步算法对时变信道的鲁棒性。所提出的新前导具有部分重复结构,且仅有部分采样具有PN序列加权因子。因此,基于新前导的符号同步算法既增强了对ISI的抵抗力,同时可以构建出具有类似冲激形状的定时度量,进一步提高了基于PN序列加权前导的符号同步估计性能。
     4、对基于离散傅里叶变换(DFT)的信道估计算法进行改进,增强了算法对信道路径延迟分布的鲁棒性。
     对于利用补零DFT/IDFT实现信道插值的方法,分析指出传统的时域插值方法和变换域插值方法是等效的,并从重构信道冲激响应(CIR)采样序列这一新的角度出发提出一种对信道路径延迟分布具有较强鲁棒性的补零新方法。对于补零前的数据处理,分析指出采用滤波方法时应进行非对称滤波,并提出一种简单的滤波器截止频率设置方法;当采用在时域抽取较大能量信道抽头的方法时,提出可以采取新的固定检测区间。所提出的新补零方法和两种补零前的数据处理方法均减小了非整数采样间隔信道条件下路径能量泄露的影响,提高了信道估计的性能。
With development of high speed data transmission in military communications, orthogonal frequency division multiplexing (OFDM) will play an important role dut to its high spectral efficiency and robustness to multipath fading channel. In military communications, systems appling OFDM to RF carrier frequency hopping (FH) and OFDM systems in burst mode can be used to achive anti-jamming capacity. These two kinds of systems are collectively called military-burst OFDM systems, which raise high requirement for symbol synchronization and channel estimation. From the utility point, we focus on symbol synchronization and channel estimation for military-burst OFDM system in this dissertation, laying emphasis on the robustness and efficiency of estimation algorithms. The main contributions of the dissertation are shown as follows.
     1. The statistic property of timing metric based on symmetric correlation is analyzed, which provides theory basis for algorithm improvement and performance analysis.
     Analysis shows that backward motion of timing position occures when the peak of timing metric is used to detect the desired timing position in multipath channel, where the first path has a small gain. The backward motion results in intersymbol interference and interchannel interference. Therefore, the peak of timing metric is not suitable for the synchronization method based on conjugated-symmetric preamble.
     2. For the preamble with repeated-conjugated-symmetric structure, a new symbol synchronization method using both delayed correlation and symmetric correlation is proposed. Moreover, a novel low-complexity symbol synchronization method is designed by utilizing the delayed product additionaly.
     A searching-window metric using delayed correlation is defined to serach the peak of the timing metric based on symmetric correlation. Then the first path which may not be the strongest one is being detecting with a fixed threshold. The fixed threshold is set by theoretical analysis, which needs neither computer simulation nor derivation from the computed timing metric. Therefore, the proposed symbol synchronization has accurate synchronization performance and fast synchronization procedure. Furthermore, a method using delayed correlation, symmetric correlation and delayed product is presented to reduce the computation complexity and maintain good synchronization performance simultaneously, which contributes to a fast synchronization.
     3. For the preamble weighted by pseudo noise (PN) sequence, statistic distribution of the conventional timing metric is analyzed, and an adaptive symbol synchronization method using delayed correlation based on cyclic prefix (CP) and correlation property of PN sequence is proposed. Moreover, a new preamble structure is designed.
     The timing metric based on delayed correlation can suppress interference caused by noise and data symbols, and the adaptive synchronization scheme can enhance the robustness to time-variant multipath channel. The proposed preamble has partial repetition structure, and only half samples were weighted by PN sequence. The novel structure is used to enhance the resistance to ISI, and construct an impulse-shaped timing metric. Therefore, the proposed preamble improves the synchronization performance.
     4. Channel estimation methods based on discrete Fourier transform (DFT) are improved to enchance the robustness to path delay of multipath channel.
     Two conventional methods based on zero-padding DFT/IDFT for channel interpolation, time domain method and transform domain method, are testified to be equivalent. Then a new zero-padding method is proposed to decrease the reconstruction error for channel impulse response samples. For data processing before zero-padding, analysis shows that asymmetric filter rather than conventional filter in the transform domain should be adopted, and then a simple method to set cutoff frequency is proposed. Moreover, to decrease the influence of energy leakage caused by non-sample-spaced path, noise power estimation in frequency domain based on preamble is used to set threshold for detecting the channel tap with large energy in the time domain, and a fixed detecting region is adopted. Simulation results show that the above methods can improve the channel estimation performance.
引文
[1] ETSI ETS 300 744, Digital video broadcasting(DVB):framing structure,channel coding and modulation for digital terrestrial television [S].
    [2] IEEE Std 802.11a-1999, Part 11: Wireless LAN medium access control (MAC) and Physical layer (PHY) specifications: High-speed physical layer in the 5 GHz band [S].
    [3] IEEE Std 802.11g-2003, Wireless LAN medium access control (MAC) and Physical layer (PHY) specifications, Amendment 4: Further higher data rate extension in the 2.4 GHz band [S]
    [4] ETSI TS 101 475, Broadband radio access networks (BRAN); HIPERLAN type 2; Physical (PHY) layer [S].
    [5] IEEE Std 802.16a-2003, Air interface for fixed broadband wireless access systems-amendment 2: medium access control modifications and additional physical layer specifications for 2-11 GHz [S].
    [6] IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks Part l6:Air interface for fixed broadband wireless access systems [S].
    [7] IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor1-2005, Air interface for fixed broadband wireless access systems-amendment 2: physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1 [S].
    [8]国际电信联盟.国际电联为下一代4G移动技术铺平道路. http: //www.itu.int/net/pressoffice/press_releases/2010/pdf/40-zh.pdf, 2010-10-21.
    [9]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术[M].西安:西安电子科技大学出版社. 2004:232-239.
    [10] Kleider J E, Maalouli G, Gifford S, et al. Preamble and embedded synchronization for RF carrier frequency-hopped OFDM [J]. IEEE Transactions on Selected Areas in Communications, 2005, 23(5): 920-931.
    [11]赵丹.跳频OFDM系统关键技术研究[D].长沙:国防科技大学, 2008.
    [12]张冬辰,周吉,吴巍,等.军事通信:信息化战争的神经系统[M].北京:国防工业出版社, 2008:512-520.
    [13]周俊,李赞,金力军.基于OFDM的流星余迹通信系统[J].重庆邮电学院学报, 2005, 17(2): 160-164.
    [14] Speth M, Fechtel S A, Fock Gunnar, et al. Optimum receiver design for wireless broad-band systems using OFDM-Part I [J]. IEEE Transactions on Communications, 1999, 47(11): 1668-1677.
    [15] Proakis J G. Digital Communications [M].北京:电子工业出版社, 2009.
    [16] ETSI ETS 300 401, Digital audio broadcasting (DAB) to mobile, portable and fixed receiver [S].
    [17] van de Beek J J, Sandell M, Borjesson P O. ML estimation of time and frequency offset in OFDM systems [J]. IEEE Transactions on Signal Processing, 1997, 45(7): 1800-1805.
    [18] Speth M, Classen F, Meyr H. Frame synchronization of OFDM systems in frequency selective fading channels [C]//IEEE Vehicular Technology Conference, 1997: 1807-1811.
    [19] Hsieh M H, Wei C H. A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels [J]. IEEE Transactions on Vehicular Technology, 1999, 48(5): 1596-1609.
    [20] Lee D, Cheun K. Coarse symbol synchronization algorithms for OFDM Systems in multipath channels [J]. IEEE Communications Letters, 2002, 6(10): 446-448.
    [21] Yang Baoguo, Letaief K B, Cheng R S, Cao Zhigang. Timing recovery for OFDM transmission [J]. IEEE Journal on Selected Areas in Communications, 2000, 18(11): 2278-2291.
    [22] Mo Ronghong, Chew Y H, Tjhung T T, et al. A joint blind timing and frequency offset estimator for OFDM systems over frequency selective fading channels [J]. IEEE Transactions on Wireless Communications, 2006, 5(9): 2604-2614.
    [23] Liu Derzheng, Wei Cheho, Chang Chungju. An extension of guard-interval based symbol and frequency synchronization technique for wireless OFDM transmission [C]//IEEE Vehicular Technology Conference, 2001: 2324-2328.
    [24]艾渤,葛建华,赵妍妮.多径衰落下符号定时恢复算法的改进[J].电子与信息学报, 2004, 26(2): 266-271.
    [25] Ramasubramanian K, Baum K. An OFDM timing recovery scheme with inherent delay-spread estimation [C]//Global Telecommunications Conference, 2001: 3111-3115.
    [26] Wang Yong, Ge Jianhua, Ai Bo. A new symbol timing synchronization method for wireless OFDM systems [C]//TENCON 2006, 2006: 1-6.
    [27] Mo Ronghong, Chew Y H, Tjhung T T, et al. A new blind joint timing and frequency offset estimator for OFDM systems over multipath fading channels [J]. IEEE Tranxactions on Vehicular Technology, 2008, 57(5): 2947-2957.
    [28] Chen N, Tanaka M, Heaton R. OFDM timing synchronisation under multi-path channels [C]//The 57th IEEE Vehicular Technology Conference, 2003:378-382.
    [29] Yu Hewei. A novel timing estimation method based on symmetrical & conjugate prefix in OFDM system [C]//International Conference on Wireless Communications, Networking and Mobile Computing, 2006:1-4.
    [30] Nguyen H H, Salt J E, Zhou Zhiyi. Coarse timing recovery in burst mode OFDM [C]//The 57th IEEE Vehicular Technology Conference, 2003:646-650.
    [31]孙健.突发OFDM系统的同步技术研究[D].浙江:浙江大学, 2005:40-46.
    [32] Al-Dweik A J. A novel non-data-aided symbol timing recovery technique for OFDM systems [J]. IEEE Transactions on Communications, 2006, 54(1): 37-40.
    [33] Zhu Qingyu, Liu Zhiqiang. Minimum interference blind time-offset estimation for OFDM systems [J]. IEEE Transactions on Wireless Communications, 2006, 5(8): 2136-2142.
    [34] Chin Wenlong, Chen Saugee. A blind synchronizer for OFDM systems based on SINR maximization in multipath fading channels [J]. IEEE Transactions on Vehicular Technology, 2009, 58(2):625-635.
    [35] Schmidl T M, Cox D C. Robust Frequency and timing synchronization for OFDM [J]. IEEE Transactions on Communications, 1997, 45(12):1613-1621.
    [36] Mizoguchi M, Onizawa T, Kumagai T, et al. A fast burst synchronization scheme for OFDM [C]//International Conference on Universal Personal Communications, 1998:125-129.
    [37] Czylwik A. Synchronization for systems with antenna diversity [C]//IEEE Vehicular Technology Conference, 1999: 728-732.
    [38] Minn H, Zeng M, Bhargava V K. On timing offset estimation for OFDM systems [J]. IEEE Communications Letters, 2000, 4(7):242-244.
    [39] Kishore C N, Reddy V U. A new method of frame synchronization and frequency offset estimation in OFDM system [C]// International Conference on Signal Processing & Communications, 2004: 70-75.
    [40]黄慧,程鹏,张朝阳,等.一种OFDM定时同步与载波频偏估计算法[J].电路与系统学报, 2009, 14(2): 62-67.
    [41] Kim T, Cho N, Cho J, et al. A fast burst synchronization for OFDM based wireless asynchronous transfer mode systems [C]//Global Telecommunications Conference, 1999: 543-548.
    [42] Minn H, Bhargava V K, Letaief K B. A robust timing and frequency synchronization for OFDM systems [J]. IEEE Transactions on Wireless Communnications, 2003, 2(4): 822-839.
    [43]崔小准,陈豪,胡光锐.一种新的突发OFDM传输系统定时和载波频率捕获联合算法[J].计算机学报, 2004, 27(12): 1712-1718.
    [44]伊良芳,陈建民.突发OFDM系统中的快速符号定时同步[J].无线电工程, 2006, 36(11): 28-30.
    [45] Hazy L, El-Tanany M. Synchronization of OFDM systems over frequency selective fading channels [C]//IEEE 47th Vehicular Technology Conference 1997:2094-2098.
    [46] Tufvesson F, Edfors O, Faulkner M. Time and frequency synchronization for OFDM using PN-sequence preambles [C]//IEEE Vehicular Technology Conference, 1999: 2203-2207.
    [47]严春林.正交频分复用系统中的同步技术研究[D].成都:电子科技大学, 2004: 39-52.
    [48] Ai Bo, Ge Jianhua, Wang Yong. Symbol synchronization technique in COFDM systems [J]. IEEE Transactions on Broadcasting, 2004, 50(1): 56-62.
    [49] Kobayashi H. A novel symbol frame and carrier frequency synchronization for burst mode OFDM signal [C]//IEEE Vehicular Technology Conference, 2000: 1392-1396.
    [50] Ai Si, Leung Shuhung, Leung Chising. A novel synchronization scheme for OFDM over fading channels [C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2006: 401-404.
    [51] Jiang Jianguo, Liang Hongwei, Kan Lingling. Study on OFDM synchronization by using PN sequence [C]//IET International Conference on Wireless, Mobile and Multimedia Networks, 2006: 1-4.
    [52] Awoseyila A B, Kasparis C, Evans B G. Robust time-domain timing and frequency synchronization for OFDM systems [J]. IEEE Transactions on Consumer Electronics, 2009, 55(2):391-399.
    [53]周一青,胡爱群.利用训练帧进行OFDM系统同步的新算法[J].通信学报, 2001, 22(4):13-18.
    [54] Park B, Cheon H, Kang C, Hong D. A novel timing estimation method for OFDM systems [J]. IEEE Communications Letters, 2003, 7(5):239-241.
    [55] Kim J J, Noh J H, Chang K H. Robust timing & frequency synchronization techniques for OFDM-FDMA systems [C]//IEEE Workshop on Signal Processing Systems Design and Implementation, 2005: 716-719.
    [56] Guo Yi, Liu Gang, Ge Jianhua. A new time and frequency synchronization scheme for OFDM systems [J]. IEEE Transactions on Consumer Electronics, 2008, 54(2):321-325.
    [57] Wu Meng, Zhu Weiping. A preamble-aided symbol and frequency synchronization scheme for OFDM systems [C]//IEEE International Symposium on Circuit and Systems, 2005:2627-2630.
    [58]孙文胜,张园园.基于IEEE 802.11a突发OFDM系统的帧同步与符号定时同步算法研究[J].计算机工程与科学, 2009, 31(7): 120-122.
    [59] Manusani S K, Kshetrimayum R S, Bhattacharjee R. Robust time and frequency synchronization in OFDM based 802.11a WLAN systems [C]//2006 Annual IEEE India Conference, 2006:1-4.
    [60] Zhou En, Hou Xiaolin, Zhang Zhan, et al. A preamble structure andsynchronization method based on central-symmetric sequence for OFDM systems [C]//IEEE Vehicular Technology Conference, 2008:1478-1482.
    [61] Yang Baoguo, Letaief K B, Cheng R S, Cao Zhigang. Burst frame synchronization for OFDM transmission in multipath fading links [C]//IEEE Vehicular Technology Conference, 1999: 300-304.
    [62] Palin A, Rinne J. Symbol synchronization in OFDM system for time selective channel conditions [C]//1999:1581-1584.
    [63]吕峻,赵民建,陈文正.突发OFDM信号定时同步估计算法的改进和实现[J].电路与系统学报, 2007, 12(6):42-45.
    [64] Zhou Hao, Huang Y F. A maximum likelihood fine timing estimation for wireless OFDM systems [J]. IEEE Transactions on Broadcasting, 2009, 55(1): 31-41.
    [65] Kim D K, Do S H, Cho H B, et al. A new joint algorithm of symbol timing recovery and sampling clock adjustment for OFDM systems [J]. IEEE Transactions on Consumer Electronics, 1998, 44(3): 1142-1149.
    [66] Kim J J, Ryu Y J, Oh H S, et al. Frame selection algorithm with adaptive FFT input for OFDM systems [C]//IEEE International Conference on Communications, 2002:187-191.
    [67] Granado J, Torralba A, Baena-Lecuyer V, et al. A new method for simultaneous fine time synchronization and frequency offset estimation in OFDM with simple hardware [C]//GLOBECOM, 2003: 2370-2374.
    [68]艾渤,葛建华,赵妍妮.基于导频的频域符号细同步[J].系统仿真学报, 2003, 15(12): 1791-1795.
    [69] Wang Chinliang, Chiang Minghsuan, Wang Hungchin. A new synchronization scheme for OFDM systems [C]//IEEE 59th Vehicular Technology Conference, 2004:1100-1104.
    [70] Landstrom D, Wilson S K, van de Beek J J, et al. Symbol time offset estimation in coherent OFDM systems [J]. IEEE Trancactions on Communications, 2002, 50(4): 545-549.
    [71]罗仁泽,敬龙江,成先涛,等.叠加弱能量PN序列DVB-T帧同步算法[J].电子学报, 2005, 33(7): 1311-1313.
    [72]罗仁泽,王汝言,朱维乐.高速移动DVB-T系统帧同步算法[J].电子学报, 2006, 34(5): 928-929.
    [73] Nandula S, Giridhar K. Robust timing synchronization for OFDM based wireless LAN system [C]//TENCON, 2003: 1558-1561.
    [74] Zhou Liang, Saito M. A new symbol timing synchronization for OFDM based WLANs [C]//15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2004: 1210-1214.
    [75] van de Beek J J, Edfors O, Sandell M, et al. On channel estimation in OFDM systems [C]//IEEE Vehicular Technology Conference, 1995: 815-819.
    [76] Edfors O, Sandell M, van de Beek J J, et al. OFDM channel estimation by singular value decomposition [J]. IEEE Transactions on Communications, 1998, 46(7): 931-939.
    [77]徐以涛,王呈贵. OFDM系统基于自适应定阶的MMSE信道估计[J].电子与信息学报, 2007, 29(1): 117-120.
    [78] Ma Jie, Yu Hua, Liu Shouyin. The MMSE channel estimation based on DFT for OFDM system [C]//5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009: 1-4.
    [79]陈洪.移动通信中的MC-CDMA关键技术研究[D].长沙:国防科技大学, 2007: 84-90.
    [80] Kang Y, Kim K, Park H. Efficient DFT-based channel estimation for OFDM systems on multipath channels [J]. IET Communications, 2007, 1(2): 197-202.
    [81] An C H, Jang S H, Lee J K, et al. DFT-based channel estimation using CIR adaptation in OFDM systems [C]//The 9th International Conference on Advanced Communication Technology, 2007: 23-26.
    [82] Lee Y S, Shin H C, Kim H N. Channel estimation based on a time-domain threshold for OFDM systems [J]. IEEE Transactions on Broadcasting, 2009, 55(3): 656-662.
    [83] Zhao Yuping,Huang Aiping. A novel channel estimation method for OFDM mobile communication systems based on pilot signals and transform-domain processing [C]//IEEE Vehicular Technology Conference, 1997: 2089-2093.
    [84] Song Tiecheng, You Xiaohu, Shen Lianfeng, et al. Adaptive channel estimation based on pilot signals and transform-domain processing in SISO/MIMO OFDM systems [J]. Journal of Southeast University, 2005, 21(3): 249-253.
    [85]刘解华,杨东凯,常青,等.航空移动通信中OFDM信道估计方法的研究[J].航空学报, 2007, 28(12): 380-384.
    [86] Yang Baoguo, Letaief K B, Cheng R S, et al. Windowed DFT based pilot-symbol-aided channel estimation for OFDM systems in multipath fading channels [C]//IEEE Vehicular Technology Conference, 2000:1480-1484.
    [87] Yang Baoguo, Cao Zhigang, Letaief K B. Analysis of low-complexity windowed DFT-based MMSE channel estimator for OFDM system [J]. IEEE Transactions on Communications, 2001, 49(11): 1977-1987.
    [88] Wang Y, Li L, Zhang P, et al. Channel estimation for OFDM systems in non-sample-spaced multipath channels [J]. Electronics Letters, 2009, 45(1): 66-68.
    [89] Belotserkovsky M. An equalizer initialization algorithm for IEEE802.11a andHIPERLAN/2 receivers [J]. IEEE Transactions on Consumer Electronics, 2002, 48(4): 1051-1055.
    [90] Zheng Kan, Su Jian, Wang Wenbo. DFT-based channel estimation in comb-type pilot-aided OFDM systems with virtual carriers [C]//IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007: 1-5.
    [91] Seo J W, Wee J W, Park Y S, et al. DFT-based PSA channel estimation using linear prediction for OFDM systems with virtual carriers [C]//IEEE 61st Vehicular Technology Conference, 2005: 510-513.
    [92] Seo J W, Wee J W, Jeon W G, et al. An enhanced DFT-based channel estimation using virtual interpolation with guard bands prediction for OFDM [C]//IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, 2006: 1-5.
    [93] Li Dong, Guo Feng, Li Guosong, et al. Enhanced DFT interpolation-based channel estimation for OFDM systems with virtual subcarriers [C]//IEEE Vehicular Technology Conference, 2006: 1580-1584.
    [94] Hou Xiaolin, Zhang Zhan, Kayama H. Low-complexity enhanced DFT-based channel estimation for OFDM systems with virtual subcarriers [C]//IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007: 1-5.
    [95] Kwak K, Lee S, Kim J, et al. A new DFT-based channel estimation approach for OFDM with virtual subcarriers by leakage estimation [J]. IEEE Transcations on Wireless Communications, 2008, 7(6): 2004-2008.
    [96] Zhang Liang, Hong Zhihong, Thibault L. Improved DFT-based channel estimation for OFDM systems with null subcarriers [C]//IEEE 70th Vehicular Technology Conference, 2009:1-5.
    [97] Hsu H H, Chen C W, Chuang G C. Windowed DFT-based OFDM channel estimation by adding virtual channel frequency [C]//5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009: 1-5.
    [98] Shi Feng, Hu Dengpeng, Zhang Eryang. A low-complexity channel estimation method for IEEE802.11a and HIPERLAN/2 WLANs [C]//2nd International Conference on Communication Software and Networks, 2010: 276-279.
    [99] Hoeher P, Kaiser S, Roberston P. Tow-dimensional pilot-symbol-aided channel estimation by wiener filtering [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997: 1845-1848.
    [100] Sanzi F, Speidel J. An adaptive two-dimensional channel estimator for wireless OFDM with application to mobile DVB-T [J] IEEE Transcations on Broadcsting, 2000, 46(2): 128-133.
    [101] Jia Lei, Cao Dazhong, Hou Chunping. Two novel transform domain estimation methods for OFDM system and their application environment [C]//CanadianConference on Electrical and Computer Engineering, 2004:0377-0380.
    [102]侯春萍,宋胜辉,贾蕾,等。OFDM系统中两种变换域信道估计模型及其应用环境[J].天津大学学报, 2004, 37(2): 105-110.
    [103] Coleri S, Ergen M, Puri A, Bahai A. Channel estimation techniques based on pilot arrangement in OFDM systems [J]. IEEE Transactions on Broadcasting, 2002, 48(3): 223-229.
    [104] Hsieh M H, Wei C H. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels [J]. IEEE Transactions on Consumer Electronics, 1998, 44(1): 217-225.
    [105]王勇,葛建华,艾渤. COFDM系统在非理想定时同步条件下的信道估计[J],电子与信息学报, 2005, 27(2): 239-242.
    [106] Garcia M, Borallo J, Zazo S. DFT-based channel estimation in 2D-pilot-symbol-aided OFDM wireless systems [C]//IEEE Vehicular Technology Conference, 2001: 810-814.
    [107] Wong C W, Law C L, Guan Y L. Channel Estimator for OFDM Systems with 2-Dimensional Filtering in the Transform Domain [C]//IEEE Vehicular Technology Conference, 2001: 717-721.
    [108]王勇,葛建华,陆震,等. OFDM系统信道估计算法及其FPGA实现[J].电路与系统学报, 2004, 9(6): 139-142.
    [109]刘志,江舟,沈泊,等.一种适用于DVB-T/H系统的自适应信道估计算法[J].计算机工程与应用, 2006 :117-119.
    [110] Hou Xiaolin, Zhang Zhan, Kayama H. Doubly-selective channel estimation for packet OFDM systems with virtual subcarriers [C]//IEEE 68th Vehicular Technology Conference, 2008:1-6.
    [111] Yeh C S, Lin Y. Channel estimation using pilot tones in OFDM systems [J]. IEEE Transactions on Broadcasting, 1999, 45(4): 400-409.
    [112]杨知行,王军,潘长勇.地面数字电视广播的信道估计算法[J].电子学报,2002, 30(9): 1298-1301.
    [113] Wang X, Wu Y, Chouinard J Y, et al. A channel characterization technique using frequency domain pilot time domain correlation method for DVB-T systems [J]. IEEE Transactions on Consumer Electronics, 2003, 49(4): 949-957.
    [114] Fukuhara T, Yuan Hao, Takeuchi Y, et al. A novel channel estimation method for OFDM transmission technique under fast time-vatiant fading channel [C]//IEEE 57th Semiannual Vehicular Technology Conference, 2003:2343-2347.
    [115] Minn H, Bhargava V K. An investigation into time-domain approach for OFDM channel estimation [J]. IEEE Transactions on Broadcasting, 2000, 46(4): 240-248.
    [116] Muquet B, de Courville M, Duhame P, et al. A sub-space based blind and semi-blind channel identification method for OFDM systems [C]//2nd IEEE Workshop on Signal Processing Advance in Wireless Communications, 1999:170-173.
    [117] Li Chenyang, Roy S. Subspace based blind channel estimation for OFDM by exploiting virtual carrier [C]//IEEE Global Telecommunications Conference, 2001: 295-299.
    [118] Roy S, Li Chengyang. A subspace blind channel estimation method for OFDM systems withod cyclic prefix [J]. IEEE Transcations on Wireless Communications, 2002, 1(4): 572-579.
    [119] Li Chenyang, Roy S. Subspace-based blind channel estimation for OFDM by exploiting virtual carrier [J]. IEEE Transcations on Wireless Communications, 2003, 2(1): 141-150.
    [120] Heath R W, Giannakis G B. Exploiting input cyclostationarity for blind channel identification in OFDM system [J]. IEEE Transcations on Signal Processing, 1999, 47(3): 848-856.
    [121] Zhou Shengli, Giannakis G B. Finite-alphabet based channel estimation for OFDM and related muticarrier systems [J]. IEEE Transcations on Communications, 2001, 49(8): 1402-114.
    [122] Mignone V, Morello A. CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers [J]. IEEE Transactions on Communication, 1996, 44(9): 1144-1l51.
    [123] Chini A, Wu Yiyan, El-Tanay M, et al. Filtered decision feedback channel estimation for OFDM based DTV terrestrial broadcasting system [J]. IEEE Transactions on Broadcasting, 1998, 44(1): 2-11.
    [124] Liu H, Yu Y, Hung C, et a1. Combining adaptive smoothing and Decision-Directed channel estimation schemes for OFDM WLAN systems [C]//The 2003 International Symposium on Circuits and Systems, 2003:149-152.
    [125] Rim M. Optimally combining decision-directed and pilot-symbol-aided channel estimators [J]. IEE Electronics Letters, 2003, 39(6): 558-560.
    [126]韩冰,王建明,高西奇,等. OFDM系统的迭代联合信道估计与符号检测算法[J].通信学报, 2003, 24(8):56-64.
    [127]张彭,毕光国,曹秀英.基于预测的OFDM系统迭代联合信道估计与符号检测算法[J].电子与信息学报, 2005, 27(9):1437-1440.
    [128]陈晖,陈晓光.基于直接判决和导频跟踪的OFDM系统快时变信道估计[J].通信学报,2006, 27(9):1-5.
    [129] Rappaport T S. Wireless communications: principles and practice [M]. Beijing:Publishing House of Electronics Industry, 2004.
    [130] GSM 05.05, Digital cellular telecommunications system (Phase 2+); Radio transmission and reception [S].
    [131] Guillermo A M. Measurement, modeling, and OFDM synchronization for the wideband mobile-to-mobile channel [D]. Atlanta: Georgia Institude of Technology, 2007: 5-45.
    [132]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社.
    [133] Speth M, Fechtel S A, Fock Gunnar, et al. Optimum receiver design for wireless broad-band systems using OFDM-Part I [J]. IEEE Transactions on Communications, 1999, 47(11): 1668-1677.
    [134] Qiu Xin, Zhang Hao, Qi Zhongrui, et al. A robust timing synchronization scheme for OFDM systems in IEEE 802.16d [C]//International Conference on Communication Technology, 2006: 1-4.
    [135]田野,谈振辉,冯永新,等.基于共轭对称结构训练符号的OFDM同步算法性能分析[J].小型微型计算机系统, 2009, 30(6): 1240-1243.
    [136] Wu Yuan, Shi Zhiguo, Chen Kangsheng. Robust time synchronization scheme combating frequency offset for IEEE 802.16a OFDM systems [C]//IEEE International Conference on Communications, Circuits and Systms Proceedings, 2006:1068-1072.
    [137] Ren Guangliang, Chang Yilin, Zhang Hui, et al. Synchronization method based on a new constant envelope preamble for OFDM systems [J]. IEEE Transactions on Broadcasting, 2005, 51(1):139-143.
    [138] Yang Yang, Huang Qing, Zhang Zaichen. An efficient joint timing and frequency offset estimation for OFDM systems [C]//IEEE Vehicular Technology Conference, 2009: 1-5.
    [139]杨德保.工科概率统计[M].北京:北京理工大学出版社, 2007: 201-207.
    [140] Kim J, Kwon D S, Nam S, et al. Channel estimation based on comb-type pilot structure in OFDM system with null subcarriers [C]//IEEE 66th Vehicular Technology Conference, 2007: 1092-1096.
    [141] Oppenheim A V, Schafer R W.离散时间信号处理[M].西安:西安交通大学出版社, 2001.
    [142] Zivkovic M, Mathar R. Preamble-based SNR estimation in frequency selective channels for wireless OFDM systems [C]//IEEE 69th Vehicular Technology Conference, 2009: 1-5.
    [143]胡广书.数字信号处理[M].北京:清华大学出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700