用户名: 密码: 验证码:
图像建模中立体匹配问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机性能的不断提高和计算机技术的不断发展,真实场景的三维模型越来越多地出现在各种计算机软件中,成为计算机软件表现现实世界的一种重要手段。相对于传统的三维模型构造手段,图像建模技术以其成本低廉、操作简单、具有高度真实感的建模方法等优点,逐渐成为计算机图形学和计算机视觉领域的研究热点。立体匹配是计算机视觉和图像建模研究中最基本的关键问题之一,该技术通过像点的视差来获取深度或距离,可以为三维重建、机器人导航等提供有用的信息。在实际应用中,因为变形、扭曲、遮挡等情况的影响,立体匹配是一个较难解决的问题。本文对图像建模中的立体匹配相关理论及一些方法进行了研究,提出了改进算法,并做了实验进行验证。
     论文的主要研究成果包括以下几点:
     在现实世界中,很多场景会包含有大块的纹理单一区域,增强纹理单一区域的立体匹配能力有利于提高立体匹配算法的性能。针对目前主流方法对图像中纹理单一区域匹配效果不佳的问题,提出了区域整体匹配的解决方案。该方案首先将图像分割成纹理单一区域和纹理丰富区域,然后将整个纹理单一区域作为匹配基元以得到纹理单一区域的稠密视差图。相对于点基元,区域基元包含的信息更多,且在图像中不易重复出现,因此可以有效减少因缺少纹理信息引起的误匹配。
     根据区域整体匹配的解决方案,提出了基本算法。该算法利用灰度共生矩阵描述图像的纹理特征,并通过灰度共生矩阵的对比度、熵和相关性特征来分割和匹配纹理单一区域。在求解纹理单一区域的视差值时,提出关键点的概念,有效解决了由于图像间纹理的细微差别使得匹配的纹理单一区域的大小形状不同所带来的问题。通过对国际标准图像上测试的实验,验证了算法的有效性。
     区域整体匹配的关键步骤是纹理单一区域的分割和匹配。针对纹理单一区域的特点,提出利用Laws纹理模板对图像纹理特征进行分析描述,然后进行基于直方图的分割,得到纹理单一区域。对于各种场景图像,通过分析比较各种Laws纹理模板组合,能够得到最好的分割效果。相对于灰度共生矩阵描述和分割纹理单一区域的方法,该方法能提高纹理单一区域的识别率和分割阈值选取的鲁棒性,这有助于提高基于区域整体匹配的基本算法的匹配精度和实用价值。
     光照强度发生变化会对基于灰度共生矩阵的纹理描述方法产生影响,这不利于纹理单一区域的分割和匹配。针对此问题,提出基于LBP/C纹理分析的立体匹配算法。该算法利用LBP/C算子不受光照变化的优点,提出通过判断局部对比度LC的值是否在0值附近,来确定像素点是否位于纹理单一区域中,并通过LBP的值来匹配纹理单一区域。相关实验验证了该算法能够有效地分割和匹配纹理单一区域。
     尺度变化会给物体的外观带来了较大变化,这将影响基于纹理特征的立体匹配算法的正确率。为了消除立体像对之间尺度变化所带来的影响,提出基于分形的多尺度图像区域立体匹配算法。该算法通过基于双毯的局部分形维数对像素点的局部纹理特征进行描述,进而统计图像区域内像素点的局部分形维数的分布特征,以此来描述图像区域的纹理特征。实验结果表明,相对于基于灰度共生矩阵的图像区域立体匹配算法,基于分形的多尺度图像区域立体匹配算法很好地匹配了尺度存在差异的图像区域,能够改进基于区域整体匹配的基本算法的性能。
     最后对论文进行了总结,并给出了论文的不足和今后研究工作的方向。
With the development of computer performance and computer technology, more and more realistic 3-D models appear in all kinds of software and become an important way to represent the real world. Compared with traditional methods to construct the 3-D model, Image-based modeling (IBM) has the advantages of low cost, simple operation and realistic feeling; it turns into a hot spot of researches in computer graphic and computer vision gradually. Stereo matching, which obtains the depth or distance from the pixels’disparity and provides useful information for 3-D reconstruction, robot navigation, and so on, is one of the fundamental problems of computer vision and image-based modeling. However, stereo matching is a difficult problem under the influence of deformations, distortions and occlusions. This dissertation studies relevant theory and approaches of stereo matching and proposes some improved algorithms and experiments.
     The main research results of this dissertation are summarized as follows:
     There are many less-textured areas in the real world, so improving the ability of matching less-textured area can enhance the performance of stereo matching algorithm. To get better disparity result of the less-textured area of image, this dissertation proposes an area-based stereo matching strategy. First, the image is divided into several less-textured or well-textured areas. Then, the disparity of less-textured area is obtained through the matching based on regions. Compared with pixel, a region contains more information and appears less repeatedly, so it could reduce the probability of matching errors.
     On the basis of the area-based stereo matching strategy, this dissertation proposes a basic algorithm. It describes the image texture with gray level co-occurrence matrix (GLCM) and segments and matches the less-textured area by the contrast, entropy and correlation features obtained from the GLCM. This dissertation also introduces the concept of key point into the calculation of the less-textured area’s disparity. It solves the problem aroused by the difference of the size and the shape of the matched less-textured areas because of the tiny distinction in the images’texture. The experiment on the international standard image data shows that the proposed algorithm is effective.
     Segmentation and matching of the less-textured area are the critical steps in the area-based stereo matching strategy. According to the characters of less-textured area, this dissertation provides a novel approach for the segmentation of less-textured area. It describes the texture with Laws’masks and gets the less-textured area by histogram-based segmentation. The best result is obtained for various scene images by comparing various combinations of Laws’masks. Experimental results on the international standard image data show that the novel algorithm has better recognition rate of less-textured area and better robustness of choosing the dividing threshold than the previous method which describes and segments the less-textured area with GLCM. This new algorithm is helpful to increase the accuracy and usability of region-based stereo matching algorithm.
     The changing of brightness in image can influence the texture description based on GLCM, which is bad for the segmentation and matching of the less-textured area. To solve the problem, this dissertation presents a method based on LBP/C to search the less-textured area. LBP/C has resistance to the changing of brightness. So the novel method distinguish the less-textured pixel by the local contrast which is near by 0 firstly, and match the less-textured area by the distribution of LBP. Experiments show that the novel method can segment and match the less-textured area effectively.
     The appearance of objects will change dramatically in various scales, which decreases the accuracy of stereo matching algorithm. To reduce the influence, this dissertation proposes a fractal based multi-scale stereo matching algorithm. First, it describes the feature of the local texture with local fractal dimension based on double blanket, and then gets the feature of the image area by the distribution of local fractal dimension. The experiment results show that fractal based multi-scale stereo matching algorithm leads to better result on matching image area with various scale than GLCM based stereo matching algorithm. The novel algorithm can improve the performance of the area based stereo matching algorithm.
     Finally, the dissertation is concluded. Some problems as well as further work are also given.
引文
[1]何喜玲,王俊.虚拟现实技术及其在农业中的应用[J].中国农机化, 2004, (1): 22-4.
    [2] QUAN L, TAN P, ZENG G, et al. Image-based Plant Modeling [J]. ACM Transactions on Graphics, 2006, 25(3): 599-604.
    [3] FENG H, SONG-CHUN Z. Bayesian reconstruction of 3D shapes and scenes from a single image; proceedings of the 1st IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, F, 2003 [C].
    [4] SHLYAKHTER I, ROZENOER M, DORSEY J, et al. Reconstructing 3D tree models from instrumented photographs [J]. IEEE Computer Graphics and Applications, 2001, 21(3): 53-61.
    [5] RECHE A, MARTIN I, DRETTAKIS G. Volumetric reconstruction and interactive rendering of trees from photographs [J]. ACM Transactions on Graphics, 2004, 23(3): 720-7.
    [6] BESL P J. Optical Imaging Sensors [J]. Machine Vision and Applications, 1988, 1: 127-52.
    [7] WOHLERS T. 3-D digitizers [J]. Computer Graphics World, 1992, 73-7.
    [8] BLAKE A, MCCOWEN D, LO H R, et al. Trinocular active range-sensing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5): 477-83.
    [9] LHUILLIER M, QUAN L. A Quasi-Dense Approach to Surface Reconstruction from Uncalibrated Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 418-33.
    [10]杨瑞元,邱建雄.基于图像的建模和绘制技术综述[J].计算机辅助设计与图形学学报, 2002, 14(2): 185-8.
    [11] PRUSINKIEWICZ P, JAMES M, MECH R. Synthetic Topiary; proceedings of the SIGGRAPH 94, Orlando, Florida, F, 1994 [C].
    [12] WEBER J, PENN J. Creation and Rendering of Realistic Trees; proceedings of the SIGGRAPH 95, F, 1995 [C].
    [13] DE REFFYE P, EDELIN C, FRANCON J, et al. Plant models faithful to botanical structure and development; proceedings of the SIGGRAPH 88, F, 1988 [C].
    [14] PRUSINKIEWICZ P, MUENDERMANN L, KARWOWSKI R, et al. The Use of Positional Information in the Modeling of Plants; proceedings of the SIGGRAPH 2001, Los Angeles, California, F, 2001 [C].
    [15] HAEVRE W V, BEKAERT P. A Simple but Effective Algorithm to Model the Competition of Virtual Plants for Light and Space; proceedings of the International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG' 03), F, 2003 [C].
    [16] NOSER H, RUDOLPH S, STUCKI P. Physics-enhanced L-systems; proceedings of the 9th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, F, 2001 [C].
    [17] SAKAGUCHI T, OHYA J. Modeling and animation of botanical trees for interactive virtual environments; proceedings of the ACM symposium on Virtual reality software and technology, London, United Kingdom, F, 1999 [C]. ACM Press.
    [18]刘彦宏,王洪斌,杜威, et al.基于图像的树类物体的三维重建[J].计算机学报, 2002, 25(9): 930-5.
    [19]刘钢,彭群生,鲍虎军.基于图像建模技术研究综述与展望[J].计算机辅助设计与图形学学报, 2005, 17(1): 18-27.
    [20] HORN B K P. Height and Gradient from Shading [J]. International Journal of Computer Vision, 1990, 5(1): 37-75.
    [21] SUPER B J, BOVIK A C. Shape from texture using local spectral moments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(4): 333-43.
    [22] NAYAR S K, NAKAGAWA Y. Shape from focus [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8): 824-31.
    [23] CAPRILE B, TORRE V. Using vanishing points for camera calibration [J]. International Journal of Computer Vision, 1990, 4(2): 127-40.
    [24] CIPOLLA R, DRUMMOND T, ROBERTSON D. Camera calibration from vanishing points in images of architectural scenes; proceedings of the British Machine Vision Conference, Nottingham, England, F, 1999 [C].
    [25] YOUICHI H, ANJYO K-I, ARAI K. Tour into the picture: using a spidery mesh interface to make animation from a single image; proceedings of the annual conference on Computer graphics and interactive techniques, Los Angeles, California, F, 1997 [C].
    [26] CRIMINISI A, REID I, ZISSERMAN A. Single view metrology [J]. International Journal of Computer Vision, 2000, 40(2): 123-48.
    [27]李成军,马志刚,汪国平, et al.交互的极线几何建模方法[J].计算机辅助设计与图形学学报, 2002, 14(9): 845-7.
    [28] SHUM H-Y, HAN M, SZELISKI R. Interactive construction of 3D models from panoramic mosaics; proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, F 1998-6-23, 1998 [C].
    [29] DEBEVEC P E, TAYLOR C J, MALIK J. Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-Based Approach; proceedings of the SIGGRAPH 96, New Orleans, Louisiana, F 1996-8, 1996 [C]. ACM SIGGRAPH.
    [30] LAURENTINI A. The visual hull concept for silhouette-based image understanding [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(2): 150-62.
    [31] MARTIN W N, AGGARWAL J K. Volumetric descriptions of objects from multiple views [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, 5(2): 150-8.
    [32] CHIEN C H, AGGARWAL J K. Identification of 3D objects from multiple silhouettes using quadtrees/octrees [J]. Computer Vision, Graphics, and Image Processing, 1986, 36(2-3): 256-73.
    [33] MATUSIK W, BUEHLER C, RASKAR R, et al. Image-Based Visual Hulls; proceedings of the 27th annual conference on Computer graphics and interactive techniques, F, 2000 [C].
    [34] MATUSIK W, BUEHLER C, MCMILLAN L. Polyhedral visual hulls for real-time rendering; proceedings of the 12th Eurographics Workshop on Rendering, Vienna, F, 2001 [C].
    [35] MATUSIK W, PFISTER H, NGAN A, et al. Image-Based 3D Photography using Opacity Hulls; proceedings of the 29th annual conference on Computer graphics and interactive techniques, San Antonio, Texas, F, 2002 [C].
    [36] MOEZZI S, KATKERE A, KURAMURA D Y, et al. Reality modeling and visualization from multiple video sequences [J]. IEEE Computer Graphics and Applications, 1996, 16(6): 58-63.
    [37] DHOND U R, AGGARWAL J K. Structure from stereo-a review [J]. IEEE Transactions on Systems, Man and Cybernetics, 1989, 19(6): 1489-510.
    [38]梅丽,鲍虎军,郑文庭, et al.基于实拍图像的人脸真实感重建[J].计算机学报, 2000, 23(9): 996-1002.
    [39] M.Z.BROWN, D.BURSCHKA. Advances in computational stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008.
    [40]周秀芝,文贡坚,王润生.自适应窗口快速立体匹配[J].计算机学报, 2006, 29(3): 473-9.
    [41] BARNARD S T. Stochastic stereo matching over scale [J]. International Journal of Computer Vision, 1989, 3(1): 17-32.
    [42] BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-39.
    [43] KOLMOGOROV V, ZABIH R. What energy functions can be minimized via graph cuts; proceedings of the European Conference on Computer Vision, F, 2002 [C].
    [44]彭启民,贾云得.一种基于最小割的稠密视差图恢复算法[J].软件学报, 2005, 16(6): 1090-5.
    [45] DI STEFANO L, MARCHIONNI M, MATTOCCIA S. A fast area-based stereo matching algorithm [J]. Image and Vision Computing, 2004, 22(12): 983-1005.
    [46] CYGANEK B, BORGOSZ J. Maximum disparity threshold estimation for stereo imaging systems via variogram analysis; proceedings of the Computational Science, F, 2003 [C].
    [47] ALVAREZ L, DERICHE R, SANCHEZ J, et al. Dense disparity map estimation respecting image discontinuities: A PDE and scale-space based approach [J]. Journal of Visual Communication and Image Representation, 2002, 13(1-2): 3-21.
    [48]宋毅,崔平远,居鹤华.一种图像匹配中SSD和NCC算法的改进[J].计算机工程与应用, 2006, 2(2): 42-4.
    [49] VEKSLER O. Fast variable window for stereo correspondence using integral images; proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, F, 2003 [C].
    [50] HARIYAMA M, TAKEUCHI T, KAMEYAMA M. VLSI processor for reliable stereo matching based on adaptive window-size selection; proceedings of the IEEE International Conference on Robotics and Automation, F, 2001 [C].
    [51] KONOLIGE K. Small vision systems: hardware and implementation; proceedings of the 8th International Robotics Research Symposium, F, 1998 [C].
    [52] CORKE P, DUNN P. Real-time stereopsis using FPGAs; proceedings of the IEEE Region 10 Annual Conference TENCON '97, Brisbane, Australia, F, 1997 [C].
    [53]陈华华,杜歆,顾伟康.基于区域匹配的实时加速技术[J].传感技术学报, 2006, 19(1): 170-4.
    [54] SCHMID C, ZISSERMAN A. The geometry and matching of lines and curves over multiple views [J]. International Journal of Computer Vision, 2000, 40(3): 199-233.
    [55]舒志龙,阮秋琦.快速对称多窗口正交三目立体匹配[J].计算机研究与发展, 2001, 38(10): 231-5.
    [56] VENKATESWAR V, CHELLAPPA R. Hierarchical Stereo and Motion Correspondence Using Feature Groupings [J]. International Journal of Computer Vision, 1995, 15(3): 245-69.
    [57] GONG M G, YANG Y H. Genetic-based stereo algorithm and disparity map evaluation [J]. International Journal of Computer Vision, 2002, 47(1-3): 63-77.
    [58] KANADE T, OKUTOMI M. A Stereo Matching Algorithm with an Adaptive Window - Theory and Experiment [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(9): 920-32.
    [59] HIRSCHMULLER H. Improvements in real-time correlation-based stereo vision; proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision, F, 2001 [C].
    [60] FORSYTH D A, PONCE J.计算机视觉:一种现代方法[M].北京:电子工业出版社, 2004.
    [61] HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision [M]. United Kingdom: University Press, Cambridge, 2003.
    [62] HARTLEY R I. Theory and practice of projective rectification [J]. International Journal of Computer Vision, 1999, 35(2): 1-16.
    [63] LOOP C, ZHANG Z. Computing Rectifying Homographies for Stereo Vision; proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 1999 [C].
    [64] ROJAS A, CALVO A, MUNOZ J. A dense disparity map of stereo images [J]. Pattern Recognition Letters, 1997, 18(4): 385-93.
    [65] OKUTOMI M, KANADE T. A Multiple-Base-Line Stereo [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(4): 353-63.
    [66] KISWORO M, VENKATESH S, WEST G. Modeling Edges at Subpixel Accuracy Using the Local Energy Approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(4): 405-10.
    [67] YIP R K K, HO W P. A multi-level dynamic programming method for stereo line matching [J]. Pattern Recognition Letters, 1998, 19(9): 839-55.
    [68] YIP R K K. A multi-level dynamic programming method for line segment matching in axial motion stereo [J]. Pattern Recognition, 1998, 31(11): 1653-68.
    [69] MING-SHENG W, JIN-JANG L. A bipartite matching approach to feature correspondence in stereo vision [J]. Pattern Recognition Letters, 1995, 16(1): 23-31.
    [70] CYGANEK B, BORGOSZ J. A comparative study of performance and implementation of some area-based stereo algorithms; proceedings of the 9th International Conference on Computer Analysis of Images and Patterns, F, 2001 [C].
    [71]李德广,李科杰.一种快速立体视觉边缘匹配算法[J].计算机应用, 2005, 25(4): 763-5.
    [72]陈君,戚飞虎.一种新的基于特征点的立体匹配算法[J].中国图象图形学报, 2005, 10(11): 1411-4.
    [73] BIRCHFIELD S, TOMASI C. Depth discontinuities by pixel-to-pixel stereo [J]. International Journal of Computer Vision, 1999, 35(3): 269-93.
    [74] SUN C M. Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques [J]. International Journal of Computer Vision, 2002, 47(1-3): 99-117.
    [75] KOLMOGOROV V, ZABIH R. Computing visual correspondence with occlusions using graph cuts; proceedings of the 8th IEEE International Conference on Computer Vision, F, 2001 [C].
    [76] ZHOU J, XU Y, YU W R. Phase matching with multiresolution wavelet transform; proceedings of the Three-Dimensional Image Capture and Applications V, F, 2002 [C].
    [77] MARR D, POGGIO T. Cooperative Computation of Stereo Disparity [J]. Science, 1976, 194: 283-7.
    [78] SZELISKI R, GOLLAND P. Stereo Matching with Transparency and Matting [J]. International Journal of Computer Vision, 1999, 32(1): 45-61.
    [79] LUO Q M, ZHOU J L, YU S S, et al. Stereo matching and occlusion detection with integrity and illusion sensitivity [J]. Pattern Recognition Letters, 2003, 24(9-10): 1143-9.
    [80] SCHARSTEIN D, SZELISKI R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms [J]. International Journal of Computer Vision, 2002, 47(1-3): 7-42.
    [81] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-21.
    [82]贾永红.计算机图像处理与分析[M].武汉:武汉大学出版社, 2001.
    [83] HAWKINS J K. Texture Properties for pattern Recognition [M]//LIPKIN B S, ROSENFELD A. Picture Processing and Psychopictorics. New York; Academic press. 1980.
    [84] VAN GOOL L, DEWAELE P, OOSTERLINCK A. Texture analysis Anno 1983 [J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 336-57.
    [85] CHEN C H, PAU L F, WANG P S P. Texture Analysis [M]. The Handbook of Pattern Recognition and Computer Vision (2nd Edition). World Scientific Publishing Co. 1998: 207-48.
    [86] TRIVEDI M M, HARLOW C A, CONNERS R W, et al. Object detection based on gray level cooccurrence [J]. Computer Vision, Graphics, and Image Processing, 1984, 28(2): 199-219.
    [87] LAWS K I. Textured Image Segmentation [D]; University of Southern California, 1980.
    [88] TAMURA H, MORI S, YAMAWAKI T. Textural Features Corresponding to Visual Perception [J]. IEEE Transactions on Systems, Man and Cybernetics, 1978, 8(6): 460-73.
    [89] FLICKNER M, SAWHNEY H, NIBLACK W, et al. Query by image and video content: the QBIC system [J]. Computer, 1995, 28(9): 23-32.
    [90] PENTLAND A, PICARD R W, SCLAROFF S. Photobook: Content-based manipulation of image databases [J]. International Journal of Computer Vision, 1996, 18(3): 233-54.
    [91] BESAG J. Spatial interaction and the statistical analysis of lattice systems [J]. Journal of the Royal Statistical Society, Series B, 1974, 36(2): 192-236.
    [92] PENTLAND A P. Fractal-Based Description of Natural Scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 661-74.
    [93] RANDEN T, HUSOEY J H. Multichannel filtering for image texture segmentation [J].Optical Engineering, 1994, 33(8): 2617-25.
    [94] JAIN A K, FARROKHNIA F. Unsupervised texture segmentation using Gabor filters [J]. Pattern Recognition, 1991, 24(12): 1167-86.
    [95] DUNN D, HIGGINS W E, WAKELEY J. Texture segmentation using 2-D Gabor elementary functions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(2): 130-49.
    [96] LAINE A, FAN J. Texture classification by wavelet packet signatures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1186-91.
    [97] KIM S D, UDPA S. Texture classification using rotated wavelet filters [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, 2000, 30(6): 847-52.
    [98] ARIVAZHAGAN S, GANESAN L. Texture classification using wavelet transform [J]. Pattern Recognition Letters, 2003, 24(9-10): 1513-21.
    [99] AZENCOTT R, WANG J P, YOUNES L. Texture Classification Using Windowed Fourier Filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 148-53.
    [100] CLAUSI D A, JERNIGAN M E. Designing Gabor filters for optimal texture separability [J]. Pattern Recognition, 2000, 33(11): 1835-49.
    [101] RANDEN T, HUSOY J H. Filtering for texture classification: a comparative study [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 291-310.
    [102] MOJSILOVIC A, POPOVIC M V, RACKOV D M, et al. On the selection of an optimal wavelet basis for texture characterization [J]. IEEE Transactions on Image Processing, 2000, 9(12): 2043-50.
    [103] LIU X, WANG D L. Texture classification using spectral histograms [J]. IEEE Transactions on Image Processing, 2003, 12(6): 661-70.
    [104] MAENPAA T. The local binary pattern approach to texture analysis–extensions and applications [D]. Oulu, Finland; University of Oulu, 2003.
    [105] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-87.
    [106] OJALA T, PIETIKAINEN M, HARWOOD D. A Comparative Study of Texture Measures with Classification Based On Feature Distributions [J]. Pattern Recognition, 1996, 29(1): 51-9.
    [107] OJALA T, PIETIKAINEN M. Unsupervised texture segmentation using feature distributions [J]. Pattern Recognition, 1999, 32(2): 477-86.
    [108] WITKIN A. Scale-space filtering: A new approach to multi-scale description; proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, F, 1984 [C].
    [109] BAUMBERG A. Reliable feature matching across widely separated views; proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2000 [C].
    [110] LINDEBERG T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2): 79-116.
    [111] MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points; proceedings of the 8th IEEE International Conference on Computer Vision, F, 2001 [C].
    [112] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    [113] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-30.
    [114]王润生.图像理解[M].长沙:国防科技大学出版社, 1995.
    [115] DEGUY S, DEBAIN C, BENASSI A. Classification of texture images using multi-scale statistical estimators of fractal parameters; proceedings of the 11th British Machine Vision Conference, F, 2000 [C].
    [116] YONG X, HUI J, FERMULLER C. A Projective Invariant for Textures; proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, F, 2006 [C].
    [117] CHAUDHURI B B, SARKAR N. Texture segmentation using fractal dimension [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(1): 72-7.
    [118] YONG X, DAGAN F, RONGCHUN Z. Morphology-based multifractal estimation for texture segmentation [J]. IEEE Transactions on Image Processing, 2006, 15(3): 614-23.
    [119] KAPLAN L M, KUO C C J. Texture roughness analysis and synthesis via extended self-similar (ESS) model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(11): 1043-56.
    [120] MANDELBROT B B. The Fractal Geometry of Nature [M]. New York: W.H. Freeman, 1983.
    [121]法尔科内.分形几何数学基础及其应用(第2版) [M].人民邮电出版社, 2007.
    [122] MANDELBROT B B. How long is the coast of Britain? [J]. Science, 1967, 156: 636-8.
    [123] WOHLBERG B, DE JAGER G. A review of the fractal image coding literature [J]. IEEE Transactions on Image Processing, 1999, 8(12): 1716-29.
    [124] BELLOULATA K, KONRAD J. Fractal image compression with region-based functionality [J]. IEEE Transactions on Image Processing, 2002, 11(4): 351-62.
    [125] DODD N. Multispectral Texture Synthesis Using Fractal Concepts [J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 1987, 9(5): 703-7.
    [126] MARC A S, LANE R G, NGUYEN D T. Practical synthesis of accurate fractal images [J]. Graph Models Image Process, 1995, 57(3): 206-19.
    [127] DU G, YEO T S. A novel multifractal estimation method and its application to remote image segmentation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(4): 980-2.
    [128] KASPARIS T, CHARALAMPIDIS D, GEORGIOPOULOS M, et al. Segmentation of textured images based on fractals and image filtering [J]. Pattern Recognition, 2001, 34(10): 1963-73.
    [129] RICHARD F V. Fractals in nature: from characterization to simulation [M]. The Science of Fractal Images. Springer-Verlag New York, Inc. 1988: 21-70.
    [130] LIU Y X, LI Y D. Image feature extraction and segmentation using fractal dimension; proceedings of the International Conference on Information, Communications and Signal Processing, F, 1997 [C].
    [131] PELEG S, NAOR J, HARTLEY R, et al. Multiple Resolution Texture Analysis and Classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(4): 518-23.
    [132] NOVIANTO S, SUZUKI Y, MAEDA J. Near optimum estimation of local fractal dimension for image segmentation [J]. Pattern Recognition Letters, 2003, 24(1-3): 365-74.
    [133] GAGNEPAIN J J, ROQUESCARMES C. Fractal Approach to Two-Dimensional and 3-Dimensional Surface-Roughness [J]. Wear, 1986, 109(1-4): 119-26.
    [134] SARKAR N, CHAUDHURI B B. An efficient approach to estimate fractal dimension of textural images [J]. Pattern Recognition, 1992, 25(9): 1035-41.
    [135] SARKAR N, CHAUDHURI B B. An efficient differential box-counting approach to compute fractal dimension of image [J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(1): 115-20.
    [136] JIN X C, ONG S H, JAYASOORIAH. A practical method for estimating fractal dimension [J]. Pattern Recognition Letters, 1995, 16(5): 457-64.
    [137] BISOI A K, MISHRA J. On calculation of fractal dimension of images [J]. Pattern Recognition Letters, 2001, 22(6-7): 631-7.
    [138] SUPER B J, BOVIK A C. Localized measurement of image fractal dimension using Gabor filters [J]. Journal of Visual Communication and Image Representation, 1991, 2(2): 114-28.
    [139] WORNELL G W, OPPENHEIM A V. Estimation of Fractal Signals from Noisy Measurements Using Wavelets [J]. IEEE Transactions on Signal Processing, 1992, 40(3): 611-23.
    [140] VOSS R F. Characterization and Measurement of Random Fractals [J]. Physica Scripta, 1986, T13: 27-32.
    [141] KELLER J M, CHEN S, CROWNOVER R M. Texture Description and Segmentation through Fractal Geometry [J]. Computer Vision Graphics and Image Processing, 1989, 45(2): 150-66.
    [142] CHEN S S, KELLER J M, CROWNOVER R M. On the calculation of fractal features from images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1087-90.
    [143] LAZEBNIK S, SCHMID C, PONCE J. A sparse texture representation using local affine regions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1265-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700