用户名: 密码: 验证码:
基于高阶统计量的齿轮传动系统故障特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以齿轮传动系统故障振动信号为研究对象,在分析振动机理、故障模式基础上,从高斯性、非高斯性角度划分振动信号的各种成分,然后利用振动信号的双谱幅值提取到非高斯性强度、双谱熵这两类故障特征,最后讨论了新高阶统计量特征的优化与实用问题,主要研究成果如下:
     (1)通过研究齿轮传动系统主要零部件的失效模式、振动机理、故障表现,将振动信号划分为与故障部件有关的非高斯确定性成分、与故障部件无关的非高斯确定性成分、高斯随机成分、对称非高斯随机成分、非对称非高斯随机成分。当齿轮或轴承发生故障时,其振动信号中的确定性成分、随机成分会产生明显变化,于是信号的非高斯性也随之改变,尤其是因故障而增强的边带成分,它会导致信号的非高斯性、二次非线性增强,信号的双谱分析结果对此十分敏感。另外,双谱能抑制掉振动信号中的高斯随机成分、对称非高斯随机成分,保留非对称非高斯随机成分信息,这有利于降低噪声、非故障随机振动的干扰。
     (2)当齿轮传动系统发生故障时,振动信号的非高斯成分在双频域内的分布强度与形态均随之改变。基于双谱幅值信息,分别提取到量化描述振动信号非高斯成分强弱变化的非高斯性强度特征值,以及量化描述振动信号非高斯成分在双频域内分布形态变化的双谱熵特征值。按照双频域内的不同定义区间,共提取到六种特征值,分别是基于主定义域区间的NGIPD、HB-PD,基于任意二维区间part的NGIpart、HB-part,和基于多分区的NGIregion(k)、HB-region(k)。这些新的高阶统计量特征既保留了双谱分析的优点,而且弥补了双谱幅值切片等常规高阶统计量特征值的不足。不同定义区间的非高斯性强度、双谱熵特征值各有特点:NGIPD与HB-PD分别包含了双谱幅值的全部强度、分布形态信息,不含双谱对称冗余信息;当二维定义域区间part内包含有较丰富故障信息时,NGIpart与HB-part表征故障的能力较好,但需要人为观察并设定合适的双频域二维区间;振动信号的故障信息在双频域内分布不均,特征值NGIregion(k)、HB-region(k)在某些分区内故障特征提取效果较好,某些分区效果较差,这正体现了双频域分区特征值对双谱内容、故障信息具有较强的“聚焦能力"。
     (3)针对非高斯性强度、双谱熵特征值存在的不足,进行了特征压缩与信号滤波这两类故障特征优化。双谱分区特征值会产生高维特征空间,给实际应用造成麻烦,利用主分量分析、核函数主分量分析从线性及非线性角度进行特征压缩,可将绝大部分故障信息浓缩于低维主分量空间或低维核主分量空间,尤其在利用Fisher准则进行特征优选预处理后,新的主分量、核主分量特征值具有较高的故障区分能力。由于齿轮啮合频率及其谐波成分通常能量较强,且易受非故障因素影响,于是采用Gabor滤波与信号重构,在时频域空间精准滤除振动信号的啮合频率及其谐波成分,结果表明,重构信号的非高斯性强度特征对齿轮故障敏感程度提高,有利于后续故障诊断。另外,为研究新特征值在齿轮传动系统状态监测与故障报警中的使用方法与效果,以原始振动信号的HB-PD、Gabor滤波重构信号的NGIPD为例进行故障特征趋势分析,并根据“3σ准则”设定故障阈值,不论报警时间还是诊断准确率,都取得理想效果,为工程实际应用提供了新思路与新方法。
This thesis took the fault vibration signals of gear transmission systems as the study objects. On the basis of analyzing the vibration mechanism and the failure modes, vibration signals were divided into various components from the perspective of Gaussian characteristic and non-Gaussian characteristic. Extracted-non-Gaussian intensity features and bispectral entropy features from bispectral amplitudes of vibration signals. Finally discussed the issues of feature optimization and practicality of new higher order statistics characteristics. The main achievements and results of this thesis are as follows:
     (1) By studying the failure modes, the vibration mechanism and the fault performance of gear transmission systems, vibration signals could be devided into several components such as the non-Gaussian deterministic components with the relevent of fault parts, the non-Gaussian deterministic components with the irrelevant of fault parts, the Gaussian random components, the symmetrical non-Gaussian random components and the asymmetric non-Gaussian random components. When gear or bearing is fault, the deterministic components and the random components of vibration signals would significantly change, and the non-Gaussian characteristic of the signals also changed. Especially the sideband component which was enhanced due to the fault, would cause the enhancement of non-Gaussian characteristic and quadratic nonlinear characteristic. The bispectral analysis results of the signals were very sensitive to this phenomenon. In addition, bispectrum can suppress the Gaussian random components and the symmetric non-Gaussian random components of vibration signals, meanwhile retain the information of asymmetric non-Gaussian random components. This was conducive to reducing the interference of noise components and non-faul random vibration components.
     (2) When a gear transmission system goes out of order, the distribution intensity and morphology of non-Gaussian components of vibration signals will change in bifrequency domain along with the fault. Based on bispectral amplitude information, the non-Gaussian intensity feature and the bispectral entropy feature can be extracted. Non-Gaussian intensity was the quantitative description of intensity change for the non-Gaussian components of vibration signals, while bispectral entropy was the quantitative description of distribution morphology change in bifrquency domain for the non-Gaussian components of vibration signals. According to the different bifrequency definition domains,6types of features were extracted. The features were NGIPD and HB-PD which were based on the principal domain, NGIpart and HB-part which were based on a arbitrary two-dimensional interval called'part', NGIregion(k) and which were based on multi-partition. These new higher order statistics characteristics not only retained the advantages of bispectral analysis, but also made up for the lack of conventional higher order characteristics such as bispectral slices. Different non-Gaussian intensity and bispectral entropy features had their own characteristics. NGIPD and HB-PD respectively contained whole intensity information and whole distribution morphology information of bispectral amplitudes, excluded bispectral symmetry redundant information at the same time. If the two-dimensional interval'part'contained much abundant fault information, the abilities of characterizing failures of NGIpart and HN-part were better, but it required human observation and a appropriate two-dimensional interval setting in bifrequency domain. As a uneven distribution of vibration signals'fault information in bifrequency domain, the fault features extraction of NGIregion(k) and HB-region(k) were better in some regions, and worse in other regions, which reflected that features based on bifrequency patition had strong abilities to focusing on bispectral contents and fault information.
     (3) In order to remedying the shortcomings of non-Gaussian intensity and bispectral entropy features, made two types of characteristics optimization which were feature compression and signal filtering.. The bispectral partition features had high dimensional feature spaces, and caused trouble in the actual application. Made feature compression by principal component analysis and kernel principal component analysis from the linear or the non-linear perspective, and it can concentrate most of the fault information into low dimensional principal component space or low dimensional kernel principal component space. Especially after the features prioritization pretreatment according to the Fisher criterion, the new principal component features and the new kernel principal component features had higher fault distinguishing abilities. The gear meshing frequency and its harmonic components usually had high energy and be vulnerable to non-fault factors. So utilized Gabor filter and signal reconstruction to accurately exclude the meshing frequency and its harmonic components of vibration signals in time-frequency domain. The results showed that the non-Gaussian intensity features of reconstructed signals were more sensitive to gear faults. This was conducive to the follow-up fault diagnosis. In order to research the usage methods and the effects of the new features applied in condition monitoring and fault alarm for gear transmission systems, took the HB-PD of original signals and the NGIPD of reconstructed signals passing Gabor filter as examples, made trend analysis of these fault features and set fault threshold values according to the'3σ criterion'. Both of the alarm time and the diagnostic accuracy obtained ideal effects. It provided new ideas and new methods for the practical application of engineering.
引文
[1]机械工程手册、电机工程手册编辑委员会.机械工程手册(第二版)——机械零部件设计卷[M].北京:机械工业出版社,1997.
    [2]李润芳,王建军.齿轮系统动力学——振动、冲击、噪声[M].北京:科学出版社,1996.
    [3]T. A. Harris, M. H. Mindel. Rolling element bearing dynamics[J]. Wear, 1973(23):311-337.
    [4]T. A. Harris, M. N. Kotzalas著,罗继伟,马伟译.滚动轴承分析(第五版)第一卷:轴承技术的基本概念[M].北京:机械工业出版社,2010.
    [5]T. A. Harris, M. N. Kotzalas著,罗继伟,马伟译.滚动轴承分析(第五版)第二卷:轴承技术的高等概念[M].北京:机械工业出版社,2010.
    [6]韩振南.齿轮传动系统的故障诊断方法的研究[D].太原:太原理工大学,2003.
    [7]Yogesh Pandya, Anand Parey. Failure path based modified gear mesh stiffness for spur gear pair with tooth root crack[J]. Engineering Failure Analysis,2013, 27(1):286-296.
    [8]K. Aslantas, S. Tasgetiren. A study of spur gear pitting formation and life prediction[J]. Wear,2004,257(11):1167-1175.
    [9]G. Fajdiga, S. Glodez, J. Kramar. Pitting formation due to surface and subsurface initiated fatigue crack growth in contacting mechanical elements[J]. Wear,2007,262(9-10):1217-1224.
    [10]Choon-Su Park, Young-Chul Choi, Yang-Hann Kim. Early fault detection in automotive ball bearings using the minimum variance cepstrum[J]. Mechanical Systems and Signal Processing,2013, in press.
    [11]P. Borghesani, R. Ricci, S. Chatterton, et al. A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions[J]. Mechanical Systems and Signal Processing,2012, in press.
    [12]杨龙兴,贾民平.基于时频周期窗的旋转机械故障诊断方法[J].中国电机工程学报,2006,26(3):141-145.
    [13]G. Meltzer, Yu Ye Ivanov. Fault detection in gear drives with non-stationary rotational speed-Part Ⅰ:The time-frequency approach[J]. Mechanical Systems and Signal Processing,2003,17(5):1033-1047.
    [14]Guangming Dong, Jin Chen. Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2012,33(11):212-236.
    [15]吴亚辉,陈东海,冷军发.基于小波包与Hilbert解调谱的矿用齿轮箱故障诊断[J].机械传动,2009,33(2):61-64.
    [16]王春,刘承俊,陈祥伟.Gabor小波变换册在齿轮故障诊断中的应用[J].振动、测试诊断,2008,28(1):18-24.
    [17]张梅军,唐建,陈江海.基于连续小波灰度图的变速箱故障诊断[J].振动、测试与诊断,2007,27(1):65-67.
    [18]N. Saravanan, K. I. Ramachandran. Incipient gear box fault diagnosis using discrete wavelet transform (DWT) for feature extraction and classification using artificial neural network (ANN)[J]. Expert Systems with Applications, 2010,37(6):4168-4181.
    [19]Xinsheng Lou, Kenneth A. Loparo. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical Systems and Signal Processing, 2004,18(5):1077-1095.
    [20]Ales Belsak, Joze Flasker. Determining cracks in gears using adaptive wavelet transform approach[J]. Engineering Failure Analysis,2010,17(3):664-671.
    [21]陈忠,郑时雄.基于经验模式分解(EMD)的齿轮箱齿轮故障诊断技术研究[J].振动工程学报,2003,16(2)229-232.
    [22]于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144.
    [23]李兵,张培林,任国全,等.运用EMD和GA-SVM的齿轮故障特征提取与选择[J].振动、测试与诊断,2009,29(4):445-449.
    [24]Roberto Ricci, Paolo Pennacchi. Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions[J]. Mechanical Systems and Signal Processing,2011,25(3):821-838.
    [25]Dejie Yu, Yu Yang, Junsheng Cheng. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis[J]. Mechanical Systems and Signal Processing,2007,40(9-10):823-830.
    [26]Z. K. Peng, Peter W. Tse, F. L. Chu. A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing,2005,19(5): 974-988.
    [27]V. K. Rai, A. R. Mohanty. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing,2007,21(6):2607-2615.
    [28]辛卫东,马志勇,滕伟,何缨,柳亦兵.振动监测技术在风电机组齿轮箱故障诊断中的应用[J].中国电力,2012,45(5):77-80.
    [29]Adolf W. Lohmann, Bernhard Wirnitzer. Triple Correlations[J]Proceedings of the IEEE,1984,72(7):889-901.
    [30]W. B. Collis, P. R. White, J. K. Hammond. Higher-Order Spectra:The Bispectrum And Trispectrum[J]. Mechanical Systems and Signal Processing, 1998,12(3):375-394.
    [31]张贤达.时间序列分析——高阶统计量方法[M].北京:清华大学出版社,1996.
    [32]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002.
    [33]Daryl Hickey, Keith Worden, Michael F.Platten, et al. Higher-order spectra for identification of nonlinear modal coupling[J]. Mechanical Systems and Signal Processing,2009,23(4):1037-1061.
    [34]Chong-Yung Chi, Jung-Yuan Kung. A new identification algorithm for allpass systems by higher-order statistics[J]. Signal Processing,1995,41(2):239-256.
    [35]周德鑫.基于高阶累积量的系统盲均衡与盲辨识[D].西安:西安电子科技大学,2005.
    [36]谭洪舟.基于高阶统计理论的线性与非线性系统辨识的研究[D].广州:华南理工大学,1998.
    [37]郭业才,赵俊渭,陈华伟,等.基于高阶累积量符号相干累积自适应滤波算法[J].系统仿真学报,2002,14(10):1280-1283.
    [38]高鹰.基于累积量的自适应滤波理论及其应用[D].广州:华南理工大学,2002.
    [39]刘刚.舰船宽带噪声双谱分析与波形重构[D].西安:西北工业大学,2001.
    [40]王皓.基于高阶统计量特征参数的舰船噪声重构[D].西安:西北工业大学,2007.
    [41]蒋宏,吴立疆.基于双谱重构的图像降噪[J].北京航空航天大学学报,2005,31(3):321-325.
    [42]S. Bhattacharya, N. C. Ray, S. Sinha.2-D signal modelling and reconstruction using third-order cumulants[J]. Signal Processing,1997,62(1):61-72.
    [43]刘颖,纪晓东,王树勋.基于三阶累积量的自适应参数型多径时延估计[J].仪器仪表学报,2001,22(4):63-65.
    [44]刘颖,王树勋,王本平.基于四阶累积量的自适应参数型多径时延估计[J].系统仿真学报,2002,14(6):700-703.
    [45]李辉,郑海起,唐力伟.空间相关高斯噪声中基于四阶累积量的自适应时延估计方法[J].西北工业大学学报,2007,25(3):416-420.
    [46]廉凤慧.正弦信号谐波恢复的循环互累积量估计方法的研究[D].长春:吉林大学,2006.
    [47]张影.基于互高阶累积量的状态空间模型的谐波恢复方法的研究[D].长春:吉林大学,2004.
    [48]徐景,王树勋,王宏志,等.复杂噪声背景下的谐波恢复及非线性耦合谐波分析[J].电子学报,2003,31(1):117-122.
    [49]李玲,王宏志,王艳玲,等.平稳噪声中的谐波恢复[J].长春工业大学学报(自然科学版),2005,26(]):34-37.
    [50]姬中华,黄士涛,孟雅俊,等.谐波恢复的时间平均三阶累积量方法及其工程应用[J].振动与冲击,2006,25(1):10-13,23.
    [51]高勋章.基于高阶统计量的雷达目标高分辨成像研究[D].长沙:国防科学技术大学,2004.
    [52]王首勇,朱光喜.应用复双谱对角切片的雷达多目标特征提取[J].信号处理,2002,18(6):500-504.
    [53]Lan Du, Hongwei Liu, Zheng Bao, et al. Radar HRRP Target Recognition Based on Higher Order Spectra[J]. IEEE Transactions on Signal Processing, 2005,53(7):2359-2368.
    [54]姚文冰,姚天任,韩涛.高阶谱分析在抗噪语音编码中的应用[J].2001,29(9):60-62.
    [55]Chang-Wen Hsu, Lin-Shan Lee. Higher Order Cepstral Moment Normalization for Improved Robust Speech Recognition[J]. IEEE Transactions on Audio, Speech, And Language Processing,2009,17(2):205-220.
    [56]王通.大地电磁测深信号的高阶谱估计及应用研究[D].长沙:中南大学,2007.
    [57]高伟.基于高阶统计实现地震反射系数和子波估计[D].青岛:中国海洋大学,2008.
    [58]S. Bourennane, A. Bendjama. Higher Order Statistics for the Seismic Wave Identification[C]. International Conference on Information, Communications and Signal Processing,1997,3:1372-1376.
    [59]牛海军,万明习,王素品,等.不同种类肺音信号的双谱分析[J].仪器仪表学报,2001,22(5):486-490.
    [60]艾玲梅,黄力宇,黄远桂,等.利用双谱分析的癫痫脑电特征研究[J].西安交通大学学报,2004,38(10):1097-1100.
    [61]陈涛.基于高阶谱特征的图像分形编码[D].成都:电子科技大学,2007.
    [62]杨其俊,徐长航.双谱分析在往复泵故障诊断中的应用研究[J].振动工程学报,2001,14(4):464-468.
    [63]刘树林,唐友福,钟力,等.活塞压缩机气阀故障的高阶谱特征研究[J].流体机械,2004,32(9):29-32.
    [64]Yanbing Zhou, Yibing Liu, Keguo Yan, et al. Extraction of fault feature values for piston compressor based on bispectrum[C]. International Conference on Mechatronics and Automation,2009,2009,8:9-12.
    [65]李志农,丁启全,吴昭同,等.旋转机械典型故障的高阶谱特性分析[J].汽轮机技术,2002,44(1):42-44.
    [66]杨江天,陈家骥,曾子平.基于高阶谱的旋转机械故障征兆提取[J].振动工程学报,2001,14(1):13-18.
    [67]严可国,柳亦兵,徐鸿,等.基于双谱分析的大型汽轮机振动故障特性提取[J].中国电机工程学报,2010,30(2):98-103.
    [68]L. Bouillaut, M. Sidahmed. Cyclostationary approach and bilinear approach: comparison, applications to early diagnosis for helicopter gearbox and classification method based on HOCS[J]. Mechanical Systems And Signal Processing,2001,15(5):923-943.
    [69]王华民,陈霞,安钢,等.基于高阶累积量的齿轮箱故障诊断研究[J].机械强度,2004,26(3):247-249.
    [70]李辉,郑海起,杨绍普.齿轮箱起动过程阶次倒双谱故障诊断方法[J].北京交通大学学报,2008,32(4):1-5.
    [71]J. W. A. Fackrell, P. R. White, J. K. Hammond, et al. The Interpretation of the Bispectra of Vibration Signals-:I. Theory[J]. Mechanical Systems And Signal Processing,1995,9(3):257-266.
    [72]J. W. A. Fackrell, P. R. White, J. K. Hammond, et al. The Interpretation of the Bispectra of Vibration Signals-:Ⅱ. Experimental Results and Applications[J]. Mechanical Systems And Signal Processing,1995,9(3):267-274.
    [73]Ananthram Swamia, Georgios B. Giannakisb, Guotong Zhou. Bibliography on higher-order statistics[J]. Signal Processing,1997,60(1):65-126.
    [74]熊良才,史铁林,杨叔子.基于高阶统计量的机械故障特征提取方法研究[J].华中理工大学学报,1999,27(3):6-8.
    [75]Jason R. Stack, Ronald G. Harley, Thomas G. Habetler. An Amplitude Modulation Detector for Fault Diagnosis in Rolling Element Bearings[C]. 28th Annual Conference of the IEEE Industrial Electronics Society,2004, 51(5):1097-1102.
    [76]C. J. LI, J. MA, B. HWANG. Bearing localized defect detection by bicoherence analysis of vibrations[J]. Transactions of the ASME, Journal of Engineering for Industry,1995,117(4):625-629.
    [77]杨江天,陈家骥,曾子平.基于1(1/2)维谱的滚动轴承故障诊断[J].机械强度,1999,21(4):249-251.
    [78]孙晖,赵菁,朱善安.基于切片双谱分析的滚动轴承故障识别研究[J].浙江大学学报(工学版),2005,39(6):826-828.
    [79]刘雪霞,张琦,谭业发.高阶谱分析技术在轴承故障信号特征提取中的应用[J].机床与液压,2008,36(7):155-157.
    [80]刘宏昱,邵忍平,张延超.基于高阶累积量的齿轮裂纹故障检测与识别[J].机械科学与技术,2006,25(9):1042-1044.
    [81]邵忍平,黄欣娜,刘宏昱,等.基于高阶累积量的齿轮系统故障检测与诊断[J].机械工程学报,2008,44(6):161-168.
    [82]刘文艺,汤宝平,陈仁祥.一种基于对角切片高阶谱的故障识别方法[J].机械科学与技术,2010,29(3):281-284.
    [83]A. Murray, J. Penman. Extracting useful higher order features for condition monitoring using artificial neural networks[C]. IEEE Trans on Signal Processing,1997,45(11):2821-2828.
    [84]程军圣,于德介.基于小波系数1(1/2)维谱的滚动轴承故障诊断[J].振动与冲击,2001,20(3):29-31.
    [85]陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报,2001,14(2):125-134.
    [86]J. Pineyro, A. Klempnow, V. Lescano. Effectiveness of new spectral tools in the anomaly detection of rolling element bearings[J]. Journal of Alloys and Compounds,2000,310(1-2):276-279.
    [87]Taikang Ning, Ying-Shieh Kung, Fu-Shang Wei. Detection of distributed gear faults with a new bispectral analysis[C].22nd International Conference on Industrial Electronics, Control, and Instrumentation,1996,3:1960-1965.
    [88]B. Balachandran, K. A. Khan. Spectral Analyses Of Non-Linear Interactions[J]. Mechanical Systems And Signal Processing,1996,10(8):717-727.
    [89]M. Boltezar, J. K. Hammond. Experimental study of the vibrational behaviour of a coupled non-linear mechanical system[J]. Mechanical Systems And Signal Processing,1998,13(3):375-394.
    [90]郑海波,陈心昭,李志远.基于双谱的齿轮故障特征提取与识别[J].振动工程学报,2002,15(3):354-358.
    [91]L. Gelman, P. White, J. Hammond. Fatigue crack diagnostics:A comparison of the use of the complex bicoherence and its magnitude[J]. Mechanical Systems and Signal Processing,2005,19(4):913-918.
    [92]Lingli Jiang, Yilun Liu, Xuejun Li, et al. Using bispectral distribution as a feature for rotating machinery fault diagnosis[J]. Measurement,2011,44(7): 284-1292
    [93]B. Eugene Parker Jr, H. A. Ware, D. P. Wipf, et al. Fault Diagnostics Using Statistical Change Detection in the Bispectral Domain[J]. Mechanical Systems and Signal Processing,2000,14(4):561-570.
    [94]Zhou Yanbing, Liu yibing, Xin weidong, et al. Trend Analysis for Gear Pitting Fault Based on the Non-Gaussian Characteristic[C]. Proceedings of the 2nd International Conference on Intelligent Control and Information Processing, 2009,1144-1148.
    [95]于跃龙,卢焕章.基于时域统计变化检测实时分割头肩视频序列[J].计算机应用,2004,24(11):122-123
    [96]明英,蒋晶珏.视觉监视中基于柯西分布的统计变化检测[J].中国图象图形学报,2008,13(2):328-334.
    [97]D. M. Yang, A. F. Stronach, P. Macconnell. Third-Order Spectral Techniques for The Diagnosis of Motor Bearing Condition Using Artificial Neural Networks[J]. Mechanical Systems And Signal Processing,2002,16(2-3): 391-411.
    [98]张桂才,史铁林,轩建平,等.高阶统计量与RBF网络结合用于齿轮故障分类[J].中国机械工程,2002,10(11):1250-1252.
    [99]朱忠奎,孔凡让,王建平,等.循环双谱及其在齿轮箱故障识别中的应用研究[J].振动工程学报,2004,17(2):224-227.
    [100]Z. K. Zhu, Z. H. Feng, F. R. Kong. Cyclostationarity analysis for gearbox condition monitoring:Approaches and effectiveness[J]. Mechanical Systems and Signal Processing,2005,19(3):467-482.
    [101]Y. Zhou, J. Chen, G. M. Dong, et al. Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing,2012,26(1):229-243.
    [102]李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究[J].机械工程学报,2005,41(4):119-122.
    [103]刘卫兵,李志农,蒋静.基于局域均值分解和Wigner高阶矩谱的机械故障诊断方法的研究[J].振动与冲击,2010,29(6):170-173.
    [104]王凯,安钢,肖雨.基于经验模式分解和Wigner高阶矩谱的轴承故障诊断[J].轴承,2009,(4):47-50.
    [105]L. Gelman, I. Petrunin, J. Komoda. The new chirp-Wigner higher order spectra for transient signals with any known nonlinear frequency variation[J]. Mechanical Systems and Signal Processing,2010,24(2):567-571.
    [106]冷军发,荆双喜,禹建功.基于小波双谱的矿用齿轮箱故障诊断[J].煤炭学报,2010,35(7):1212-1214.
    [107]李军伟,韩捷,李志农,等.小波变换域双谱分析及其在滚动轴承故障诊断中的应用[J].振动与冲击,2006,25(5):92-95.
    [108]林勇,周晓军,张文斌,等.基于形态小波理论和双谱分析的滚动轴承故障诊断[J].浙江大学学报(工学版),2010,44(5):432-439.
    [109]F. Combet, L. Gelman, G. Lapayne. Novel detection of local tooth damage in gears by the wavelet bicoherence[J]. Mechanical Systems and Signal Processing,2012,26(1):218-228.
    [110]Rosa Piotrkowski, Enrique Castro, Antolino Gallego. Wavelet power, entropy and bispectrum applied to AE signals for damage identification and evaluation of corroded galvanized steel[J]. Mechanical Systems and Signal Processing,2009,23(2):432-445.
    [111]D. Kocur, R. Stanko. Order bispectrum:A new tool for reciprocated machine condition monitoring[J]. Mechanical Systems and Signal Processing,2000, 14(6):871-890.
    [112]李辉,郑海起,唐力伟.基于阶次双谱的齿轮箱升降速过程故障诊断研究[J].中国机械工程,2006,17(16):1665-1668.
    [113]韩捷,李军伟,李志农.阶比双谱及其在旋转机械故障诊断中的应用[J].机械强度,2006,28(6):791-795.
    [114]杨可桢,程光蕴,李仲生.机械设计基础(第五版)[M].北京:高等教育出版社,2006.
    [115]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [116]韩捷,张瑞林,等.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997.
    [117]张展.齿轮传动的失效及其对策[M].北京:机械工业出版社,2011.
    [118]GB/T 3481-1997,齿轮轮齿磨损和损伤术语[s].北京:中国标准出版社,1997.
    [119]GB/T 24611-2009滚动轴承—损伤和失效—术语、特征及原因[S].北京:中国标准出版社,2009.
    [120]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [121]张键.机械故障诊断技术[M].北京:机械工业出版社,2009.
    [122]梅宏斌.滚动轴承振动检测与诊断[M].北京:机械工业出版社,1996.
    [123]李虎.大型风电机组振动状态监测系统开发[D].北京:华北电力大学,2009.
    [124]周静,方剑,程玉胜.特定相位关系下谐波信号的二次相位耦合分析[J].青岛大学学报(自然科学版),2009,22(4):49-52.
    [125]刘波,文忠,曾涯.MATLAB信号处理[M].北京:电子工业出版社,2006.
    [126]许人杰.信号二次相位耦合识别在机车故障诊断中的应用研究[D].北京:北京交通大学,2012.
    [127]屈梁生,张西宁,沈玉娣.机械故障诊断理论与方法[M].西安:西安交通大学出版社,2009.
    [128]钱贺.主分量法在机械设备故障诊断方法中的应用[D].北京:华北电力大学,2006.
    [129]杨淑莹.模式识别与智能计算——Matlab技术实现[M].北京:电子工业出版社,2008.
    [130]陈小光,封举富.Gabor滤波器的快速实现[J].自动化学报,2007,33(5):456-461.
    [131]虞和济,韩庆大,李沈,等.设备故障诊断工程[M].北京:冶金工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700