用户名: 密码: 验证码:
数控机床用高性能交流伺服驱动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究数控机床进给轴用高性能伺服驱动控制技术。现代数控机床用高性能伺服系统均采用永磁同步电动机,并采用SVPWM控制方式。本文针对数控机床对伺服系统的高性能要求,深入分析了数控机床的进给机械、永磁同步电动机和基于SVPWM的逆变器的运动机理、数学模型和存在的时变、线性和非线性扰动。研究了高性能伺服驱动系统中常规系统建模假设的适用程度;重点分析了PWM引起的转矩脉动对加工质量的影响、伺服电动机控制策略中存在的Iq和Id不解耦对转矩的影响;各轴参数一致性,尤其是通过工件强耦合时各轴一致性和协调性对加工性能的影响。在此基础上,以数学模型和分析描述相结合研究了数控机床进给伺服驱动的模型。
     深入分析和研究了SVPWM逆变器的工作机理。逆变器是实现永磁同步电动机SVPWM控制的基础,而PWM是通过一定频率的载波进行脉冲宽度调制实现的。每一个正弦波都是由数个脉冲合成。这种方式必然引起谐波,尤其是在低速时会导致转矩、转速的波动,并直接影响到数控机床的加工性能。本文在深入分析载波频率对转矩的影响以及受功率器件特性的限制基础上,研究了兼顾开关特性和驱动器性能的载波频率自适应优化方法。
     深入分析了基于SVPWM控制的交流伺服电动机驱动系统。矢量控制基本的假设是转矩电流Iq和励磁电流Id解耦,而电动机本身是一个强耦合的一体化对象,并存在一些非线性因素和时变因素影响。本文在对电动机的数学模型和非线性、时变因素,以及SVPWM控制机理进行深入分析的基础上,对转矩电流Iq和励磁电流Id的耦合及其解耦方法进行了研究,并针对电动机参数时变和存在的扰动研究了相应的自适应控制策略。
     伺服系统是一种典型的控制系统,本身对包括稳定性、快速性和精度等跟随性能有较高的要求。除了上述驱动器本身的性能要求外,由于数控机床进给轴通过工件强耦合在一起,数控机床的加工过程需要各进给轴的精确配合才能完成高性能的加工任务。这就决定了在数控机床伺服驱动的速度控制器设计中除了保证系统本身具有优秀的品质外,还要保证各个轴之间的一致性和协调性。而在实际加工过程中,由于在各进给轴上惯量不同且随工件变化、所受的扰动也不尽相同,Z轴和其它两轴间的耦合时断时连,这些都给速度环的控制器设计增加了难度。本文在对控制对象模型及其所受扰动进行分析研究的基础上,研究了基于模型参考机理的速度控制器和补偿器的设计。
     在理论分析和仿真研究的基础上,为了实际验证所作理论分析与仿真研究的效果,并完成省部产学研资助项目的任务,本文设计和制作了实际的伺服驱动装置,并安装在广州诺信数控设备有限公司生产的XKHL650型立式加工中心上,为本文搭建了实际的研究平台。对每一科学问题和控制策略,均利用开发的驱动装置进行实验研究,最后在加工中心上,进行实际的加工调试和测试。本文介绍了相应的实验过程及部分实验结果。
This dissertation focus on high-performance servo drive for feeding of NC(Numerical Control) machines. PMSM and SVPWM technique are applied into almost all the modern NC machines. Due to the high-performance demand of NC machines, the feeding mechanism, PMSM, SVPWM-based inverter and disturbances are deeply analyed. The range of application for mathematical assumes in high-performance servo drive is studied. Influences of torque ripple caused by PWM and coupling between Iq and Id are selectively analysis. Parameter differences among difference axis will cause bad machining effect, especially when couplling existing through workpieces. Researches on mathematical model and descriptions of NC machine feeding servo drives are carried out.
     The principle of SVPWM inverter work principle is further analyed and studied. Inverter is the basis of SVPWM. PWM is achieved by a certain frequency carrier. Every sine wave is composed of some pulses. Harmonics are caused by this approach inevitablely, especially in low speed section; torque and speed ripples are generated, which deteriorate machining performance. The effect of carrier frequency is analyed. Based on this, the switching characters and carrier frequency control methods are studied.
     AC drive systems based on SVPWM is deeply analyed. The basis of vector control is the decoupling between Iq and Id, while AC servo motor is a close coupling object. At the same time, some nonlinearities and time-variable factors exist. Based on the analysis, coupling between Id and Iq and decoupling methods are studied in this dissertation. Adaptive control strategies are studied aiming at the time-variable character of the servo motor.
     As a kind of typical control system, servo system has high performance demanding on stability, rapidity and precision. The feeding axis of NC machines are coupled through workpieces. Exactly coordinating multi-axis is needed during the high-performance machining process. Hence, besides the excellent characters of the system itself, consistency must be kept. During the machining process, initia variation with workpieces, different disturbances on every axis, and the coupling between Z-axis and the others axis on and off, all this set handicaps for system designing. Adaptive control principle-based speed controller and compensator are studied based on the disturbances analysis.
     To validate the effect of analysis and simulation results and accomplish the Enterprise-College-Research(ECR) cooperation project, real servo drives are made based on the analysis and simulations. The XKHL650 vertical machining centre(VMC) with the drives are setup as the test bench. All the control strategies are validated on this bench. At last, three typical workpieces are machined by this VMC. The experiments and part of experiment results are shown in this dissertation.
引文
[1]秦忆,等,现代交流伺服系统[M].武汉:华中理工大学出版社,1995:1-1.
    [2]李冶.中国机床工具产业可持续发展的思考[A].in中国机床工具工业协会2008年“跟踪重点需求,自主创新发展”高层论坛[C]2008:12-13
    [3]李冬茹.我国数控机床技术发展与展望[J].世界制造技术与装备市场,2006,1:30-35
    [4]郭庆鼎,王成元,交流伺服系统[M].北京:机械工业出版社,1994.
    [5]H.-J. Gutt, F.D. Scholl, J. Blattner. High precision servo drives with DSP-based torque ripple reduction[A]. in IEEE Africon 4th africon conference in africa[C]. Stellenbosch 1996:632-637
    [6]Young H. Kim, Frank L. Lewis. Reinforcement adaptive learning neural network based friction compensation for high speed and precision[A]. in the 37th IEEE Conference on Decision & Control [C]. Tampa,USA 1998:1064-1069
    [7]Satoshi Ogasawara, Michiaki Nishimura, Hirofumi Akagi, et al. A high performance AC servo system with permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics,1986, IE-33(1):87-91
    [8]Karel Jezernik. High precision VSS motion control of servo drives[A]. in the 10th IEEE International Workshop on Advanced Motion Control[C]. Trento 2008:710-715
    [9]Guido Stoeppler, Franz Bauer. A Method to Improve the Accuracy of PMSM Torque Control[A]. in PCIM Europe[C]. Nuremberg 2007
    [10]吴茂刚,赵荣祥,汤新舟.空间矢量PWM逆变器死区效应分析与补偿方法[J].浙江大学学报(工学版),2006,40(3):469-473
    [11]刘栋良,贺益康.交流伺服系统逆变器死区效应分析与补偿新方法[J].中国电机工程学报,2008,28(21):46-50
    [12]张波,李忠,毛宗源.PWM逆变器供电的同步电动机矢量控制电流环的研究和设计[J].控制理论与应用,1999,16(5):664-668
    [13]陈志杰,尚菊明,赵家璧.交流伺服电机高精度转速估计[J].电气传动,1993,6:36-40
    [14]Y.X. Su, B.Y. Duan, Y.F. Zhang. Robust precision motion control for AC servo system[A]. in Proceedings of the 4th World Congress on Intelligent Control and Automation[C]. Shanghai, P.R.China 2002:3319-3323
    [15]高扬,杨明,于泳.基于扰动观测器的PMSM交流伺服系统低速控制[J].中国电机工程学报,2005,25(22):125-129
    [16]李建军,桂卫华.永磁同步电机交流伺服系统负载转矩动态补偿方法[J].电机与控制应用,2006,33(5):11-15
    [17]杨书生,钟宜生.多工作点PMSM伺服系统的高精度鲁棒控制器设计[A].inProceeding of the 26th Chinese Control Conference[C]. Zhangjiajie 2007
    [18]潘登,郑应平.基于模型参考和内模原理的线性系统鲁棒控制设计[J].控制理论与应用,2007,24(4):651-656
    [19]Qiao Zhang, Anwen Shen, Qiaoling Tong. Predictive control for a permanent magnet synchronous motor using automatic tuning Smith-predictor with optimal parameter mismatch[A]. in International Conference on Electrical Machines and Systems. ICEMS 2008. [C]. Wuhan 2008:1520-1525
    [20]曲永印,赵希梅,郭庆鼎.永磁同步电机伺服系统自校正零相位误差跟踪控制[J].电工技术学报,2008,23(1):60-64
    [21]Xu Dong, Wang Tianmiao, Wei Hongxing, et al. Adaptive model following speed control method of permanent magnet synchronous motor[A]. in 4th IEEE Conference on Industrial Electronics and Applications,2009. ICIEA 2009. [C]. Xi'an 2009: 721-725
    [22]卢泽生,张强.高精度交流伺服系统的模糊PID双模控制[J].北京航空航天大学学报,2007,33(3):315-318
    [23]Xianqing Cao, Liping Fan, Yidong Zhu;. Real-time IP controller based on neural network for permanent magnet synchronous motors[A]. in 4th IEEE Conference on Industrial Electronics and Applications,2009. ICIEA 2009. [C]. Xi'an 2009: 2345-2349
    [24]柴凤,李小鹏,程树康.永磁电动机齿槽转矩的抑制方法[J].微电机,2001,34(6):52-54
    [25]Ying Luo, Yang Quan Chen, Youguo Pi. Authentic simulation studies of periodic adaptive learning compensation of cogging effect in PMSM position servo system[A]. in Chinese Control and Decision Conference,2008. CCDC 2008. [C]. Yantai 2008: 4760-4765
    [26]Ying Luo, YangQuan Chen, Hyo-Sung Ahn, et al. Fractional order periodic adaptive learning compensation for cogging effect in PMSM position servo system[A]. in American Control Conference. ACC'09. [C]. St. Louis, MO 2009:937-942
    [27]Y.Koren, C.C.Lo. Advanced controllers for feed drives[J]. Annal of the CIRP,1992, 41(2):689-698
    [28]杨世锡,胡小平,吴昭同.数控机床径向运动误差的形成机理及补偿方法[J].中国机械工程,2001,12(2)
    [29]虞文华,吴绍同,杨世锡.伺服系统动态特性对数控机床圆轨迹加工精度的影响机理[J].中国机械工程,1995,6(1)
    [30]Aun-Neow Poo, John G Bollinger, George W. YounKin. Dynamic Errors in Type 1 Contouring Systems[J]. IEEE Transactions on Industry Applications,1972, IA-8(4): 477-484
    [31]赵希梅,郭庆鼎.数控机床多轴联动伺服电机的零相位自适应鲁棒交叉耦合控制[J].中国电机工程学报,2008,28(12):129-133
    [32]H.Gro β, J.Hamann,熊其求译,自动化技术中的进给电气传动基础·计算·设计[M].北京:机械工业出版社,2002.
    [33]郭庆鼎,孙宜标,王丽梅,现代永磁电动机交流伺服系统[M].北京:中国电力出版社,2006.
    [34]唐任远.稀土永磁同步电机的关键技术与高性能电机开发[J].沈阳工业大学学报,2005,27(2):162-166
    [35]Krishnan R., Praveen Vijayraghavan. Fast estimation and compensation of rotor flux linkage in permanent magnet synchronous machines[A]. in IEEE ISIE[C]. Bled, Slovenia 1999
    [36]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究[J].中国电机工程学报,2005,25(21):169-174
    [37]齐凤春.永磁材料的磁稳定性[J].磁性材料及器件,1999,29(5):26-31
    [38]黄浩,柴建云,姜忠良.钕铁硼稀土永磁材料交流失磁[J].清华大学学报,2004,44(6):721-724
    [39]Kang Gyuhong, Jin Hur, Hyuk Nam, et al. Analysis of irreversible magnet demagnetization in line-start motors based on the finite-element method[J]. IEEE Trans. on Magnetics,2003,39(3):1488-1491
    [40]Shinji Shinnaka. New "D-state-observer"-based vector control for sensorless drive of permanent-magnet synchronous motors[J]. IEEE Trans. on Industry Applications, 2005,41(3):825-833
    [41]Chen Zhiqian, Tomita Mutuwo, Doki Shinji, et al. An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors[J]. IEEE Trans. on IE,2003,50(2):288-295
    [42]Eskola M., Tuusa H. Comparison of MRAS and novel simple method for position estimation in PMSM drives[A]. in IEEE PESC[C]. Acapulco, USA 2003
    [43]肖曦,张猛,李永东.永磁同步电机永磁体状况在线监测[J].中国电机工程学报,2007,27(24):43-47
    [44]张春朋,林飞,宋文超.基于定子电流矢量定向的异步电机转子磁链估计器及其应用研究[J].中国电机工程学报,2003,23(8):155-158
    [45]Umanand L., Bhat S.R. Online estimation of stator resistance of an induction motor for speed control applications[J]. IEE Proc. on Electric Power Applicaitons,1995, 142(2):97-103
    [46]Karkman R. J., Seibel B.J., Rowan T.M. A new flux and stator resistence identifier for AC drive systems[J]. IEEE Trans. on Industry Applications,1996,32(3):585-593
    [47]Vasic V., Vukosavic S.N., Levi E. A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives[J]. IEEE Trans. on Energy Conversion,2003,18(4):476-483
    [48]陈硕,山田英二.感应电机无速度传感器矢量控制系统的定子电阻在线辨识[J].中国电机工程学报,2003,23(2):88-92
    [49]王焕钢,徐文力,杨耕.感应电动机定子磁链与转矩解耦自适应控制[J].中国电机工程学报,2004,24(12):171-175
    [50]Karanayil B., Rahman M. F., Grantham C. On-line stator and rotor resistance estimation scheme for vector-controlled induction motor drive using artificial neural network[A]. in Proceedings of IAS[C]. Texas, USA 2003:132-139
    [51]Elbuluk M.E., Liu Tong, Husain I. Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls[J]. IEEE Trans. on Industry Applications,2002,38(3):879-886
    [52]吕伟杰,刘鲁源.小波网络在直接转矩控制定子电阻辨识中的应用[J].中国电机工程学报,2004,24(4):116-119
    [53]Karanayil B., Rahman M.F., Grantham C. Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks[J]. IEEE Trans. on Energy Conversion,2005,20(4):771-780
    [54]Mir S., Elbuluk M.E., Zinger D.S. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines[J]. IEEE Trans. on Power Electronics,1998,13(2):279-287
    [55]Haque M.E., Rahman M.F. A PI stator resistance compensator for a direct torque controlled interior permanent magnet synchronous motor drive[A]. in Proceedings of PIEMC[C]. Beijing, China 2000
    [56]Ying Luo, YangQuan Chen, Hyo-Sung Ahn, et al. A High Order Periodic Adaptive Learning Compensator for Cogging Effect in PMSM Position Servo System[A]. in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC08)[C]. Singapore 2008
    [57]Bianchi N., Bolognani S. Design techniques for reducing the cogging torque in surface-mounted PM motors[J]. IEEE Trans. on Industry Applications,2002,38(5): 1259-1265
    [58]H. Wang Sang-moon, EOM Jae-boo, Jung Yoong-Ho, et al. Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors[J]. IEEE Trans. on Magnetics,2001,37(4):2806-2809
    [59]王兴华,励庆孚,王曙鸿.永磁无刷直流电机磁阻转矩的解析计算方法[J].中国电机工程学报,2002,22(10):104-108
    [60]危险林,付求涯.基于MATLAB解析计算无刷直流电机的齿槽转矩[J].微特电机,2005,20(7):15-17
    [61]Deodhar R.P., Staton D.A., Jahns T.M., et al. Prediciton of cogging torque using the flux-MMF diagram technique[J]. IEEE Trans. on Industry Applications,1995(1): 693-700
    [62]Lukaniszyn M., Jagiela M., Wrobel. Optimizaiton of permanent magnet shape for minimum cogging torque using a genetic algorithm[J]. IEEE Trans. on Magnetics, 2004,40(2):1228-1231
    [63]章跃进,江建中,崔巍.数值解析结合法提高电机磁场后处理计算精度[J].中国电机工程学报,2007,27(3):68-72
    [64]胡敏强,刘瑞芳,林明耀.少槽永磁直流电动机的有限元分析方法[J].微电机,2001(6):3-6
    [65]宋伟,王秀和.消弱永磁电机齿槽转矩的一种新方法[J].电机与控制学报,2004,8(3):214-217
    [66]冀溥,王秀和,王道涵.转子静态偏心的表面式永磁电机齿槽转矩研究[J].中国电机工程学报,2004,24(9):188-191
    [67]王秀和,杨玉波,丁婷婷.基于极弧系数选择的实心转子永磁同步电机齿槽转矩消弱方法的研究[J].中国电机工程学报,2005,25(15):146-149
    [68]杨玉波,王秀和,陈谢杰.基于不等槽口宽配合的永磁电动机齿槽转矩消弱方法[J].电工技术学报,2005,20(3):40-44
    [69]韩力,辛懋,谢红.一种模拟实测过程的齿槽转矩数值计算方法[J].电机与控制学报,2007,11(6):589-599
    [70]Brain A.H., Pierre D., Carlos C.D. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatic,1994, 30(7):1083-1138
    [71]李圣怡,朱建忠.超精密加工及其关键技术的发展[J].中国机械工程,2000,11:177-179
    [72]Solsona J., Valla I., Muravchik C. Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation[J]. IEEE Trans. on Energy Conversion,2000,15(2):163-168
    [73]Mun-Soo K., Dall-Sup S., Yong-Kil L., et al. A robust control of permanent magnet synchronous motor using load torque estimation[A]. in Proceedings of International Symposium of Industrial Electronics[C]. Korea:IEEE Press 2001:1157-1162
    [74]Bogosyan S., GoKasan M., Sabanovic A. Robust adaptive linearization with torque ripple minimization for a PMSM driven single link arm[A]. in Proceedings of 23rd International Conference on Industrial Electronics, Control and Instrumentation[C]. Louisiana, USA:IEEE press 1997:102-107
    [75]Kadjoudj M., Golea A., Golea N., et al. Speed sliding control of PMSM drives[A]. in Proceedings of 3rd International Symposium on Computational Intelligence and Intelligent Informatics[C]. Morocco:IEEE Press 2007:137-141
    [76]罗婷婷,刘金琨.一种实用RBF网络的自适应滑模控制器[J].北京航空航天大学学报,2005,31(10):1106-1109
    [77]Elmas C., Ustun O. A hybrid controler for the speed control of a permanent magnet synchronous motor drive[J]. Control Engineering Practice,2008,16(3):260-270
    [78]刘治钢,王军政,赵江波.永磁同步电机神经网络自适应滑模控制器设计[J].电机与控制学报,2009,13(2):290-295
    [79]杨文淑,张以谟,马佳光.扰动跟踪控制系统设计与仿真[J].光电工程,2002,29(2):10-12
    [80]翟军红,王红宣,陈娟.大口径光电望远镜风阻力矩自抗扰补偿研究[J].光电工程,2007,34(12):12-16
    [81]袭著燕,路长厚,张建川.基于小波分析的交流伺服电流中摩擦影响信息特征提取的研究[J].机械工程学报,2005,41(6):39-43
    [82]梅雪松,陶涛,堤正臣.高速高精度数控伺服工作台摩擦误差的研究[J].机械工程学报,2001,37(6):76-81
    [83]张绍德,陈主成.一种基于干扰观测器的伺服系统设计[J].电子科技大学学报,2005,34(1):85-88
    [84]袭著燕,张涛,路长厚.数控伺服进给系统中摩擦补偿控制研究进展[J].现代制造工程,2006,1:21-25
    [85]Milos R. Friction modeling and control[D]. Toronto:University of Toronto,1996
    [86]Ueda R., Sonoda T., Inoue Y. Unstable oscillating motor in PWM variable speed drive of induction mode and its stabilization[A]. in Industry Application Society Annual Meeting[C]. San Francisco, USA 1982
    [87]Ueda R., Sonoda T., Takata S. Experimental results and their simplified analysis on instability problem in PWM inverter induction motor drives[J]. IEEE Trans. on Industry Applications,1989,25(1):86-95
    [88]Dodson R., Evans P. Compensating for dead time degradation of PWM inverter waveforms [A]. in IEE Proceedings B:Electric Power Application[C] 1990:73-81
    [89]Murai Y., Riyanto A., Nakamura H., et al. PWM strategy for high frequency carrier inverters eliminating current clamps during switching dead-time[A]. in Industry Application Society Annual Meeting[C]. Houston, TX 1992:317-322
    [90]Choi J., Sul S. New dead time compensation eliminating zero current clamping in voltage-fed PWM inverter[A]. in Industry Applications Society Annual Meeting[C]. USA 1994
    [91]Jeong S., Park M. The analysis and compensation of dead-time effects in PWM inverters[J]. IEEE Trans. on Industrial Electronics,1991,32(8):108-114
    [92]Choi J., Sul s. Inverter output voltage synthesis using novel dead time compensation[J]. IEEE Trans. on Power Electronics,1996,11(2):221-227
    [93]孙向东,钟彦儒.一种新颖的死区时间测量方法[J].中国电机工程学报,2003,23(2):103-107
    [94]Urasaki N., Senjyu T., Uezato K. On-line dead-time compensation method for permanent magnet synchronous motor[A]. in IEEE International Conference on Industrial Technology[C]. Bangkok:Thailand 2002
    [95]Kim H., Moon H., Youn M. On-line dead-time compensation method using disturbance observer[J]. IEEE Trans. on Power Electronics,2003,18(6):1336-1345
    [96]周熙炜,段晨东,刘卫国.一种SVPWM逆变器输出电压谐波的分析方法[J].电力电子技术,2009,43(12):37-39
    [97]陈瑶,统一斌,金新民.基于PWM整流器的SVPWM谐波分析新算法[J].中国电机工程学报,2007,27(13):76-80
    [98]陆益民,张波,毛宗源.混沌SVPWM策略及频谱特性分析[J].华南理工大学学报(自然科学版),2005,33(4):24-28
    [99]郭宇,艾永乐,王泰华.基于PMSM模型解耦的电流控制器设计与性能研究[J].微特电机,2009(12):53-55
    [100]刘贤兴,胡育文.永磁同步电机的神经网络逆动态解耦控制[J].中国电机工程学报,2007,27(27):72-76
    [101]杨亮亮,周云飞,赵江涛.基于内模电流解耦的PMSM矢量控制研究[J].电气传动,2008,38(9):22-26
    [102]李长红,陈明俊,吴小役.一种基于d-q坐标系下的PMSM电流环解耦设计[J].火炮发射与控制学报,2003:41-44
    [103]Van Der Broeck H.W, Kudelny H.C. Analysis and Realization of a Pulsewidth Modulator based on Voltage Space Vector[J]. IEEE Transactions on Industry Applications,1998,24(1):142-150
    [104]B.K. Bose, Power Electronics and AC Drives[M]. Upper Saddle River:Prentice Hall, 2002.
    [105]Joachim Holtz, Bernd Beyer. Optimal Pulsewidth Modulation for AC Servos and Low-Cost Industrial Drives[J]. IEEE Trans. on Industry Applications,1994,30(4): 1039-1047
    [106]K. Yamamoto, K. Shinohara. Comparison between space vector modulation and subharmonic methods for current harmonics of DSP-based permanent-magnet AC servo motor drive system[A]. in IEE Proc.-Electr. Power Appl.[C] 1996:151-156
    [107]Nguyen Van Nho. A Graphical Approach to Switching Losses and Harmonics Distortion for Carrier SVPWM Methods in Multilevel Inverters[A]. in IEEE PEDS[C] 2005:192-197
    [108]Zeliang Shu, Jian Tang, Yuhua Guo, et al. An Efficient SVPWM Algorithm With Low Computational Overhead for Three-Phase Inverters[J]. IEEE Trans, on Power Electronics,2007,22(5):1797-1805
    [109]阎治安,唐明,易萍虎.电机控制中电压空间矢量脉冲调制算法的探讨[J].西安交通大学学报,2006,40(12):1374-1377
    [110]陈崇坚,交流同步电机调速系统[M].北京:科学出版社,2006:23-29.
    [111]张士雄,皮佑国.PMSM控制系统中的开关频率优化与控制研究[J].电力电子技术,2009,43(4):72-74
    [112]孙凯,许镇琳,盖廓.基于自抗扰控制器的永磁同步电机位置伺服系统[J].中国电机工程学报,2007,27(15):43-46
    [113]F. Blaschke. The Principle of Field Orientation as Applied to the New Transvektor Closed-Loop Control System for Rotating-Field Machines[J]. Siemens Review ⅩⅩⅩⅨ,1972,5:217-219
    [114]M Depenbrock. Direct self controlled of inverter-fed induction machine[J]. IEEE Transactions on Power Electronics,1988,3(4)
    [115]李夙,异步电动机直接转矩控制[M].北京:机械工业出版社,1998.
    [116]MIIic's Spong, T JE. Miller, S.R. Macminn. Instantaneous torque control of electric motor drives[J]. IEEE Transactions on Power Electronics,1987:55-61
    [117]颜景斌,刘嘉辉,谢金宝.矢量控制速度伺服系统的FGPA实现[J].电机与控制学报,2007,11(1):17-20
    [118]张辉,王大志.基于内模解耦控制的感应电机矢量控制系统[J].信息技术,2006,25(12):36-40
    [119]J.L. Thomas, M. Boidin. An internal model control structure in field oriented controlled v.s.i induction motors[A]. in Proc. EPE[C]. Florence.Italy 1991:202-207
    [120]周渊深.感应电动机交-交变频调速系统的双内模控制研究[J].电气自动化,2006,28(2):13-17
    [121]Yang. S.S., Zhong. Y.S. Robust speed tracking of permanent magnet synchronous motor servo systems by equivalent disturbance attenuation[J]. IET Control Theory & Application,2007,1(3):595-603
    [122]Kuang-Yao Cheng, Ying-Yu Tzou. Fuzzy optimization techniques applied to the design of a digital PMSM servo drive[J]. IEEE Transactions on Power Electronics, 2004,19(4):1085-1099
    [123]Qiao Zhang, Anwen Shen, Qiaoling Tong. Predictive control for a permanent magnet synchronous motor using automatic tuning Smith-predictor with optimal parameter mismatch[A]. in Proc. International Electrical Machines and System[C] 2008: 1520-1525
    [124]Xianqing Cao, Liping Fan, Yidong Zhu. Real-time IP controller based on neural network for permanent magnet synchronous motors[A]. in Proc. IEEE Industrial Electronics and Applications[C] 2009:2345-2349
    [125]James W. Gilbart, George C. Winston. Adaptive compensation for an optical tracking telescope[J]. Automatic,1974,10(2):125-131
    [126]Xu Dong, Wang Tianmiao, Wei Hongxiong, et al. Adaptive model following speed control method of permanent magnet synchronous motor[A]. in Proc. IEEE Industrial Electronics and Application[C] 2009:721-725
    [127]Whitaker H.P., Yamron J., Kezer A., Design of model reference adaptive control systems for a aircraft[M].3rd. Harlow,England:Addison-Wesley,1999.
    [128]Courtiol B., Landau I.D. High speed adptive system for controlled electrical drives[J]. Automatic,1975,11:119-127
    [129]Amerongen J.V. Adaptive steering of ship-A model reference approach[J]. Automatic, 1984,20(1):3-14
    [130]臧赢芝,吴士昌,张茂青.实用的模型参考自适应控制系统设计方法及其在液压伺服中的应用[A].in IFAC工业过程模型化及控制会议[C].北京1985
    [131]Muhammet Koksal, Fedai Yenici, Arif Nihat Asya. Position control of permanent magnet DC motor by model reference adaptive control [A]. in IEEE International Symposium on Digital Object Identifier[C]. Vigo 2007:112-117
    [132]Wang Chengyuan, Shen Xianqing, Xia Jiakuan, et al. Model reference adaptive fuzzy neural network control based speed servo system of linear permanent magnet synchronous motor[A]. in Proceeding of International Conference on Electrical Machines and Systems[C]. Seoul,Korea 2007:1802-1805
    [133]TIAN-HUA LIU, YUNG-CHING LEE, YIH-HUA CHANG. Adaptive controller design for a linear motor control system[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(2)
    [134]Zhang Shixiong, Pi Youguo. Model reference adaptive control application study in PM synchronous motor servo system[A]. in 2009 2nd International Conference on Power Electronics and Intelligent Transportation System[C]. Shenzhen 2009:428-432
    [135]吴振顺,自适应控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [136]Shixiong Zhang, Youguo Pi. Adaptive compensation for AC servo system in numerical control machine[A]. in the 3rd International Symposium on Intelligent Information Technology Application[C]. Nanchang,China 2009:344-347
    [137]雷尼绍公共有限公司,Renishaw Ballbar Online Help.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700