用户名: 密码: 验证码:
模块化移动机械臂运动规划与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机械臂作为一种更加新颖的机器人,在当今生产生活中发挥着越来越重要的作用,也引起了国内外研究学者的广泛关注。研究的热点主要集中在移动机械臂的运动规划与控制问题。多连杆模块化移动机械臂由于其结构的复杂性,数学模型的建立是极为困难的,所以控制方式不同于目前研究较多的两连杆平面移动机械臂系统。结构的复杂性,难免存在众多的不确定性,基于模型的集中式控制器设计方法受到了制约。因此,针对模块化移动机械臂的结构特点,本文在对目前的研究状况进行深入学习的基础上,提出了分层递阶分布式控制体系结构,将机器人规划控制层分为规划层和控制层,采取“运动学层面的协调规划,动力学层面的分布式控制”的规划控制策略,采取“协调规划,分而治之”的思想对平台子系统和机械臂子系统的动力学控制问题进行了研究,提出了相应的控制方法。
     本文研究工作可以总结为以下几个方面:
     (1)提出模块化移动机械臂系统的分层递阶分布式控制体系结构。由于模块化移动机械臂系统结构上的分布性,基于模型的集中式控制器设计几乎是不可实现的,被控对象的结构特征往往会制约控制器的体系结构设计。因此,在对多连杆模块化移动机械臂运动学和动力学同两连杆平面移动机械臂充分比较的基础上,提出模块化移动机械臂控制体系结构的性能要求,并且设计分层递阶分布式控制体系结构。将体系结构中的规划控制层分为运动学和动力学两个层面,运动规划从运动学层面考虑,动力学层面采用分布式控制方式,将移动平台和机械臂视为整个系统的两个子系统,将机械臂各关节进行线性解耦,体系结构的适应性分析说明了所提方案的可行性。
     (2)基于所设计的控制体系结构,研究冗余模块化移动机械臂的运动规划问题,提出一种移动机械臂系统逆运动学求解的解析方法。针对由美国Pioneer公司生产的Powerbot移动平台和德国Amtec公司的PowerCube模块化机械臂所集成的移动机械臂系统,对其正向运动学进行了深入地分析。面向抓取空间小球这一具体任务,提出一种逆运动学求解的解析方法。对于不满足Pieper定理的机械臂系统,对部分关节加以约束,将有效地解决任务规划问题。
     (3)针对移动机械臂动力学控制问题,首先研究平台子系统的轨迹跟踪控制问题。移动平台属于非完整系统,非完整系统模型建立相对容易,然而难免存在一定的建模误差和受到外界噪声干扰等不确定性影响。基于RBF神经网络对非线性函数的逼近能力,采用滑模控制方式设计了鲁棒自适应控制器。根据系统标称模型设计了等效控制律,通过滑模控制的鲁棒切换项来抑制系统不确定部分。利用神经网络自适应逼近鲁棒切换项的增益,并通过Lyapunov稳定性定理得到了神经网络权值自适应调节律。
     (4)机械臂子系统的动力学控制问题,首先研究了较为简单的两连杆平面电驱动机械臂控制问题。考虑了关节的驱动电机特性,将机械臂系统视为由关节子系统和电机子系统组成的级联系统。根据关节角位移信息,通过Luenberger观测器对机械臂角速度进行观测。考虑了电机的动力学不确定性,利用Backstepping设计方法和滑模控制思想设计了系统的控制器。本章意在指出模型相对简单的被控对象,基于模型的控制器设计具有一定意义。
     (5)提出基于ESO的SISO系统轨迹跟踪控制器设计方案,并将其应用到模块化机械臂PowerCube的关节空间分布式鲁棒控制问题。利用滑模控制的系统降阶特性,可以将状态变量数目为n的高阶系统降阶为状态变量为滑模面的一阶广义系统。将系统可能出现的建模不确定性和外界干扰视为系统“总的不确定性”,利用二阶ESO对之进行实时地估计和补偿,基于滑模控制设计思想设计了鲁棒控制器。将多模块机械臂各关节进行解耦线性化,根据所提出的控制器设计方法进行了PowerCube机械臂关节空间控制器设计。
     (6)基于关节解耦线性化模型和ADRC理论体系框架,考虑参考输入信号受噪声影响情况下,设计了离散的PowerCube模块化机械臂关节空间分布式鲁棒控制器。鉴于(4)所设计的Luenberger观测器仅适用于精确模型的机械臂的不足,本部分进一步考虑了机械臂关节子系统和电机子系统均存在不确定性条件下的机械臂关节空间轨迹跟踪问题。依据Backstepping思想,对系统控制器进行了设计,所提控制策略在两自由度模块俯仰运动方向进行了验证。
Mobile manipulators have played a more and more important role in the civilian and military use in modern society, such as industry and human living area, and received tremendous attention. The hot spot of their research mainly concentrated on the motion planning and control of mobile manipulators. Since it is difficult to build the mathematical models for multi-link modular mobile manipulators because of the structure complexity, the control strategy derived from the widely researched two-link plane mobile manipulators is no longer valid. It is inevitable that numerous uncertainties exist because of the structure complexity. Therefore, the model-based centralized controller design method doesn't work. Based on the structure characters of modular mobile manipulators, and inquired into the current research situation, the hierarchical structure with decentralized control method is proposed in this dissertation. The planning and control layer is separated into the motion layer and dynamic control layer, the planning and control strategy of'coordinate planning of the kinematics layer, decentralized control of the dynamics layer' is taken. The dynamic control for the mobile robot subsystem and the manipulator subsystem are investigated with the idea of'coordinated planning, divide and rule', and the corresponding control strategy is brought forward.
     The research work of this dissertation can be summarized as follows:
     (1) The hierarchical structure with decentralized control of modular mobile manipulators will be brought forward. For the decentralized structure of modular mobile manipulators, it is almost impossible to design the centralized controller based on mathematical model, and the controller structure can be restricted by the plant structure character. Then, based on the fully comparison of kinematics and dynamics of the two-link manipulators with multi-link modular manipulators, the control system performance requirement of modular mobile manipulators will be put forward, and the hierarchical structure with decentralized control will be designed. The planning and control layer of the control system is divided into two layers including kinematics and dynamics. Motion planning can be settled from kinematics aspect, whereas the decentralized control is taken in the dynamic level. The mobile robot and robot manipulator are viewed as two subsystems of the mobile manipulator, and each joint of the modular manipulator can be linear decoupled from each other. Adaptability analysis of the control system structure is given to show the feasibility of the proposed strategy.
     (2) Based on the designed control system structure, the motion planning problems of redundant mobile manipulators will be investigated. Analytic method for the inverse kinematics solution of mobile manipulators will be proposed. The forward kinematics of the mobile manipulator is deeply analyzed. In face of the certain task of snatching at small balls, an analytic method of inverse kinematics solving will be brought forward. For the manipulator subsystem doesn't satisfy Pieper theory, and some joint will be restricted by certain condition, the task planning problem will be settled.
     (3) Considering the dynamic control problem, firstly, the trajectory tracking control of mobile robot subsystem will be investigated. Mobile robot belongs to nonholonomic system, and it is relative easy to build mathematical model for this system, whereas there must be some uncertainties such as the modeling errors and the external noise. Based on the approximation ability of RBF neural networks for nonlinear functions, we use the sliding mode control to design the robust adaptive controller. The nominal model of mobile robot is used to design the equivalent controller, and the robust switch item is used to tackle the uncertainty of the system. RBF neural network can be used to adaptively approximate the gains of the robust switch item, and the adaptive tuning laws can be derived via Lyapunov stability theorem.
     (4) For the dynamic control of robot manipulator subsystem, we first consider the simple two-link planar electrically-driven robot manipulator. Taking the motor character of each joint into consideration, the robot manipulator can be viewed as the cascade system connected by the joint subsystem and the motor subsystem. Based on the measured joint displacement, the joint velocity can be estimated via Luenberger observer. The uncertainty of the motor dynamics is considered, and the controller will be designed by backstepping design method and sliding mode control. This work shows the controller design methodology for simple plant based on mathematical model.
     (5) Trajectory tracking controller based on ESO for a class of SISO system will be proposed with application to joint space decentralized robust control for PowerCube modular manipulators. With the model reduction of sliding mode control, any nth-order higher system can be reduced into a generalized first-order system with its argument of sliding mode. The modeling uncertainty and the external disturbances are lumped into a'total uncertainty' which can be estimated and compensated in real time via second-order ESO, and the robust controller will be designed by sliding mode control method. The multi-link modular manipulator is decoupled. Based on the proposed control method, joint space controller design for PowerCube modular manipulator will be designed.
     (6) The discrete decentralized robust controller for PowerCube joint space will be designed based on the linear decoupled model of the joints and the ADRC theory, considering the reference input is affected by noise. In (4), there is a deficiency that the Luenberger observer is just applicable to accurate model of robot manipulator. In this part, we consider the joint space trajectory tracking problem in the situation that both the uncertainties appeared in joint subsystem and motor subsystem. The controller is designed based on backstepping design strategy. The validation of the proposed control strategy is carried out in the pitching direction of a 2-DOF modular manipulator.
引文
[1]西格沃特,诺巴克什著,李人厚译.自主移动机器人导论[M].陕西:西安交通大学出版社.2006.
    [2]Spong M W. Robot dynamics and control [M]. New York:John Wiley& Sons,1989.
    [3]宋佐时,易建强,赵冬斌.移动机械手控制研究进展[J].机器人.2003,25(5):465-469+480.
    [4]Steven M L. Planning algorithms [M]. England:Cambridge University Press,2006.
    [5]Bayle B, Renaud M, Fourquet J-Y. Nonholonomic mobile manipulators:kinematics, velocities and redundancies [J]. Journal of the Intelligent and Robotic Systems:Theory and Applications.2003,36(1):45-63.
    [6]Yamamoto Y, Yun X P. Coordinating locomotion and manipulation of a mobile manipulator [A]. Proceedings of the 31st Conference on Decision and Control [C]. 1992,2643-2648.
    [7]Seraji H. Motion control of mobile manipulators [A]. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems [C].1993,2056-2063.
    [8]Papadopoulos Evangelos, Papadimitriou Iakovos, Poulakakis Ioannis. Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems [J]. Robotics and Autonomous Systems.2005,51(4):229-247.
    [9]Miroslaw Galicki, Inverse kinematics solution to mobile manipulators [J]. The International Journal of Robotics Research.2003,22(12):1041-1064.
    [10]Tchon Krzysztof. Repeatability of inverse kinematics algorithms for mobile manipulators [J]. IEEE Transactions on Automatic Control.2002,47(8):1376-1380.
    [11]De Luca Alessandro, Oriolo Giuseppe, Giordano Paolo Robuffo. Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators [A]. Proceedings of the IEEE International Conference on Robotics and Automation [C].2006, 1867-1873.
    [12]De Xu, Huosheng Hu, Carlos A. Acosta Calderon, Min Tan. Motion planning for a mobile manipulator with redundant DOFs [J]. International Journal of Information Technology.2005,11(11):1-10.
    [13]Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot [A]. Proceedings of the IEEE Conference Robotics and Automation [C].1990,384-389.
    [14]Kim Doh-Hyun, Oh Jun-Ho. Tracking control of a two-wheeled mobile robot using input-output linearization [J]. Control Engineering Practice.1999,7(3):369-373.
    [15]Jiang Z P, Nijmeijev H. A recursive technique for tracking control of nonholonomic system in chained form [J]. IEEE Transactions on Automatic Control.1999,44(2): 265-279.
    [16]Jiang Z P, Nijmeijev H. Tracking control of mobile robots:a case study in
    backstepping [J]. Automatica.1997,33(7):1393-1399.
    [17]Murray RM, Sastry S. Nonholonomic motion planning:steering using sinusoids [J]. IEEE Transactions on Automatic Control.1993,38(5):700-716.
    [18]Bloch A M, Drakunov S. Stabilization and tracking in the nonholonomic integrator via sliding modes [J]. Systems and Control Letters.1996,29(2):91-99.
    [19]Horacio M A, Simon G G. Mobile robot path planning and tracking using simulated annealing and fuzzy logic control [J]. Expert Systems with Applications.1998,15(3-4): 421-429.
    [20]Ye Jun. Tracking control for nonholonomic mobile robots:integrating the analog neural network into the backstepping technique [J]. Neurocomputing,2008,71(16-18): 3373-3378.
    [21]Yang J-M, Kim J-H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots [J]. IEEE Transactions on Robotics and Automation.1999, 15(3):578-587.
    [22]Zhongxu Hu, Zhong Li, Robert Bicker, Christine Marshall. Robust output tracking control of nonholonomic mobile robots via higher order sliding mode [J]. Nonlinear Studies.2004,11(1):23-35.
    [23]Fukao Takanori, Nakagawa Hiroshi, Adachi Norihiko. Adaptive tracking control of nonholonomic mobile robot [J]. IEEE Transactions on Robotics and Automation.2000, 16(5):609-615.
    [24]Do K D, Jiang Z P, Pan J. Simultaneous tracking and stabilization of mobile robots: An adaptive approach [J]. IEEE Transactions on Automatic Control.2004,49(7): 1147-1152.
    [25]Kim Min-Soeng, Shin Jin-Ho, Hong Sun-Gi, Lee Ju-Jang. Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances [J]. Mechatronics.2003,13(5):507-519.
    [26]Qu Z H, Dawson D M. Robust tracking control of robot manipulators [M]. USA:IEEE Press,1995.
    [27]Slotine J J, Li W. Applied Nonlinear Control [M]. New Jersey:Prentice Hall,1991.
    [28]Heredia J A, Wen Yu. A high-gain observer-based PD control for robot manipulator [A]. American Control Conference [C].2000,4:2518-2522.
    [29]Tae-Yong Kuc, Woong-Gie Han. An adaptive PID learning control of robot manipulators [J]. Automatica.2000,36(5):717-725.
    [30]Ouyang P R, Zhang W J, Gupta M M. An adaptive switching learning control method for trajectory tracking of robot manipulators [J]. Mechatronics.2006,16(1):51-61.
    [31]Yuxin Su, Vicente Parra-Vega. Global asymptotic saturated output feedback control of robot manipulators [A]. Proceedings of the 7th World Congress on Intelligent Control and Automation [C].2008,3445-3450.
    [32]Laib A. Adaptive output regulation of robot manipulators under actuator constraints [J]. IEEE Transactions on Robotics and Automation.2000,16(1):29-35.
    [33]Stefano Liuzzo, Patrizio Tomei. A global adaptive learning control for robotic
    manipulators [J]. Automatica.2008,44(5):1379-1384.
    [34]牛玉刚,赵建丛,杨成梧.不确定机械手的自适应神经滑模控制[J].探测与控制学报.2000,22(2):55-59.
    [35]牛玉刚,杨成梧,陈雪如.基于神经网络的不确定机器人自适应滑模控制[J].控制与决策.2001,16(1):79-82.
    [36]Purwar S, Kar L N, Jha A N. Adaptive output feedback tracking control of robot manipulators using position measurements only [J]. Expert Systems with Applications. 2008,34(4):2789-2798.
    [37]刘建昌,苗宇.基于神经网络补偿的机械臂轨迹控制策略的研究[J].控制与决策.2005,20(7):732-736.
    [38]董朝阳,王龙,王青,张明廉.基于神经网络的机械臂分散自适应跟踪控制[J].系统仿真学报.2006,18(5):1267-1270.
    [39]杜慧秋.基于模糊自适应不确定性机械臂的轨迹跟踪控制[J].电机与控制学报.2005,9(3):238-242.
    [40]Chiou Kuo-Ching, Huang Shiuh-Jer. An adaptive fuzzy controller for robot manipulators [J]. Mechatronics.2005,25(2):151-177.
    [41]Song Zuoshi, Yi Jianqiang, Zhao Dongbin, Li Xinchun. A Computed torque controller for uncertain robotic manipulator systems:Fuzzy approach [J]. Fuzzy Sets and Systems.2005,154(2):208-226.
    [42]Ho H F, Wong Y K, Rad A B. Robust fuzzy tracking control for robotic manipulators [J]. Simulation Modeling Practice and Theory.2007,15(7):801-816.
    [43]Y. Gao, M. J. Er, S. Yang. Adaptive control of robot manipulators using fuzzy neural networks [J]. IEEE Transactions on Industrial Electronics.2001,48(6):1274-1278.
    [44]K. Y. Kuo, J. Lin. Fuzzy logic control for flexible link robot arm by singular perturbation approach [J]. Applied Soft Computing.2002,2(1):24-38.
    [45]Castillo Oscar, Melin Patricia. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach [J]. Applied Soft Computing Journal.2003,3(4):363-378.
    [46]G. Noureddine, G. Amar, B. Kamel, et al. Observer-based adaptive control of robot manipulators:Fuzzy systems approach [J]. Applied Soft Computing.2008,8(1): 778-787.
    [47]Purwar S, Kar I N, Jha A N. Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints [J]. Fuzzy Sets and Systems.2005,152(3):651-664.
    [48]Labiod S, Boucherit M S, Guerra T M. Adaptive fuzzy control of a class of MIMO nonlinear systems [J]. Fuzzy Sets and Systems.2005,151(1):59-77.
    [49]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用.2007,24(3):407-418.
    [50]Man Zhihong, M. Palaniswami. Robust tracking control for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control.1994,39(1):154-159.
    [51]林雷,王洪瑞,任华彬.基于模糊变结构的机械臂控制[J].控制理论与应用.
    2007,24(4):643-650.
    [52]Magdy M. Abdelhameed. Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators [J]. Mechatronics.2005,15(4):439-458.
    [53]Zhimei Chen, Jinggang Zhang, et al. Sliding mode control of robot manipulators based on neural network reaching law [A]. IEEE International Conference on Control and Automation [C].2007,370-373.
    [54]Z. Man, X. Yo, K.Eshraghian, et al. A robust adaptive sliding mode tracking control using an RBF Neural Network for Robotics Manipulators [A]. Proceedings of IEEE International Conference on Neural Networks [C].1995,5:2403-2408.
    [55]Su-Hau Hsu, Li-Chen Fu. A fully adaptive decentralized control of robot manipulators [J]. Automatica.2006,42(10):1761-1767.
    [56]Chuan-Kai Lin. Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks [J]. IEEE Transactions on Fuzzy Systems.2006,14(6): 849-859.
    [57]Man Zhihong, A.P. Paplinski, H.R. Wu. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control. 1994,39(2):2464-2469.
    [58]Yong Feng, Xinghuo Yu, Zhihong Man. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica.2002,38(12):2159-2167.
    [59]Shuanghe Yu, Xinghuo Yu, Bijan Shirinzadeh, Zhihong MAN. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica.2005, 41(11):1957-1964.
    [60]Yew-Wen Liang, Sheng-Dong Xu, Tzu-Chiang Chu. Robust control of the robot manipulator via an improved sliding mode scheme [A]. International Conference on Mechatronics and Automation [C].2007,1593-1598.
    [61]Yun-Cheng Huang, Tzuu-Hseng S. Li. Fuzzy terminal sliding-mode controller for robotic manipulators [A]. International Conference on Mechatronics [C].2005, 858-863.
    [62]Shubhi Purwar. Higher order sliding mode controller for robotic manipulator [A]. IEEE International Symposium on Intelligent Control Part of IEEE Multi-conference on Systems and Control [C].2007,556-561.
    [63]Laxmidhar Behera. Query based model learning and stable tracking of a robot arm using radial basis function network [J]. Computers and Electrical Engineering.2003, 29(4):553-573.
    [64]F.Alonge, F.D'Ippolito, F.M. Raimondi. An adaptive control law for robotic manipulator without velocity feedback [J]. Control Engineering Practice.2003,11(9): 999-1005.
    [65]廖武,钟宜生,石宗英.基于信号补偿的机械臂鲁棒控制器设计与实现[J].清华大学学报.2006,46(4):473-476.
    [66]陈国栋,贾培发.基于扩张状态观测器的机器人分散鲁棒跟踪控制[J].自动化学报.2008,34(7):828-832.
    [67]李世敬,富彦丽,萧蕴诗.不确定刚性机械臂的鲁棒输出控制[J].电机与控制学报.2006,10(3):308-311.
    [68]R.Colbaugh, K. Glass, H. Seraji. Adaptice tracking control of manipulators:theory and experiments [J]. Robotics& Computer-Integrated Manufacturing.1996,12(3): 209-216.
    [69]S. Torres, J.A.Me'ndez, L. Acosta, V.M. Becerra. On improving the performance in robust controllers for robot manipulators with parametric disturbances [J]. Control Engineering Practice.2007,15(5):557-566.
    [70]Spong M W, Vidyasagar M. Robust linear compensator for nonlinear robotic control [J]. IEEE Journal of Robotics and Automation.1987,3(4):345-351.
    [71]Li Zhijun, Luo Jun, Dai Lei. Adaptive dynamic coupling control of human-symbiotic wheeled mobile manipulators with hybrid joints [A]. IEEE/RSJ International Conference on Intelligent Robots and Systems [C].2009,1132-1137.
    [72]Li Zhijun, Yang Chenguang, Luo Jun, Wang Zhuping, Ming Aiguo. Robust motion/force control of nonholonomic mobile manipulators using hybrid joints [J]. Advanced Robotics.2007,21(11):1231-1252.
    [73]Tan Xiang-Min, Zhao Dongbin; Yi Jianqiang, Xu Dong. Adaptive integrated control for omnidirectional mobile manipulators based on neural-network [J]. International Journal of Cognitive Informatics and Natural Intelligence.2009,3(4):34-53.
    [74]Xu Dong, Zhao Dongbin, Yi Jianqiang, Tan Xiangmin. Trajectory tracking control of omnidirectional wheeled mobile manipulators:Robust neural network-based sliding mode approach [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics.2009,39(3):788-199.
    [75]Ghaffari A, Meghdari A, Naderi D, Eslami S. Enhancement of the tipover stability of mobile manipulators with non-holonomic constraints using an adaptive neuro-fuzzy-based controller [J]. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of Systems and Control Engineering.2009,223(2):201-213.
    [76]Li Zhijun, Ge Shuzhi Sam, Adams Martin, Wijesoma Wijerupage Sardha. Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators [A]. Proceedings of the American Control Conference [C].2007, 2147-2152.
    [77]Li Zhijun, Ge Shuzhi Sam, Adams Martin, Wijesoma Wijerupage Sardha. Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators [J]. IEEE Transactions on Control Systems Technology.2008, 16(6):1308-1315.
    [78]Abeygunawardhana Pradeep K W, Murakami Toshiyuki. Stability improvement of two-wheel driven mobile manipulator using nonlinear PD controller [J]. IEEJ Transactions on Industry Applications.2008,128(10):1149-1156+1.
    [79]Li Z., Ge S.S., Adams, M., Wijesoma W.S. Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators [J]. Automatica.2008, 44(3):776-784.
    [80]Li Zhijun, Ge Shuzhi Sam, Ming Aiguo. Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics.2007,37(3):607-616.
    [81]Tan Jindong, Xi Ning, Wang Yuechao. Integrated task planning and control for mobile manipulators [J]. International Journal of Robotics Research.2003,22(5):337-354.
    [82]Liu Yugang, Li Yangmin. Dynamic modeling and adaptive neural-fuzzy control for nonholonomic mobile manipulators moving on a slope [J]. International Journal of Control, Automation and Systems.2006,4(2):197-203.
    [83]李新春,赵冬斌,易建强.一种全方位移动机械手的可操作度分析[J].中国机械工程.2006,17(14):1442-1447.
    [84]郭丙华,胡跃明.三连杆移动机械臂模型与运动规划[J].控制理论与应用.2005,22(6):965-968.
    [85]Oriolo, Giuseppe, Mongillo Christian. Motion planning for mobile manipulators along given end-effector paths [A]. IEEE International Conference on Robotics and Automation [C].2005,2154-2160.
    [86]Huang Hsu-Chih, Tsai Ching-Chih, Wang Tung-Sheng. Kinematics motion planning of an omnidirectional mobile manipulator using DNA algorithm [A]. Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society [C].2007, 2706-2711.
    [87]刘海波,顾国昌,张国印.智能机器人体系结构分类研究[J].哈尔滨工程大学学报.2003,24(6):664-668.
    [88]Fong, Terrence, Nourbakhsh Illah, Dautenhahn Kerstin. A survey of socially interactive robots [J]. Robotics and Autonomous Systems.2003,42(3-4):143-166.
    [89]Yoshio Yamamoto, Xiaoping Yun. Coordinating and locomotion and manipulation of a mobile manipulator [J]. IEEE Transactions of Automatic Control.1994,39(6): 1326-1332.
    [90]柳长安,周宏,李国栋.差动驱动式移动机械手的运动规划[J].宇航学报.2004,25(2):183-186.
    [91]Lin Sheng, Goldenberg A A. Neural-network control of mobile manipulators [J]. IEEE Transactions of Neural Networks.2001,12(5):1121-1133.
    [92]黄一,张文革.自抗扰控制器的发展[J].控制理论与应用.2002,19(4):485-492.
    [93]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报.2009,35(6):650-667.
    [94]侯忠生.非线性系统参数辨识自适应控制及无模型学习自适应控制[D].东北大学,1994.
    [95]Hjalmarsson H, Gunnarsson S, Gevers M. A convergent iterative restricted complexity control design scheme [A]. Proceedings of the IEEE Conference on Decision and Control [C].1994,1735-1740.
    [96]Guardabassi G O, Savaresi S M. Virtual reference direct design method:an off-line approach to data-based control system design [J]. IEEE Transactions on Automatic Control,2006,52(1):15-27.
    [97]Uchiyama M. Formulation of high-speed motion pattern of a mechanical arm by trial. Transactions of the Society for Instrumentation and Control Engineering,1978,14(6): 706-712.
    [98]韩京清.自抗扰控制技术[J].前沿科学.2007,1:24-31.
    [99]B. Bayle, J.-Y. Fourquet and M. Renaud. Kinematic control of wheeled mobile manipulators [A]. IEEE/RSJ Conference on Intelligent Robots and Systems [C].2002, 1572-1577.
    [100]Q. Huang, S.Sugano, and K.Tanie. Coordinated motion planning for a mobile manipulator considering stability and manipulation [J]. International Journal of Robotics Research.2000,19(8):732-742.
    [101]Papadopoulos E. Planning and model-based control for mobile manipulators [A]. IEEE/RSJ Conference on Intelligent Robots and Systems [C].2000,1810-1815.
    [102]Tanner H, Kyriakopoulos K. Mobile manipulator modeling with kane's approach [J]. Robotica.2001,19(6):675-690.
    [103]Serji H. A unified approach to motion control of mobile manipulators [J]. International Journal of Robotics Research.1998,17(2):107-118.
    [104]Y. M. Hu, B. H. Guo. Modeling and motion planning of a three-link wheeled mobile manipulator [A]. International Conference on Control Automation, Robotics and Vision [C].2004,993-998.
    [105]L. Petersson, L. Petersson, M.Egerstedt, et al. Reactive mobile manipulation using dynamic trajectory tracking:Design and Implementation [A]. Proceeding of the 39th IEEE Conference on Decision and Control [C].2000,3001-3005.
    [106]Saeed B. Niku著,孙富春,朱纪洪,刘国栋.机器人学导论[M].2004.电子工业出版社.
    [107]Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices [J]. ASME Journal of Applied Mechanics,1955,23:215-221.
    [108]B. Bayle, J.-Y. Fourquet, and M. Renaud. Manipulability analysis for mobile manipulators [A]. IEEE International Conference on Robotics and Automation [C]. 2001,1251-1256.
    [109]Block A.M. Nonholonomic mechanics and control [M]. New York:Springer,2003.
    [110]Campion Guy, Bastin Georges, D'Andrea Novel Brigitte. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots [J]. IEEE Transactions on Robotics and Automation.1996,12(1):47-62.
    [111]R. Fierro, F. L. Lewis. Control of a nonholonomic mobile robot using neural networks [J]. IEEE Transactions on Neural Networks.1998,9(4):589-600.
    [112]Chwa Dongkyoung. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates [J]. IEEE Transactions on Control Systems Technology. 2004,12(4):637-644.
    [113]Liu Shirong, Zhang Huidi, Yang Simon X, Yu Jinshou. Dynamic control of a mobile robot using an adaptive neurodynamics and sliding mode strategy [A]. Proceedings of the World Congress on Intelligent Control and Automation [C].2004,6:5007-5011.
    [114]Liu Shirong, Yang Simon X, Zhang Huidi. Adaptive neurons based control system design for mobile robots [A]. IEEE/RSJ International Conference on Intelligent Robots and Systems [C].2004,3:2636-2541.
    [115]Slotine J E, Li W著,程代展等译.应用非线性控制[M].北京:机械工业出版社.2006.
    [116]Christopher Edwards, Sarah K. Spurgeon. Sliding mode control:theory and applications [M]. Taylor and Francis.1998.
    [117]V. Utkin. Sliding modes in control and optimization [M]. Springer-Verlag.1992.
    [118]高为炳.变结构控制理论基础[M].中国科学技术出版社.1990.
    [119]Powell M J D. The theory of radial basis function approximation, advances in numerical analysis III [M]. Oxford:Clarendon Press.1992.
    [120]Block A.M. Nonholonomic mechanics and control [M]. New York:Springer,2003.
    [121]Chen Chih-Yang, Li Tzuu-Hseng S., Yeh Ying-Chieh, Chang Cha-Cheng. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots [J]. Mechatronics.2009,19(2):156-166.
    [122]Tamoghna Das, Indra Narayan Kar. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots [J]. IEEE Transactions on Control System Technology.2006,14(3):501-510.
    [123]Bong Seok Park, Sung Jin Yoo, Jin Bae Park, Yoon Ho Choi. Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty [J]. IEEE Transactions on Control Systems Technology.2009,17(1):207-217.
    [124]Huang S N, Tan K K, Lee T H. Neural network control design for a rigid-link electrically driven robot [J]. Journal of Systems and Control Engineering.2003,217(2): 99-107.
    [125]Hwang M C, Hu X, Shrivastava Y. Adaptive H∞ neural network tracking controller for electrically driven manipulators [J]. IEE Proceedings:Control Theory and Applications.1998,145(6):594-602.
    [126]Chen C S. Self-organizing adaptive neural fuzzy control for electrically driven robot manipulators [J]. Journal of Systems and Control Engineering.2008,222(4):231-246.
    [127]Su C Y, Stepanenko Y. Redesign of hybird adaptive/robust motion control of rigid-link electrically driven robot manipulators [J]. IEEE Transactions on Robotics and Automation.1998,14(4):651-655.
    [128]Thinh Ngo, Ha Quang, Shin Jin-Ho, Kim Won-Ho. Fuzzy sliding mode control for a robot manipulator [J]. Artificial Life and Robotics.2008,13(1):124-128.
    [129]Kim S M, Han W Y, Kim S J, Design of a new adaptive sliding mode observer for sensorless induction motor drive [J]. Electric Power Systems Research.2004,70(1): 16-22.
    [130]B. Xian, M. de Queiroz, D. Dawson, and M. Mcintyre. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems [J]. Automatica.2004,40(4):695-700.
    [131]Fabio Celani. A Luenberger-style observer for robot manipulators with position measurements [A].14th Mediterranean Conference on Control and Automation [C]. 2006,p1700769.
    [132]Oya Masahiro, Chun-Yi Su, Kobayashi Toshihiro. State observer-based robust control scheme for electrically driven robot manipulators [J]. IEEE Transactions on Robotics [J].2004,20(4):796-804.
    [133]Kokotovic P V. The joy of feedback:nonlinear and adaptive [J]. IEEE Control Systems Magazine.1992,12(3):7-17.
    [134]Krstic M, Kokotovic P V. Control Lyapunov functions for adaptive nonlinear stabilization [J]. Systems and Control Letters.1995,26(1):18-23.
    [135]Khalil H K. Nonlinear Systems [M]. Upper Saddle River, NJ:Prentice Hall.2002.
    [136]D. M. Dawson, Z. Qu, J. J. Carroll. Tracking control of rigid-link electrically-driven robot manipulator [J]. International Journal of Control.1992,56(5),991-1006.
    [137]Targui B, Farza M, Hammouri H. Constant-gain observer for a class of multi-output nonlinear systems [J]. Applied Mathematics Letters.2002,15(6):709-720.
    [138]H. Shim, Y. Son, J. Seo, Semi-global observer for multi-output nonlinear systems [J]. System and Control Letters.2001,42(3),233-244.
    [139]Bejczy A K. Robot arm dynamic and control,1974, (Technical Memorandum 33-669, Jet Propulsion Laboratory).
    [140]Tan K K, Huang S N, Lee T H. Decentralized adaptive controller design of large-scale uncertain robotic systems [J]. Automatica.2009,45(1),161-166.
    [141]Eom K S, Suh I H, Chung W K. Disturbance observer based path tracking control of robot manipulator considering torque saturation [J]. Mechatronics.2001,11(3), 325-343.
    [142]Chu Z Y, Sun F C, Cui J. Disturbance observer-based robust control of free-floating space manipulators [J]. IEEE System Journal.2008,2(1),114-119.
    [143]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].国防工业出版社,2008.
    [144]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策.1995,10(1):85-88.
    [145]Huang Yi, Han Jingqing. A new synthesis method for uncertain systems-the self-stable region approach [J]. International Journal of Systems Science.1999,30(1):33-38.
    [146]韩京清.二阶扩张状态观测器的误差分析[J].系统科学与数学.1999,19(4):465-471.
    [147]Han Jingqing. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics.2009,56(3):900-906.
    [148]黄一,韩京清.非线性连续二阶扩张状态观测器的分析与设计[J].科学通报.2000,45(13):1374-1379.
    [149]王宇航,姚郁,马克茂.二阶扩张状态观测器的误差估计[J].吉林大学学报.2010,40(1):143-147.
    [150]邵立伟,廖晓钟,夏元清,韩京清.三阶离散扩张状态观测器的稳定性分析及其综合[J].信息与控制.2008,37(2):135-139.
    [151]Slotine J J E, Coetsee J A. Adaptive sliding control synthesis for nonlinear systems [J].
    International Journal of Control.1986,43(6):435-448.
    [152]Seraji H. A new approach to adaptive control of manipulators [J]. ASME Journal of Dynamic Systems, Measurement, and Control.1987,109(3),192-202.
    [153]余涛,朱守真,沈善德,李东海.基于扩张状态观测器的电力系统非线性鲁棒协调控制[J].中国电机工程学报.2004,24(4):1-5.
    [154]马永光,郝娜,李鹏飞,李妍.基于自抗扰的多变量解耦控制在球磨机的应用[J].热能动力工程.2007,22(3):297-300.
    [155]赵汪洋,庄良杰,杨功流.自抗扰控制器在平台惯导系统动基座下初始对准应用[J].控制与决策.2007,22(2):179-183.
    [156]马骁.基于自抗扰控制器的超高压直流输电系统故障诊断新方法的研究[D].青岛科技大学.2008.
    [157]Yan Bingyong, Tian Zuohua, Shi Songjiao, Weng Zhengxin. Fault diagnosis for a class of nonlinear systems via ESO [J]. ISA Transactions.2008,47(4):386-394.
    [158]Huang Yi, Luo Z.W., Svinin M., etc. Extended state observer based technique for control of robot systems [A]. Proceedings of the World Congress on Intelligent Control and Automation [C].2002,4:2807-2811.
    [159]Su Y. X., Duan B. Y., Zheng Y. F., Chen G. D., Mi J. W. Disturbance-rejection high-precision motion control of a stewart platform [J]. IEEE Transactions on Control Systems Technology.2004,12(3):364-374.
    [160]赵杰,杨永刚,刘玉斌.高精度轨迹跟踪的6-PRRS并联机器人自抗扰控制研究[J].控制与决策.2007,22(7):791-799.
    [161]Su Jianbo, Qiu Wenbin, Ma Hongyu, Woo Peng-yung. Calibration-free robotic eye-hand coordination based on an auto disturbance-rejection controller [J]. IEEE Transactions on Robotics.2004,20(5):899-907.
    [162]Yi Huang, Kekang Xu, Jingqing Han, James Lam. Flight Control Using Extended State Observe and Non-smooth Feedback [A]. Proceedings of the 40th IEEE Conference on Decision and Control [C].2001,223-228.
    [163]陈国栋,贾培发.基于扩张状态观测的机器人分散鲁棒跟踪控制[J].自动化学报.2008,34(7):828-832.
    [164]韩京清.继电器加PID的控制规律[A].全国控制理论与应用年会[C].1989.
    [165]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学.1994,14(2):177-183.
    [166]韩京清.非线性PID控制器[J].自动化学报.1994,20(4):487-490.
    [167]武利强,林浩,韩京清.跟踪微分器的滤波性能研究[J].系统仿真学报.2004,16(4):651-670.
    [168]D. M. Dawson, J. J. Carroll, M. Schneider. Integrator backstepping control of a brush DC motor turning a robotic load [J]. IEEE Transactions on Control Systems Technology.1994,2(3):233-244.
    [169]Li Yangmin, Liu Yugang. Hybrid Kinematics and Dynamics Analysis for a Mobile Modular Manipulator [A]. Canadian Conference on Electrical and Computer Engineering [C].2003,3:1767-1770.
    [170]Li Yangmin, Liu Yugang. Hybrid kinematics and stability analysis for the mobile
    modular manipulator [A].10th International Conference on Robotics and Remote Systems for Hazardous Environments [C].2004,10:211-218.
    [171]Li Yangmin, Liu Yugang, Yan Shaoze. Adaptive neural-network control for redundant nonholonomic mobile modular manipulators [J]. Lecture Notes in Computer Science. 2005,3498(111):271-276.
    [172]Li Yangmin, Liu Yugang. Fuzzy logic self-motion planning and robust adaptive control for tip-over avoidance of redundant mobile modular manipulators [A]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics [C].2005,2: 1281-1286.
    [173]Liu Yugang, Li Yangmin. Dynamics and model-based control for mobile modular manipulators [J]. Robotica.2005,23(6):795-797.
    [174]Liu Yugang, Li Yangmin. Sliding mode adaptive neural-network control for nonholonomic mobile modular manipulators [J]. Journal of Intelligent and Robotic Systems:Theory and Applications.2005,44(3):203-224.
    [175]Li Yangmin, Liu Yugang. Real-time tip-over prevention and path following control for redundant nonholonomic mobile modular manipulators via fuzzy and neural-fuzzy approaches [J]. Journal of Dynamic Systems, Measurement and Control.2006,128(4): 753-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700