用户名: 密码: 验证码:
多重天线阵列结构的GNSS接收机抗干扰方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球卫星导航系统(Global Navigation Satellite System, GNSS)能够为用户提供全天候、高精度、连续性和实时性的定位、导航、授时服务,在生产生活的各个领域被广泛应用并发挥了巨大作用,现已成为各国积极建设的国防及民用基础设施,形成了GPS、Galileo、BeiDou-2、GLONASS四大系统并行发展的格局,并推动了GNSS现代化进程。
     GNSS系统存在诸多缺陷,在现代化进程中不断得到改善,因此诞生了新的导航信号及不同的调制方式,来提高系统的服务性能,但由于频谱资源有限,越来越多的信号拥挤在L频段,不同的导航信号之间形成系统内和系统间干扰,并拓宽了接收机的接收带宽,由单频点的几(十)MHz增加到多频点的几百MHz。更严重的是,受限于卫星功率及高度,地面接收信号微弱,大功率的压制式射频干扰会使接收机无法工作,这是GNSS现代化无法解决的问题,而成本低廉的压制式干扰是昂贵的GNSS系统面临的最大威胁。
     本文从GNSS信号特点及接收机工作原理出发,以阵列信号处理理论为基础研究不同应用环境下采用不同阵列结构的GNSS抗干扰接收技术,针对以下问题展开研究并给出相应的抗干扰算法:
     第一:兼容性及干扰/抗干扰性能的量化度量问题。兼容性是GNSS接收机正常工作的基础,也是互操作的前提,本文首先给出传统及现代化信号的调制方式及信号产生和捕获原理,根据信号特征分析系统内及系统间多个信号的影响,给出量化参数;接着给出常见压制式干扰的信号模型,并将兼容性评估方法延伸到压制式干扰环境,给出干扰对信号影响的评估准则与量化参数,结合接收机捕获性能验证评估参数的有效性,作为后续抗干扰算法研究与性能评价的基础。
     第二:GNSS单频点抗干扰接收机的实现应用问题。对于单频点信号,以相干模型为基础,根据GNSS信号特点研究基于天线阵列的自适应波束形成(Adaptive Digital Beamforming,ADBF)相关算法在GNSS接收机上的实现。首先针对GNSS信号微弱难以实现波达角(Direction of Arrival,DOA)估计的特点,研究无需DOA先验信息的全盲自适应波束形成技术,降低系统复杂度的同时也避免由DOA估计误差导致的性能降低;然后针对接收机载体的移动、抖动、翻转特性,研究对干扰方向具有鲁棒性的二维零陷展宽算法,当干扰方向偏离零陷方向时依然能有效抑制;最后针对ADBF算法在硬件上实现需要矩阵求逆及大规模除法的问题,给出无需除法的数值解算方法,降低系统复杂度与硬件成本。针对上述算法通过软件模拟器、软件接收机、硬件开发平台的半实物仿真进行性能验证。
     第三:GNSS接收机天线阵元受限问题。自适应天线阵列的性能主要由阵面尺寸与阵元个数决定,而GNSS接收机的移动性决定了天线阵列的尺寸受限,L波段进一步限制了阵元个数,因此与相控阵系统以降低计算量为目的不同的是,GNSS接收机需要以有限的阵元数达到更好的接收性能。对此提出密集重叠子阵结构,密集重叠子阵结构不仅充分利用每个阵元的接收信号,通过二级处理获得额外的增益,并从结构上避免了子阵输出的栅瓣问题,防止性能恶化。讨论两级不同的加权模式对阵列性能的影响,针对不同应用环境来确定适当的加权方式。仿真结果验证了该阵列结构相比常规阵元结构在输出性能与复杂度上具有双重的优越性,以此为基础设计了基于空域波束切换——时域码相位搜索——频域多普勒搜索的低复杂度GNSS抗干扰接收机。
     第四:GNSS宽带信号与稀布阵列的非相干接收问题。针对多系统多频点接收机,给出非相干阵列的宽带信号模型,采用空时自适应处理(Space-Time Adaptive Processing,STAP)结构,研究STAP信号模型及全盲抗干扰算法,并分析STAP结构对期望信号的影响。接着对大尺度阵元间距的非相干稀布阵列研究波束形成方法,分析阵元间距对DOA及方向图的影响,以STAP的时间抽头加权补偿信号传播延迟,将非相干接收信号转变为相干信号,再通过相位加权消除干扰信号。然后将固定的稀布阵列推广到动态的多用户多天线接收,研究基于Ad-hoc网络的多节点协作波束形成方法,给出不依赖于阵列几何形状的DOA模糊消除方法,最后对多节点的接收信号利用时间补偿与相位加权综合后为手持用户提供干扰抑制能力。
Global Navigation Satellite System (GNSS) provides all-day, high-accuracy, continuous and real-time services for positioning, navigation and timing (PNT), and has been universally constructed as military and civil infrastructures since applied extensively in areas of production and living. There have been existing common developments of four systems such as GPS, Galileo, BeiDou and GLONASS, and induce the modernization of GNSS.
     GNSS is an imperfect system which needs modernization to improve sercive performances, and novel navigation signals and modulations are presented and transmitted. While more and more signals are crowded in L band owing to the limited frequency resources, and form inter-system and intra-system interfere with each other, and spread the receiver bandwidth form several MHz or tens of MHz to hundreds of MHz. What’s the worse, limited to satellite power and height, the signal power received on ground is too weak to make receivers work when existing powerful radio interferences, which is not able to be recolved by GNSS modernization, and it is the greatest threat for the expensive GNSS with low cost.
     In this thesis, the research of suppressing interferences begins with the characters of GNSS signals and receiver principles, and the interference suppressing technologies are studied based on array signal processing and multiple antenna array structures are proposed for different applications, and the resolutions are presented for the following questions:
     1. Compatibility among signals and performance evaluation parameters for interference/interference suppressing. The compatibility is the precondition of GNSS interoperability, and the conventional and modern signals are described firstly for the modulations and generations, as well as the receiver principle, then the effects between signals of inter and intra system are analyzed according to signal characters, and the quantitative criteria are set up. After that, the signal models of typal interferences are introduced, and the analysis methodology of compatibility evaluation is extended to powerful radio interference environments and the evaluation criteria as well as quantitative parameters are proposed, and finally the effectiveness of the evaluation parameters are verified by acquisition performance of receiver, and those are the basis for the performance evaluation of the following interference suppressing algorithms.
     2. Practical applications for interference suppressing in single-frequency GNSS receivers. The antenna array can be seen as a coherent model for single-frequency signal, and algorithms for realization of adaptive digital beamforming (ADBF) in GNSS receivers are investigated based on GNSS signal characters. Firstly the blind ADBF without direction of arrival (DOA) are presented since it is hard to estimate DOA for satellite signals, which will reduce the complexity of receiver and avoid performance degradation induced by DOA error. Then the null broadening algrothim for circular array is proposed for receivers moving with high speed and rolling over, which makes the interference suppressing performance of receivers robust and interference is able to be suppressed effectively even when departing from null direction. After that, in order to be implemented in hardware, numerical solution without divider for inverse matrix is presented to reduce hardware cost. Finally the performances of algorithms are verified by the test combining software simulator, software receiver and hardware development platform.
     3. The limination of antennas number for the array of GNSS receiver. The performances of antenna array are determined mainly by the number of antennas, while the mobility of GNSS receiver limites the array size, and for L band the antennas number is limited. As a result, the main concern for GNSS receiver is not to reduce the computational complexity as in phased array radar system, but to obtain better performances with fewer antennas. Dense overlapped subarray architectures are presented for linear and planar array respectively, not only to reuse received signals on each antenna and obtain additional gains by two-level weighting, but also avoid grating lobes induced by subarray outputs. Weighting modes at element level and subarray level are different and discussed, three modes are proposed for different applications. The simulation results demonstrate the advantages of the proposed architectures in both output performance and computational amount, and a low complex GNSS receiver with interference suppressing ability can be developed.
     4. The incoherent receiveing problem for wideband GNSS signals and sparse arrays. Aiming at multi-frequency GNSS signals, wideband signal model in incoherent array is presented, and space-time adaptive processing (STAP) architecture is adopted and the signal model is presented, as well as the blind interference suppressing algorithm. Then ADBF methodology based on STAP architecture is presented for sparse array in which the distance between adjacent antenna elements is much larger than half wavelength, the time delay is adjusted by time taps weighting and the output signals are coherent, combining with phase weighting the interference signals are suppressed. Further, the fixed sparse array is extended to dynamic multi-user antennas, and cooperative beamforming for multiple nodes based on Ad-hoc networks is presented. The DOA ambiguity is resolved independ on array geometry, and the time delay is compensated by time weighting combining with phase weighting to provide interference suppressing ability for handheld users.
引文
1International Committee on Global Navigation Satellite Systems (ICG).Current and Planned Global and Regional Navigation Satellite Systems andSatellite-based Augmentation Systems[R]. Office for Outer Space Affairs ofthe United Nations, New York,2010:1~35.
    2M. L. Mathieu, S. E. Christiansen, A. Mozes. Charting Future GNSS MarketsExploratory Applications and Services[J]. GPS World,2005,16(9):42~47.
    3P. Enge, P. Misra. Scanning the Special Issue/Technology on Global Position-ing System[J]. Proceedings of the IEEE,1999,87(1):3~15.
    4徐永祥. GPS及其干扰技术研究[J].科技广场,2007,(1):63~65.
    5D. Last. GNSS: the present imperfection[J]. Inside GNSS,2010,5(3):60~64.
    6P. Word. GNSS Robustness: The Interference Challenge[C]. Proceedings of the23rd International Technical Meeting of the Satellite Division of the Instituteof Navigation (ION GNSS2010), Portland, Oregon, September2010:69~97.
    7H. Wellenhof, L. Wasle.全球卫星导航系统GPS, GLONASS, Galileo及其他系统[M].程鹏飞,蔡艳辉,文汉江等译.测绘出版社,2009:232~235,275~278,299~304.
    8E. D. Kaplan, C. J. Hegarty. GPS原理与应用(第二版)[M].寇艳红译.电子工业出版社,2007:81~89.
    9Vice Presidential Initiative. U.S. Govement Executive Branch. January25,1999.
    10王立斌,贺宏. GPS M码、C/A码和P码性能比较研究[J].测控遥感与导航定位,2008,38(4):34~36.
    11梁高波,陈军,孙吉. GPS M码信号特性及抗干扰性能分析[J].通信对抗,2010(4):30~35.
    12G. W. Hein, J. W. Betz, J. A. Avila-Rodríguez, et al. MBOC: The NewOptimized Spreading Modulation Recommended for GALILEO L1OS andGPS L1C[C]. Proceedings of IEEE/ION Position, Location, and NavigationSymposium. IEEE,2006:883~892.
    13S.U. Qaisar, A.G. Dempster. Cross-Correlation Performance Assessment ofGlobal Positioning System (GPS) L1and L2Civil Codes for SignalAcquisition[J]. IET Radar Sonar Navigation,2011,5(3):195~203.
    14P. Flament. The Lisbon Objectives&Status of the Galileo Programme[C].Proceedings of the Workshop on Galileo for Small and Medium Enterprises,April2006.
    15European Union. European GNSS (Galileo) Open Service Signal In SpaceInterface Control Document (issue1.1)[S]. September2010:5~17.
    16D. Margaria, T. P. Torino, F. Dovis, et.al. Galileo AltBOC signal multi-resolution acquisition strategy[J]. Aerospace and Electronic Systems Magazine,IEEE,2008,23(11):4~10.
    17Galileo IOV Satellites Succesfully Launched into Orbit [EB]. GPS World,2011.
    18姚一飞,王浩,赵东发.北斗卫星导航定位系统综述[J].科技向导,2011(8):10~35.
    19S. Dai, C. Ma, and J. Liao. Analysis and research of Beidou I navigationposition system[J]. Computer&Digital Engineering,2010(3):57~59
    20北斗卫星导航系统发展报告(1.0版)[R].中国卫星导航系统管理办公室,2011:3~15.
    21http://www.beidou.gov.cn/2012/10/29/201210297691b3d677694c58926dc7b6-f32247cc.html[OL].
    22http://press-conference.beidou.gov.cn/[OL].
    23北斗卫星导航系统空间信号接口控制文件公开服务信号B1I(1.0版)[S].中国卫星导航系统管理办公室,2012:5~12.
    24北斗二代与伽利略卫星频率之争[N].数字通信世界.2011(2):16~17.
    25张炳琪,刘峰,陈禾,等.北斗B1频点公开服务信号调制方式研究[J].中国科学:物理学,力学,天文学,2011,41(5):568~574.
    26Z. Yao, M. Lu, Z. M. Feng. Quadrature multiplexed BOC modulation forinteroperable GNSS signals[J]. Electronics letters,2010,46(17):1234~1236.
    27V. Klimov, S. Revnivykh, V. Kossenko, et al. Status and Development ofGLONASS[C]. Proceedings of GNSS-2005,19th-22nd July, Munich, Germany,2005.
    28E. Oleynik, S. Revnivykh. GLONASS status and modernization[C]. Civil GPSService Interface Committee, Portland, Oregon,2011:839~854.
    29J. Volpe. Vulnerability Assessment of the Transportation Infrastructure Relyingon the Global Positioning System[R],2001:3~8.
    30J. V. Carroll. Vulnerability Assessment of the U.S. Transportation Infrastruc-ture that Relies on the Global Positioning System[J]. Journal of Navigation,2003,56(2):185~194.
    31B. Parkinson. Looking Ahead for GPS[C]. Proceedings of the23rd Inter-national Technical Meeting of the Satellite Division of the Institute ofNavigation (ION GNSS2010), Portland, Oregon, September2010:1~45.
    32P. D. Massatt. GNSS Sustainment: The Challenge of Availability[C]. Proceed-ings of the23rd International Technical Meeting of the Satellite Division of theInstitute of Navigation (ION GNSS2010), Portland, Oregon, September2010:46~68.
    33J. R. Clynch, A. A. Parker, R. W. Adler, et al. Multiple GPS RFI Sources in aSmall California Harbor[C]. Proceedings of the15th International TechnicalMeeting of the Satellite Division of The Institute of Navigation (ION GPS2002),2002:605~612.
    34D. Hambling. GPS chaos: How a$30Box Can Jam Your Life[J]. New Scientist,March2011(2803):44~47.
    35R. Keegan. MSS Misinformation, and Ten Truths[J]. GPS World,2011,22(12):8~39.
    36NTIA, FCC Waiver No More on LS[N]. GPS World,2012,23(3):34~35.
    37张文明.卫星导航系统干扰抑制技术[D].国防科技大学博士学位论文,2002:4~11.
    38程立斌,李珊珊.透析伊拉克战争GPS干扰与反干扰[J].电光与控制,2004,11(1):18~21.
    39http://www.gpsworld.com/Defense/news/did-spoofing-down-drone-12430?utm_sourc[OL].
    40G. Dimos, T. Upadhyay, T. Jenkins. Low-Cost Solution to Narrowband GPSInterference Problem[C]. Processing of the IEEE National Conference inAerospace and Electronics,1995:145~153.
    41D. George, S. Cotterill, and T. Upadhyay. Advanced GPS Receiver(AGR)Technology Demonstration Program, Final Report WL-TR-93-1051[R].Mayflower Communications Company, Inc. Reading MA, Jan.1993.
    42T. Upadhyay, G. Dimos, and W. Ferzali. Test Results on Mitigation ofSatcom-induced Interference to GPS Operation[C]. Proceedings of the8thInternational Technical Meeting of the Satellite Division of the Institute ofNavigation (ION GPS1995), Palm Springs, CA,1995:1545~1552.
    43D. M. Upton, T. N. Upadhyay, and J. Marchese. Commercial-Off-The-Shelf(COTS) GPS Interference Canceller and Test Results[C]. ION NavigationConference, Long Beach, CA,1998:319~325.
    44B. W. Parkinson, J. J. Spilker. Global Positioning System: Theory and App-lications[M]. Artech House,1996:17~25,56~65.
    45X. Ouyang, M. G. Amin. Short-time Fourier Transform Receiver for Non-stationary Interference Excision Indirect Sequence Spread SpectrumCommunications[J]. IEEE Transaction on Signal Processing, October2001,45(4):184~213.
    46D. Sandberg, S. DelMare, K. Jagler, M. Tzannes. Some Alternatives in theTransform-Domain Suppression of Narrow-Band Interference for SignalDetection and Demodulation[J]. IEEE Trans. Comm., March1995,43(12):3025~3036.
    47R. Landry, Jr., P. Mouyon, D. Lekaim. Interference Mitigation in SpreadSpectrum Systems by Wavelet Coefficients Thresholding[J]. EuropeanTransactions on Telecommunications,1998,9(2):191~202.
    48权友波.卫星导航接收机时频抗干扰抑制算法[D].电子科技大学硕士学位论文,2009:7~14..
    49侯友国. GPS接收机干扰抑制技术研究[D].电子科技大学博士学位论文,2010:43~50.
    50P. W. Howells. Intermediate Frequency Sidelobe Canceller[P]. U.S. Patent3202990, August24,1965.
    51S. P. Applebaum. Adaptive Arrays[R]. Syracuse University Research Corpora-tion. Rep. SPLTR66-1.
    52S. P. Applebaum, and D. J. Chapman. Adaptive Arrays with Main BeamConstrains[J]. IEEE Trans. on Antennas and Propagation,1976, AP-24(5):650~662.
    53B. Widrow, P. E. Mantey, L. J. Griffiths, et al. Adaptive Antenna Systems[C].Proceedings of the IEEE,1967,55(12):2143~2159.
    54O. L. Frost. An Algorithm for Linearly Constrained Adaptive Array Processing[J]. Proceedings of the IEEE,1972,60(8):926~935.
    55L. J. Griffiths, C. W. Jim. An Alternative Approach to Linearly ConstrainedAdaptive Beamforming[J]. IEEE Trans. on Antennas and Propagation,1982,AP-30(1):27~34.
    56N. K. Jablon. Adaptive Beamforming with the Generalized Sidelobe Cancellerin the Presence of Array Imperfections[J]. IEEE Trans. on Antennas andPropagation,1986,34(8):996~1012.
    57M. Cuntz, L. Greda, and M. Heckler et al. Lessons Learnt: The Developmentof a Robust Multi-Antenna GNSS Receiver[C]. Proceedings of the23rdInternational Technical Meeting of the Satellite Division of the Institute ofNavigation (ION GNSS2010), Portland, Oregon, September2010:2852~2859.
    58T. Lin, A. Broumandan, J. Nielsen et al. Robust Beamforming for GNSSSynthetic Antenna Arrays[C]. Proceedings of the22nd International TechnicalMeeting of the Satellite Division of the Institute of Navigation (ION GNSS2009), Savannah, GA, September2009:387~401.
    59A. T. Balaei, A. Dempster, M. Li. Phase Calibration and Attitude Determina-tion of a2by2Phased Array GNSS Antenna[C]. International Symposium onGPS/GNSS. Tokyo, Japan, November2008:11~14.
    60A. J. O’Brien, I. J. Gupta. Self-Calibration Algorithm for Precision GNSSAntennas on Moving Platforms[C]. Proceedings of the23rd InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation (IONGNSS2010), Portland, Oregon, September2010:2457~2464.
    61J. L. Vicario, F. Antreich, M. Barcelo et al. ADIBEAM: Adaptive DigitalBeamforming for Galileo Reference Ground Stations[C]. Proceedings of the23rd International Technical Meeting of the Satellite Division of the Instituteof Navigation (ION GNSS2010), Portland, Oregon, September2010:2172~184.
    62J. M. Cebrian, J. Picanyol, and G. Seco-Granados et al. ADIBEAM: Design andExperimental Validation of a Robust Beamforming Platform for GalileoReference Ground Stations[C]. The5th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing(NAVITEC),2010:1~8.
    63Y. Gou, W. Guo, X. Jin. Design of an Anti-jamming GPS Receiver Based onOrthogonal Projection Method[J]. Journal of Systems Engineering andElectronics,2010,21(1):16~19.
    64R. Wang, M. Yao, Z. Cheng et al. Interference Cancellation in GPS ReceiverUsing Noise Subspace Tracking Algorithm[J]. Signal Processing,2011,91(2):338~343.
    65张文明.卫星导航系统干扰抑制技术[D].国防科技大学博士学位论文,2002:44~53.
    66王李军. GPS接收机抗干扰若干关键技术研究[D].南京理工大学博士学位论文,2006:72~76.
    67Y. Hou, W. Guo, and X. Z. Jin. Design of An Anti-Jamming GPS ReceiverBased on Orthogonal Projection Method[J]. Jounrnal of Systems Engineeringand Electronics,2010,21(1):16~19.
    68Y. T. Lee, J. H. Lee. Direction-finding Methods for Cyclostationary Signals inthe Presence of Coherent Source[J]. IEEE Trans. on Antennas and Propagation,2001,49(12):1821~1826.
    69K. Kim, T. K. Sarkar, H. Wang, et al. Direction of Arrival Estimation Based onTemporal and Spatial Processing Using a Direct Data Domain (D3)Approach[J]. IEEE Trans. on Antennas and Propagation,2004,52(2):533~541.
    70A. H. Zooghby, C. G. Christodoulou, M. Georgiopoulos. A Neural Network-Based Smart Antenna for Multiple Source Tracking[J]. IEEE Trans. OnAntennas and Propagation,2000,48(5):768~775.
    71徐尚志,徐旭,叶中付.基于遗传算法的DOA[J].中国科学技术大学学报,2004,34(3):361~365.
    72A. Hassanien, A. B. Gersman, M. G. Amin. Time-Frequency ESPRIT forDirection-of-Arrival Estimation of Chirp Signals[C]. Proc. of Sensor Array andMultichannel Signal Processing Workshop, Washington DC,2002:337~341.
    73R. Li. Comment on “Multiresolution-Signal Direction-of-Arrival Estimation: AWavelets Approach”[C]. IEEE Proc. of Antennas and Propagation SocietyIntenational Symposium, Montreal, Canada,2004,1:443~446.
    74王永良,彭应宁.空时自适应信号处理.清华大学出版社,2000:32~38.
    75H. Zhao, B. Liao, J. Feng. Interference Suppression in GNSS Receiver UsingSpace-Time Adaptive Processing[C]. Communication Software and Networks(ICCSN),2011IEEE3rd International Conference on, IEEE,2011:381~385.
    76R. L. Fante, J. J. Vaccaro. Ensuring GPS Availability in An InterferenceEnvironment[C]. IEEE Position Location and Navigation Symposium,2000:37~40.
    77R. M. Davis, R. L. Fante. Maximum Likelihood Processing with Digital Beam-forming[C]. IEEE Antennas and Propagation Society International Symposium,2000(2):898~901.
    78R. L. Fante, J. J. Vacarro. Cancellation of Jammers and Jammer Multipath In aGPS Receiver[J]. IEEE Aerospace and Electronic Systems Magazine,1998,13(11):25~28.
    79R. L. Fante, J. J. Vaccaro. Evaluation of Adaptive Space-Time-PolarizationCancellation of Broadband Interference[J]. Position Location and NavigationSystem,2002:1~3.
    80R. L. Fante, J. J. Vaccaro. Wideband Cancellation of Interference in a GPSReceive Array[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):549~564.
    81W. F. Gong, X. Sun. An Improved Reduced-rank STAP InterferenceSuppression Method in Design of GNSS Receivers[J]. Science ChinaInformation Sciences,2012,55(10):2329~2342.
    82W. L. Myrick, J. S. Goldstein, M. D. Zoltowski. Low Complexity Anti-jamSpace-Time Processing for GPS[C]. IEEE International Conference onAcoustics, Speech, and Signal Processing,2001:2233~2236.
    83W. L. Myrick, J. S. Goldstein, M. D. Zoltowski. Low Complexity Anti-jamSpace-Time Processing for GPS[C]. Acoustics, Speech, and Signal Processing,2001, Proceedings,(ICASSP'01),2001IEEE International Conference on,IEEE,2001,4:2233~2236.
    84狄旻珉. GPS抗干扰接收技术研究[D].国防科技大学博士学位论文,2006:36~55.
    85张琳.卫星导航系统接收机抗干扰关键技术研究[D].哈尔滨工业大学博士学位论文,2007:71~87.
    86李鹏,陆明泉,沈军et al.组合导航体系性能仿真分析[C]. CSNC2010第一届中国卫星导航学术年会,北京,2010:1~12.
    87蒋庆仙. INS/北斗组合导航系统的关键技术[C]. CSNC2010第一届中国卫星导航学术年会,北京,2010:1~5
    88何晓峰.北斗/微惯导组合导航方法研究[D].国防科技大学博士学位论文,2009:6~12.
    89曾伟一,林训超,曾友州et al.组合导航技术的发展趋势.成都航空职业技术学院学报,2011,27(2):41~44.
    90S. Kennedy, J. Rossi. Performance of a Deeply Coupled Commercial GradeGPS/INS System from KVH and NovAtel inc[C]. IEEE/ION PLANS2008,May2008:17~24.
    91F. van Diggelen.辅助GPS原理与应用[M].孟维晓,马永奎,高玉龙译.北京:电子工业出版社,2013:35~42.
    92彭宇,王丹.无线传感器网络定位技术综述[J].电子测量与仪器学报,2011,25(5):389~399.
    93G. Mao, B. Fidan, B. Anderson. Wireless Sensor Network LocalizationTechniques[J]. Computer Networks,2007,51(10):2529~2553.
    94P. F. Lo, N. B. Melazzi, D. Giustiniano. Power-Measurement-Based RelativeLocalization in GSM Cellular Networks[C]. IEEE International Workshop onSatellite and Space Communications2007, IWSSC'07,2007:294~298.
    95N. M. Drawil, O. Basir. Intervehicle-Communication-Assisted Localization[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(3):678~691.
    96H. Suo, J. Wan, L. Huang, et al. Issues and Challenges of Wireless SensorNetworks Localization in Emerging Applications[C].2012IEEE InternationalConference on Computer Science and Electronics Engineering (ICCSEE2012),2012,3:447~451.
    97R. Kurazume, S. Hirose, S. Nagata, et al. Study on Cooperative PositioningSystem (Basic Principle and Measurement Experiment)[C]. IEEE InternationalConference on Robotics and Automation,1996,(2):1421-1426.
    98R. Sharma, C. Taylor. Cooperative Navigation of MAVs in GPS DeniedArea[C]. IEEE International Conference on Multisensor Fusion and Integrationfor Intelligent Systems, MFI2008,2008:481~486.
    99D. A. Grejner-Brzezinska, C. K. Toth, L. Li, et. al. Positioning in GPS-challenged Environments: Dynamic Sensor Network with Distributed GPSAperture and Inter-nodal Ranging Signals[C]. Proceedings of the22ndInternational Technical Meeting of The Satellite Division of the Institute ofNavigation (ION GNSS2009), Savannah, GA,2009:111~123.
    100J. K. Lee, D. A. Grejner-Brzezinska and C. Toth. Network-Based CollaborativeNavigation for Ground-Based Users in GPS-Challenged Environments[C].Proceedings of the23rd International Technical Meeting of The SatelliteDivision of the Institute of Navigation (ION GNSS2010), Portland, OR,2010:3380~3387.
    101X. Wang, D. A. Grejner-Brzezinska, C. K. Toth, et al. Sensitivity Analysis ofObject Space Geometry for TLS-Aided Navigation[C].2010IEEE/IONProceedings of Position Location and Navigation Symposium (PLANS),IEEE/ION PLANS2010, Indian Wells, CA,2010:850~857.
    102D. A. Grejner-Brzezinska, C. K. Toth, H. Sun, et al. A Robust Solution toHigh-Accuracy Geolocation: Quadruple Integration of GPS, IMU, Pseudolite,and Terrestrial Laser Scanning[J]. IEEE Transactions on Instrumentation andMeasurement,2011,60(11):3694~3708.
    103D. A. Grejner-Brzezinska, J. N. Markiel, C. K. Toth, et al. CooperativeNavigation in Transitional Environments[C].2012IEEE/ION PositionLocation and Navigation Symposium (PLANS),2012:334~340.
    104J. Rantakokko, J. Rydell, P. STR MB CK, et al. Accurate and ReliableSoldier and First Responder Indoor Positioning: Multisensor Systems andCooperative Localization[J]. IEEE Wireless Communications. April2011,18(2):10~18105`M. Z. Win, A. Conti, S. Mazuelas, et.al. Network Localization and Navigationvia Cooperation[J]. IEEE Communications Magazine, May2011,49(5):56~62.
    106H. Mu, T. Bailey, P. Thompson, et al. Decentralised Solutions to the Coopera-tive Multi-Platform Navigation Problem[J]. IEEE Transactions on Aerospaceand Electronic Systems,2011,47(2):1433~1449.
    107F. L. Piccolo. A New Cooperative Localization Method for UMTS CellularNetworks[C]. IEEE Global Telecommunications Conference,2008, IEEEGLOBECOM2008,2008:1~35.
    108田日才.扩频通信[M].清华大学出版社,北京,2007:76~78.
    109J. W. Betz. Binary Offset Carrier Modulations for Radio Navigation[J]. Navigation,2001,48(4):227~246.
    110R. B. Harris, E. G. Lightsey. A General Model of Multipath Error forCoherently Tracked BOC Modulated Signals[J]. Selected Topics in SignalProcessing, IEEE Journal of,2009,3(4):682~694.
    111E. C. Giovanni, P. Claudi, P. Raffaella, V. Marco. Robust Detectors for CodeAcquisition with BOC Modulation for GNSS Receivers[C]. InternationalWorkshop on Satellite and Space Communications, IWSSC '07,2007:299~303.
    112柯颋. NCS性能评估及BOC无模糊捕获技术研究[D].华中科技大学博士学位论文,2011:7~11.
    113M. Fantino, G. Marucco, P. Mulassano, M. Pini. Performance Analysis ofMBOC, AltBOC and BOC Modulations in Terms of Multipath Effects on theCarrier Tracking Loop within GNSS Receivers[C]. IEEE/ION Position,Location and Navigation Symposium (PLANS2008), Monterey, CA, May2008:369~376.
    114W. Liu, C. Zhai, X. Zhan, et al. Modified Binary Coded Symbol Modulation and Its Application for Compass[C]. Proceedings of the23rd InternationalTechnical Meeting of The Satellite Division of the Institute of Navigation (IONGNSS2010),2001:1588~1596.
    115B. M. Titus, J. W. Betz, C. J. Hegarty, et al. Intersystem and IntrasystemInterference Analysis methodology[J]. Proceedings of IONGNSS-2003.
    116ITU-R. A Coordination Methodology for RNSS Inter-System InterferenceEstimation[R].2007, In ITU-R M.1831.
    117J. Chen, Y. G. Zhang, G. B. Liang, and F. Li. The Anti-jamming Performance of GNSS BOC Signals in Certain Jamming Environments[C]. The8thInternational Symposium on Antennas, Propagation and EM TheoryProceedings, Kunming, China. November2008:1203~1209
    118王永良.自适应阵列处理[M].清华大学出版社,2009:23~33.
    119S. El-Khamy, and A. Gaballa. Adaptive Arrays for MC-CDMA Using TheMSINR Guided Multimodulus Algorithm[C]. National Radio ScienceConference, NRSC2008, IEEE,2008:1~8.
    120N. Matsumoto, K. Ichige, and H. Arai. Fixed-point Digital Processing ofRecursive Least-square Algorithm Toward FPGA Implementation of MMSEAdaptive Array Antenna[C]. Signal Processing and Its Applications, SeventhInternational Symposium on, IEEE,2003(2):615~617.
    121W. Wang, W. X. Sheng, and B. Y. Qi. Subarray Adaptive Array BeamformingAlgorithm based on LCMV[C]. Microwave Conference Proceedings,Asia-Pacific Conference Proceedings, APMC2005, IEEE, vol.3,2005:104~110.
    122T. Brockett and Y. Rahmat-Samii. Sub-array Design Diagnostics for theDevelopment of Large Uniform Arrays[C]. Antennas and Propagation(APSURSI),2011IEEE International Symposium on, IEEE,2011:938~941.
    123T. J. Brockett, and Y. Rahmat-Samii. Subarray Design Diagnostics for TheSuppression of Undesirable Grating Lobes[J]. Antennas and Propagation, IEEETransactions on,2012,60(3):1373~1380.
    124D. Wilson and S. Ganguly. Development of an A/J System Using AvailableAntennas[C]. Proceedings of the20th International Technical Meeting of theSatellite Division of The Institute of Navigation (ION GNSS2007), Fort Worth,TX,2007:164~175.
    125R. J. Mailloux, S. G. Santarelli, and T. M. Roberts. Array Aperture DesignUsing Irregular Polyomino Subarrays[C]. Phased Array Systems andTechnology (ARRAY),2010IEEE International Symposium on,2010:740~744.
    126T. J. Brockett, and Y. Rahmat-Samii. Subarray Design Diagnostics for TheSuppression of Undesirable Grating Lobes[J]. Antennas and Propagation, IEEETransactions on,2012,60(3):1373~1380.
    127J. D. Chen, F. B. Ueng, J. C. Chang, C. L. Lin. Performance Evaluation ofMultirate DS-CDMA Communication Systems with Adaptive Antennas[J].Wireless Communications and Mobile Computing2012,12(2):169~183.
    128A. K. Bhattacharyya. Floquet Modal Based Analysis of Overlapped andInterlaced Subarrays[J]. Antennas and Propagation, IEEE Transactions on,2012,60(4):1814~1820.
    129L. Scott L, B. Mulgrew. Sparse LCMV Beamformer Design for Suppression ofGround Clutter in Airborne Radar[J]. Signal Processing, IEEE Transactions on,1995,43(12):2843~2851.
    130F. Athley, C. Engdahl, P. Sunnergren. On Radar Detection and DirectionFinding using Sparse Arrays. Aerospace and Electronic Systems, IEEETransactions on,2007,43(4):1319~1333.
    131R. Fan and H. Jiang. Average Rate Maximization in Relay Networks over SlowFading Channels[J]. Vehicular Technology, IEEE Transactions on,2011,60(8):3865~3881.
    132N. Okello, F. Fletcher, D. Musicki, B. Ristic. Comparison of RecursiveAlgorithms for Emitter Localisation Using TDOA Measurements from a Pairof UAVs[J]. IEEE Transactions on Aerospace and Electronic Systems,2011,47(3):1723~1732.
    133I. Shames, B. Fidan, B. D. O. Anderson, H. Hmam. Cooperative Self-Localization of Mobile Agents[J]. IEEE Transactions on Aerospace andElectronic Systems,2011,47(3):1926~1947.
    134A. J. O'Brien, I. J. Gupta. Comparison of Output SINR and Receiver C/N0forGNSS Adaptive Antennas[J]. Aerospace and Electronic Systems, IEEETransactions on,2009,45(4):1630~1640.
    135黄敬芳.基于混合遗传算法的稀布阵列天线综合技术研究[D].西安电子科技大学硕士学位论文,2009:5~8.
    136K. Chen, X. Yun, Z. He, et al. Synthesis of Sparse Planar Arrays UsingModified Real Genetic Algorithm[J]. Antennas and Propagation, IEEETransactions on,2007,55(4):1067~1073.
    137K. Muthuraman. Tracking Techniques for GNSS Data/Pilot Signals[M].Geomatics Engineering, Calgary: University Of Calgary,2010:7~16.
    138J. P. Montillet, L. K. Bonenberg, C. M. Hancock, et al. On the Improvements ofthe Single Point Positioning Accuracy with Locata echnology[J]. GPSSolutions,2013:1~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700