用户名: 密码: 验证码:
稳健的全球卫星导航系统抗干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球卫星导航系统能为海、陆、空三大领域提供实时、全天候和全球性的导航服务,广泛应用于军事和民用中,已成为当代发展最快的信息产业之一。然而,由于接收到的卫星信号淹没在噪声中,很容易受到各种有意和无意射频干扰的影响。当干扰功率超出了扩频增益所能处理的门限时,导航接收机将失锁,从而无法提供导航服务。本文对基于天线阵列的稳健的卫星导航抗干扰技术进行了系统的研究,所取得的主要研究成果为:
     1.研究了多类干扰共存时的抑制技术。针对同时存在的欺骗式干扰、压制式干扰、卫星多径信号干扰,提出了一种基于卫星信号来向已知的通用的多类干扰抑制算法。首先分析欺骗式干扰和卫星信号之间的相关性,根据不同的相关性采用相应的干扰子空间估计方法,然后通过向干扰正交补空间投影抑制干扰,最后利用低副瓣常规波束形成技术减少卫星多径干扰信号,同时使天线方向图主瓣指向卫星信号方向。新算法对干扰类型要求稳健,仿真数据验证了算法的有效性。
     2.研究了基于卫星信号来向估计的自适应抗干扰算法。首先利用干扰正交补空间投影技术抑制干扰,然后根据扩频码具有周期重复的特点,对阵列投影后数据和周期延迟数据的互相关矢量采用CLEAN算法估计卫星信号来向,最后,利用估计的卫星信号来向进行波束形成。该方法解决了直接利用扩频码周期重复特性进行干扰抑制无法满足定位要求的问题,在阵元数小于卫星信号数的情况下也能工作,因而较稳健。仿真数据和实测数据验证了算法的有效性。
     3.研究了盲自适应抗干扰技术,提出了基于卫星信号特点的新的空域解重扩算法并扩展到空时域。该算法也可根据需要估计出卫星信号来向信息,因此,在空时自适应处理中可直接提供均衡算法所需要的卫星信号来向信息。新算法先利用子空间投影技术进行干扰抑制,再对投影后参考天线的信号进行捕获、跟踪并重扩卫星信号,利用重扩后的信号和投影后信号的互相关矢量对阵列进行加权,因而和接收机紧密耦合,较易工程实现。新算法不必估计卫星信号来向,对卫星信号源数和阵列误差不太敏感,因而更稳健。仿真数据和实测数据验证了算法的有效性。
     4.研究了高动态抗干扰算法。由于传统自适应波束形成技术形成的零陷太窄,无法跟踪高动态环境下干扰方向的快速变化。因此,联合零陷加宽和稳健波束形成技术,提出了一种稳健的宽零陷高动态抗干扰算法。新算法可以提高高动态环境中小快拍数下传统零陷加宽算法的性能和稳健性。仿真数据验证了算法的有效性。
Global navigation satellite system could provide real-time, all-weather and globalnavigation services for land, sea and air, which has been widely used in civil andmilitary applications and has been become one of the fastest developing informationindustries. However, the receiver is extremely vulnerable to intentional andunintentional radio frequency interferences because the received satellite signal is farlower than the noise. When the power of interference exceeds the spreading gain offeredvia the global navigation satellite system, the receiver will be unlock the satellite signal,which lost its ability to navigate. This dissertation is mainly concerned with the robustanti-jamming techniques for satellite navigation based on the array antenna. Theauthor’s major contributions are outlined as follows:
     1. The suppression technique for multiple kinds of interference coexistence hasbeen studied. A unified anti-jamming algorithm for deception interference, blanketjamming and satellite multipath interference is proposed based on the known thedirection of arrival (DOA) of satellite signal. Firstly, the correlation property of GPSsignal and deception interference is analyzed and the corresponding method is appliedto estimate interference subspace according to the different correlation property.Secondly, the interferences are canceled by projecting the received signal onto theinterference orthogonal complement space. Finally, satellite multipath interference ismitigated by low sidelobe conventional beamforming and also the mainlobe of the beampattern is aimed to the direction of the satellite signal. The proposed algorithm is robustfor the type of interference and simulation results show the effectiveness of the newmethod.
     2. The adaptive anti-jamming algorithm based on the DOA estimation has beenstudied. Firstly, the interferences are suppressed by projecting onto the interferenceorthogonal complement space. Then, according to the period repetitive property ofspread code, the cross-correlation vector between the projected data and the perioddelay data is used to estimate the directions of the satellite signals by CLEAN algorithm.Finally, the multi-beam is formed by estimated directions. The proposed algorithmcould solve the problem that interference suppression algorithm by using directly theperiod repetitive property can not satisfy the requirement of position. And the newmethod will also work well even if the number of array elements is less than the numberof GPS signals, therefore it is robust for the number of satellites. Test data andsimulation results show the effectiveness of the new algorithm.
     3. The blind adaptive anti-jamming technique has been studied. The new de-spreadre-spread algorithm based on the characteristic of satellite signal is proposed. The newmethod is firstly discussed in the spatial processing, and then extended to space-timeadaptive processing. The proposed algorithm could also estimate the directions ofsatellite signal. Therefore it provides directly the direction information of equalizationrequirement in space-time processing. Firstly, the interferences are suppressed byprojecting onto the interference orthogonal complement space. Then requisition andtracking are performed for the signal of projected reference antenna, and the satellitesignal is reconstructed by tracking result. Finally, the array weight vector is calculatedby the cross-correlation vector between the reconstructed satellite signal and theprojected signal. Therefore, the new algorithm is tight coupling to the conventionalreceiver and is easy for engineer realization. The new method is not need to estimateDOAs of satellite signals and is robust because the proposed method is not sensitive forthe number of satellite signals and array error. Test data and simulation results show theeffectiveness of the proposed algorithm.
     4. High dynamic GPS interference suppression algorithm has been studied. In highdynamic environment, the conventional adaptive beamforming technique could nottrack the rapid change of interference directions due to the narrow nulls. Therefore, arobust widenull algorithm is proposed combing the null broadening technique withrobust beamforming technique. The new method could improve the performance androbustness of the conventional null broadening beamformer for snapshot deficient inhigh dynamic environment. Simulation results have demonstrated the performance ofthe new method.
引文
[1]陈倩.全球定位系统(GPS)及标准化[J].电子标准化与质量.2001,(01):34-35.
    [2]陈忠贵,帅平,曲广吉.现代卫星导航系统技术特点与发展趋势分析[J].中国科学E辑:技术科学.2009,39(4):688-695.
    [3] E.D. Kaplan著,邱致和,王万义译. GPS原理与应用[M].第一版.北京:电子工业出版社,2002.1-1.
    [4]边少锋,李文魁.卫星导航系统概论[M].北京:电子工业出版社,2005.11-11.
    [5] U.S.Government Executive Branch. Vice Presidential Initiative.1999.
    [6]邱致和. GPS M码信号的BOC调制[J].导航.2005,3(1):1-18.
    [7] J. Wbetz. Binary offset carrier modulation for radionavigation[J]. Journal of TheInstitute of Navigation.2001,48(4):227-245.
    [8]白欧,汪凌.俄罗斯全球导航卫星系统(GLONASS)现状与观望[J].测绘技术装备.2002,(1):30-32.
    [9]徐卫东.“格洛纳斯”挑战GPS霸主地位[N].中国国防报.2008,9(014).
    [10] E. D. Kaplan, C. J. Hegarty著,寇艳红译. GPS原理与应用[M].第二版.北京:电子工业出版社,2008.420-421.
    [11]日本的QZSS卫星系统[OL]. http://www.beidou.gov.cn/2011/05/06/20110506ab5d79b3f1f34df682e383d8b5a4c636.html.2011.
    [12]印度的IRNSS卫星系统[OL].http://www.beidou.gov.cn/2011/05/06/2011050657e8d3d1f4494016ae804220cb3911c7.html.2011.
    [13]司耀锋.印度积极推动卫星导航系统建设[J].国际太空.2010,(3):13-17.
    [14]我国成功发射第十六颗北斗导航卫星[OL]. http://www.beidou.gov.cn/2012/10/29/201210297691b3d677694c58926dc7b6f32247cc.html
    [15] China reveal updated Compass/Beidou-2GNSS signal plan[OL]. http://www.insidegnss.com/node/1624#Baseband_Technologies_Inc_Latest%20News.September/October%202009%20issue.2009.
    [16] D. Moelker, T. V. Pol, Y. Bar-Ness. Adaptive antenna arrays forinterference cancellation in GPS and GLONASS receivers[C]. In Proceedingof the IEEE Position Location and Navigation Symposium,1996,191-198.
    [17] P. T. Capozza, B. J. Holland, T. M. Hopkinson etc. A single-chip narrow-bandfrequency-domain Excision for a Global Positioning System (GPS) Receiver[J].IEEE Journal of Solid-State Circuits.2000,35(3):401-411.
    [18]王李军.GPS接收机抗干扰若干关键技术研究[D].南京理工大学.2006.
    [19] E. D. Kaplan, C. J. Hegarty著,寇艳红译. GPS原理与应用[M].第二版.北京:电子工业出版社,2008.181-183.
    [20]贾仁耀,何俊,刘湘伟等.GPS综述及对其实施电子干扰浅析[J].航天电子对.2000,(3):34-36.
    [21]高军,李政杰,戴国宪.对GPS信号的干扰[J].航天电子对抗.2000,(2):43-45.
    [22]方有培,董尔令.对GPS制导导弹的有效干扰途径分析[J].航天电子对抗.2001,(2):35-39.
    [23]谭显裕. GPS对抗技术的现状与发展[J].现代防御技术.2003,31(1):34-37.
    [24] J. R. Sklar. Interference mitigation approach for the global positioning system[J]. Lincoln Laboratory Journal.2003,14:167-180.
    [25]吴晓进. GPS和射频干扰.航天电子对抗[J].2003,(5):1-5.
    [26] D. M. Upton, T. N. Upadhyay, J. Marchese. Commercial-off-the shelf(COTS)GPS interference canceller and test results[C]. ION Navigation Conference.1998,319-325.
    [27] G. Dimos, T. Upadhyay, T. Jenkins. Low-cost solution to narrowband GPSinterference problem[C]. Processing of the IEEE National Conference onAerospace and Electronics.1995,1:45-153.
    [28] R. Rifkin, J. J. Vaccaro. Comparison of narrowband adaptive filter technologiesfor GPS[R]. MITRE Technique Report.2000.125-131.
    [29] L. B. Milstein. Interference rejection technique in spread spectrumcommunications[J]. Processing of the IEEE.1988,76(6):657-671.
    [30] D. George. S.Cotterill, T. Upadhyay. Advanced GPS receiver (AGR) technologydemonstration program[R]. Final Report WL-TR-93-1051. MayflowerCommunications Company.1993.
    [31]邓志鑫,赵彦雷,司东晓. GNSS终端抗干扰技术综述[C].第二届中国卫星导航学术年会.上海,中国.2011.
    [32] W. J. Ma, W. L. Mao, F.R.Chang. Design of adaptive all-pass based notch filterfor narrowband anti-jamming GPS system[C]. Proceedings of2005InternationalSymposium on Intelligent Signal Processing and Communication System. HongKong.2003,305-308.
    [33] M. A. Soderstrand, T. G. Johnson, R. H. Strandberg, etc. Suppression of multiplenarrow-band interference using real-time adaptive notch filters[J]. IEEE Trans.On Circuits and System II: Analog and Digital Signal Processing.1997,44:217-225.
    [34] R. J. Landry, V. Calmettes, M. Bousquet. Impact of interference on a genericGPS receiver and assessment of mitigation techniques[C]. IEEE5thinternational symposium on spread spectrum techniques and applications.1998,87-91.
    [35] W. W. Jones, K. R. Jones. Narrowband interference suppression using filter-bank analysis/synthesis techniques[C]. IEEE MILCOM Conference.San Diego,California.1992,3:898-902.
    [36] F. Hlawatsch, G. F. Boudreaux-Bartels. Linear and quadratic time-frequencysignal representations[J]. IEEE Signal Processing.1992,21-67.
    [37] B.Badke, A. S. Spanias. Partial band interference excision for GPS usingfrequency-domain exponents[C]. In Proceedings of the2002IEEE InternationalConference on Acoustic, Speech, and Signal Processing.2002,4:3936-3939.
    [38] X. M. Ouyang, M. G. Amin. Short-time fourier transform receiver fornonstationary interference excision in direct sequence spread spectrumcommunications[J].IEEE Trans On Signal Processing.1988,184-213.
    [39] L. Zhao, M. G. Amin, A. R. Lindsey. Subspace projection techniques foranti-FM jamming GPS receivers[C]. IEEE SSAP.2000,529-533.
    [40] Y. M. Zhang, M. G. Amin, A. R. Lindsey. Anti-jamming GPS receivers based onbilinear signal distributions[C]. Proc. MILCOM conference, universalCommunications.2001,2:1070-1074.
    [41]王李军,赵惠昌.用子空间投影技术抑制GPS信号中的AM-FM干扰[J].弹箭与制导学报。2004,(2):366-369.
    [42] M. D. Zoltowski, F. Haber. Adavanced adaptive null steering concepts forGPS[C]. Proc. MILCOM conference, universal Communications. San Diego,CA.1995,3:1214-1218.
    [43] A. Gecan, M. D. Zoltowski. Power minimization technique for GPS nullsteering antennas[C]. Institute of navigation conference.Palm Springs, CA.1995,13-15.
    [44] D. J. Moelker, E. V. Pol, B.N. Yeheskel. Adaptive antenna arrays forinterference cancellation in GPS and GLONASS receivers[J]. In Proceeding ofthe IEEE Position Location and Navigation Symposium.1996,191-198.
    [45] R. L. Fante, J. J. Vaccaro, Wideband cancellation of interference in a GPSreceiver array[J]. IEEE Transaction on Aerospace and Electronic Systems.2000,36(2):549-564.
    [46] R. L. Fante, J. J. Vaccaro. Cancellation of jammers and jammer multipath in aGPS receiver[J]. IEEE AES System Magazine.1998,13:25-28.
    [47] W. L. Myrick, M. D. Zoltowski, J. S. Goldstein. Low-sample performance ofreduced-rank power minimization based jammer suppression for GPS[C]. IEEE6th Int. Symp.on Spread-Spectrum Tech.&Appli. NJIT, New Jersey.2000,93-97.
    [48] W. L. Myrick, J. S. Goldstein, M. D. Zoltowski. Anti-jam space-time preproc-essor for GPS based on multistage nested Wiener filter[C]. IEEE MilitaryCommunications. Atlantic NJ.1999,675-681.
    [49] B.D. Van Veen, K. M. Buckley. Beamforming: a versatile approach to spatialfiltering[J]. IEEE ASSP Magazine.1988,4-24.
    [50] W. L. Myrick, J. S. Goldstein, M. D. Zoltowski. Low complexity anti-jamspace-time processing for GPS[C]. in Proceedings of the2001IEEEinternational Conference on Acoustics, speech, and Signal Processing,2001,4:1332-1336.
    [51] M. G. Amin, W. Sun. A novel interference suppression scheme for globalnavigation satellite systems using antenna array[J]. IEEE Journal on selectedareas in communications.2005,23(5):999-1012.
    [52] S. Wei, M. G. Amin. A self-coherence anti-jamming GPS receiver[J]. IEEETransactions on Signal Processing.2005,53(10):3910-3915.
    [53] S. Wei, M. G. Amin. Interference suppression for GPS CA signal using antennaarray[C]. In Proceedings of the2004IEEE International Conference on Acoustic,Speech, and Signal Processing.2004.929-932.
    [54] R. E. Cagley, S. E. Hwang, J. J. Shynk. A multistage interference rejectionsystem for GPS[C]. Proc. Asilomar Conf. on Signals, Systemsand Computer.Pacific Grove, CA.2002,1674-1679.
    [55] S. E. Hwang, R. E. Cagley, J. J. Shynk. A blind interference canceler for GPSsignals based on the CM array[C]. In: Proc. Thirty-Seventh AsilomarConference on Signals,Systems and Computers,2003,1:192-196.
    [56] S. E. Hwang, J. J. Shynk. A blind adaptive GPS receiver based on a nulldesppreader[C]. In: Vehicular Technology Conference.2005,2:895-898.
    [57] Z. Fu, A. Hornbostel, J. Hammesfahr, etc. Suppression of multipath andjamming signal by digital beamforming for GPS/Galileo applications[J]. GPSSolutions.2003,6:257-264.
    [58] M. Johan. Robust navigation with GPS/INS and adaptive beamforming[R].FOI-R—0848—SE, Swedish Defence Research Agency System TechnologyDivision.2003,31-38.
    [59] G. S. Granados. Antenna arrays for multipath and interference mitigation inGNSS receivers[D]. Department of signal theory and communicationsuniversitat Politecnica de Catalunya.2000.
    [60]从敏,JASSM将率先装备抗干扰的GPS接收机[J].飞航导弹.2001(8):
    [61]美国研制出新型GPS抗干扰接收机[OL]. http://www.cetin.net.cn/storage/cetin2/qk/yw/yw2000/jx20001308.htm.2000.
    [62] JSF战机将装备雷声公司的反干扰GPS系统[OL]. http://mil.news.sina.com.cn/2005-08-05/1940310876.html.2005.
    [63] Dale Reynolds.小型化GPS天线阵技术及其抗干扰性能的预测[J]. GPS天线及其抗干扰技术.2002,(4):66-83.
    [64] M. Cuntz, A. Greda, M.Heckler, etc. Architecture of a real-time safety of lifereceiver[C]. ION GNSS22th international technical meeting of the satellitedivision. Savannah, GA.2009.
    [65] J. Arribas, D. Bernal, C. Fernandez-prades, etc. A novel real-time platform fordigital beamforming with GPS sofeware defined receivers[C]. ION GNSS22thinternational technical meeting of the satellite division. Savannah, GA.2009.
    [66]张文明,卫星导航系统抗干扰技术研究[D].国防科学技术大学.2002.
    [67]孙晓昶,皇莆堪. GPS接收机联合空时抗干扰方法[J].通信学报.2003,24(9):93-102.
    [68]董红飞. GPS接收机空时联合自适应干扰抑制及对抗研究[D].国防科学技术大学.2005.
    [69]孙晓昶. GPS空时抗干扰技术研究[D].国防科学技术大学.2003.
    [70]狄旻珉. GPS抗干扰接收技术研究[D].国防科学技术大学.2006.
    [71]尚建平. GPS抗干扰技术研究[D].武汉大学.2004.
    [72]王忠,黄顺吉. GPS抗干扰自适应圆阵性能的研究[J].电波科学学报.1997,12(4):448-452.
    [73]张琳.卫星导航系统抗干扰接收机关键技术研究[D].哈尔滨工业大学,2007.
    [74]卢丹,吴仁彪,胡铁乔等.基于自相干MUSIC算法的全球定位系统干扰抑制方法[P].国家发明专利.中国. ZL201010031382.6.
    [75]吴仁彪,卢丹,刘海涛等.基于单通道单延迟互相关处理的GPS干扰抑制方法[P].国家发明专利.中国. ZL201010100159.2.
    [76]卢丹,吴仁彪,李婵.通用的卫星导航系统多类干扰抑制方法[P].国家发明专利.中国. ZL200910067774.5.
    [77]吴仁彪,李婵,卢丹.加宽零陷的高动态卫星导航系统干扰抑制方法[P]国家发明专利.中国. ZL200910067773.0.
    [78]卢丹,吴仁彪,王磊.基于码字结构的盲自适应GPS干扰抑制方法[P].国家发明专利.中国. ZL200910069091.3.
    [79] L.J. Wang, H.C. Zhao, G. Xiong,etc. Adaptive beamforming with coherentinterference for GPS receivers[C].20044th International Conference onMicrowave and Millimeter Wave Technology Proceedings.2004,622-626.
    [80]齐志强.全球定位系统的抗干扰技术研究[J].电子设计工程.2011,19(19):112-115.
    [81]李敏,聂俊伟,曾祥华等.一种基于扩展MUSIC算法的导向矢量估计算法[C].第一届中国卫星导航学术年会.北京.2010,286-294.
    [82]杨克元. GPS接收机抗干扰算法及其实现研究[D].电子科技大学,2010.
    [83]刘沉.实用化卫星导航抗干扰接收机关键技术研究[D].国防科技大学.2011.
    [84]冯起,袁乃昌.GPS抗干扰功率倒置阵算法仿真研究[J].全球定位系统.2004,(5):40-42.
    [85]项建弘.基于空时自适应处理的GPS调零技术应用研究[D].哈尔滨工程大学,2009.
    [86] R. O. SHMIDT. Multiple emitter location and signal parameter estimation[J]. IEEE Trans.on ASSP.1986,34(3):276-280.
    [87]查光明,熊贤祚.扩频通信[M].西安:西安电子科技大学出版社.2002:9-22.
    [88] E.D. Kaplan著,邱致和,王万义译. GPS原理与应用[M].第一版.北京:电子工业出版社.2002.56-57.
    [89]王永良,丁前军,李荣锋.自适应阵列处理[M].北京:清华大学出版社,2009.30-60.
    [90] B.D. Carlson. Covariance matrix estimation errors and diagonal loading inadaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems.1988,24(4):397-401.
    [91] M. Pratap,E.Per著.罗鸣,曹冲,肖雄兵等译.全球定位系统—信号、测量与性能[M].第二版.北京:电子工业出版社.2008.323-330.
    [92]李敏.卫星导航接收机数字波束形成关键技术研究[D],国防科技大学.2011.
    [93] B.G. Agee, S. V. Schell, W.A. Gardner. Spectral self-coherence restoral: A Newapproach to blind adaptive signal extraction using antenna arrays[J].Proceedings of the IEEE.1990,78(4):753-767.
    [94] Q. Wu, K. M. Wong. Blind adaptive beamforming for cyclostationary signals[J].IEEE Trans on SP.1996,44(11):2757-2767.
    [95] Q. Wu, K. M. Wong, R. Ho. A fast algorithm for adaptive beamforming of thecyclic signals[C]. in Proc, Fifth Int. Conf. Wireless Commun., Calgary, Canada.1993,325-334.
    [96]史公正,陈建春,耿富录.基于循环平稳性的盲波束形成改进算法[J].西安电子科技大学学报(自然科学版).2003,30(3):370-373.
    [97]何振亚,陈宇欣,一种具有快速收敛特性的盲自适应波束形成算法[J].通信学报,1999,20(12):69-74.
    [98] Behar Vera, Kabakchiev Christo, Rohling Herman. MVDR radar signalprocessing approach for jamming suppression in satellite navigation receivers.IEEE International Conference on Radar Symposium.2010,1-4.
    [99] S. A. Vorobyov, A. R. Gershman, Z. Q. Luo. Robust adaptive beamformingusing worst-caseperformance optimization[J]. IEEE Trans. Signal Processing.2003,51:313-324.
    [100] R. P. Gooch, J. D. Lundell. The CM array: an adaptive beamformer for constantmodus signals[C]. In proceedings of the1986IEEE international Conference onAcoustics, speech, and Signal Processing. Tokyo, Japan.1986,2523-2526.
    [101] T. J. Shan, T. Kailath. Adaptive beamforming for coherent signals andinterference[J]. IEEE Transaction on Acoustics, Speech, and Signal processing.1985,33(3):527-536.
    [102]高世伟,保铮.一种用于相干和不相干窄带信号源高分辨的广义信号子空间估计方法[J].电子学报.1990,18(4):42-48.
    [103]高世伟,保铮.用数据信号子空间分析等距线阵分辨信号源数的能力[J].电子学报.1989,1(1):1-8.
    [104] A. B. Gershman, U. Nickel, J. F. Bohme. Adaptive beamforming algorithmswith robustness against jammer motion[J].IEEE Transactions on SignalProcessing.1997,45:1878-1885.
    [105] A.J. Van Dierendonck, P. fenton, T. Ford. Theory and Performance of NarrowCorrelator Spacing in a GPS Receiver[J]. Journal of the institute ofnavigation.1992,265-283.
    [106] R.T. Bryan, D.J Richard van Nee, F. C. Patrick, etc.Performance Evaluation ofthe Multipath Estimating Delay Lock Loop[J]. ION Natioanl Technique Meeting.Anaheim, California.1995,1-7.
    [107] T. S. Lee, T. T. Lin. Coherent interference suppression with complementallytransformed adaptive beamformer[J]. IEEE Transactions on Antennas andPropagation.1998,46(5):609-617.
    [108]赵永波,张守宏.存在相干干扰时的最优波束形成[J].通信学报.2002,23(2):113-121.
    [109] M. LU, Z. He. Adaptive beam forming using split-polarity transformation forcoherent signal and interference[J]. IEEE Transactions on Antennas andPropagation.1993,41(3):314-324.
    [110] A. Brown. Multipath rejection through spatial processing[C]. proceeding of IONGSP. Salt Lake City, Utah.2000.
    [111] A. D. Bresler. A new algorithm for calculating the current distributions ofDolph-Chebyshev arrays[J]. IEEE Transactions on Antennas and Propagation.1980,28:951-952.
    [112] R. Roy, A. Paulraj, T. Kailath. ESPRIT-A subspace rotation approach toestimation of parameter of cissoids in noise[J]. IEEE Transactions on Acoustic,Speech, Signal Processing.1986,34:1340-1342.
    [113] P. Stoica, R, Moses. Spectrum Analysis of signals[M]. Prentice Hall.2005.
    [114] U. J. Schwarz. Mathematical-statistical description of the iterative beamremoving technique (method CLEAN)[J]. Astromony and Astrophysics.1978,65:345-346.
    [115] J. A. Hogbom. Aperture synthesis with a nonregular distribution ofinterferometer baselines[J]. Astron. Astrophys. Supplements.1974,15:417-426.
    [116] P. T. Gough. A fast spectral estimation algorithm based on the FFT[J]. IEEETransactions on Signal Precessing.1994,42(6):1317-1322.
    [117] J. Tsao, B. D. Steinberg. Reduction of sidelobe and speckle artifacts inmicrowave imaging: The CLEAN technique[J]. IEEE Transactions on Antennaspropagation.1988,36(4):543-556.
    [118] J. LI, P. Stioica. Efficient mixed-spectrum estimation with applications to targetfeature extraction[J]. IEEE Transactions on Signal Processing.1996,44(2):281-295.
    [119] J. LI, D. Zheng, P. Stoica. Angle and waveform estimation via RELAX[J]. IEEETransactions on Aerospace and Electronic Systems.1997,33(3):1077-1087.
    [120] Z. S. Liu, J. LI. Implementation of the RELAX algorithm[J]. IEEE Transactionson Aerospace and Electronic Systems.1998,34(2):657-664.
    [121] Z. Rong. Simulations of adaptive array algorithm for CDMA system[D].Virginia Tech, Blacksburg.1996.
    [122] Z. Rong, T. S. Rappaport. Simulation of multitarget adaptive algorithms forwireless CDMA systems[C]. Proceeding of IEEE Vehicular TechnoloryConference.1996,1-5.
    [123]张贤达,保铮.通信信号处理[M].北京:国防工业出版社.2002.408-413.
    [124] V. D. Thanh, N. L. Hung. New adaptive beamforming algorithms for smartantennas in DS-CDMA mobile communication systems[C].20043thInternational Conference on Computational Electronmagnetics and ItsApplications Proceedings.2004,165-168.
    [125] Z. M. Du, P. Gong, W. L. Wu. Block based RLS de-spread re-spread multitargetarray: algorithm and performance[C]. Proceeding of IEEE Vehicular TechnoloryConference.2001,190-193.
    [126] B. T. James. Fundamentals of global positioning system receivers [M]. Wiley,USA,2005.
    [127] R. L. Pickholtz, D. L. Schilling. L. B. Milstein. Theory of spread-spectrumcommunications: A tutorial[J]. IEEE Transactions on Communications.1982,30:855-884.
    [128] F. H. Gary. Adaptive array processing for wideband nulling in GPS systems
    [C]. Conference Record of the Thirty Second Asilomar Conference on SignalsSystems and Computers.1998,2:1332-1336.
    [129] A. V. Oppenheim, R. W. Shafer. Digital Signal Processing[M]. NJ:PrenticeHall.1975.100-102.
    [130] A. V. Oppenheim, R. W. Shafer. Discrete-Time Signal Processing[M]. NJ:PrenticeHall.1989.156-158.
    [131] S. V. Vaseghi. Advanced digital signal processing and noise reduction[M]. ThirdEdition. USA: Wliey.2006.269-271.
    [132] S. X. Li, C. Zhu, F. K. H. A compensating approach for signal distortionintroduced by STAP[J]. Communication Technology.2006,11:1-4.
    [133]吴仁彪,徐如兰,卢丹.基于同态滤波的GPS空时自适应处理补偿技术[J].中国科学:物理学力学天文学.2010,40(5):554-559.
    [134]李婵.高动态GPS接收机的自适应抗干扰算法研究[D].中国民航大学.2009.
    [135] A. B. Gershman, G. V. Serebryakov, J. F. Bohme. Constrained Hung-Turneradaptive beam-forming algorithm with additional robustness to wideband andmoving jammers[J], IEEE Transaction on Antennas Propagate.1996,44(3):361-366.
    [136] R. J. Mailloux. Covariance matrix augmentation to produce adaptive arraypattern troughs[J], Electronics Letters.1995,31(10):771–772.
    [137] M. Zatman. Production of adaptive array troughs by dispersion synthesis[J].Electronics Letters.1995,31(25):2141-2142.
    [138]丁前军,王永良,张永顺等.一种虚拟波束形成自适应加权空间平滑算法.电子与信息学报.2006,28(12):2263-2268.
    [139]吴仁彪,卢丹,李婵.用于高动态GPS接收机的微分约束最小功率抗干扰算法.中国科学:信息科学.2011,41(8):968-977.
    [140] S. Hinedi, J. I. Statman. High-Dynamic GPS Tracking Final Report [R]. JPLPublication.1988,35-88.
    [141] J. Li, P. Stoica, Z. Wang. On robust Capon beamforming and diagonal loading[J].IEEE Transactions on Signal processing.2003,51:1702-1715.
    [142]王磊,吴仁彪,卢丹.基于子空间技术的常规多波束形成抗干扰算法.华东理工大学学报(自然科学版).2011,37(3):372-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700