用户名: 密码: 验证码:
无线协作传输系统的资源分配与协议设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协作传输作为一种新型的传输技术,让用户间共享天线,构成虚拟多天线系统,在不增加硬件复杂度的情况下获得了空间分集增益,有效地克服了多径传播导致的信号衰落,实现了提高传输性能的目的,因而受到了广泛的关注和重视。
     本文从物理层的资源分配和上层的协议设计两个角度分析和研究了协作在通信场景中的性能增益。
     首先,我们针对基于CRC检验的选择解码转发(CDF,CRC-based selectiondecode-and-forward)和放大转发(AF,ampliy-and-forward)两种协作协议,分析了它们的中断概率,指出编码、调制对于以上两种协议的不同影响;并在考虑QoS(Quality of service)要求的前提下,以最大化协作网络的传输速率为目标,联合基于最小化中断概率的功率分配和自适应编码调制等技术,提出了一种扩展的链路自适应传输技术,研究表明:该技术可以有效地提高系统的传输速率和扩大系统的覆盖范围。
     其次,我们把协作传输与多载波调制技术相结合,针对放大转发型多载波协作传输系统,分别以最小化传输错误概率和最大化传输速率为目标,联合子载波和功率分配以及自适应编码调制等技术,提出了最优和次优的资源分配算法。研究表明:以最小化传输错误概率为目标所提出的资源分配算法不仅可以有效地降低传输误码率,还可以提高系统的分集阶数,并且当系统已知节点的位置信息时,只要通过设定次优资源分配算法的复杂度参数,就可以在获得最佳系统性能的同时降低计算复杂度;而以最大化传输速率为目标所提出的资源分配算法具有低实现复杂度和可靠提高传输速率等优点。
     然后,针对分布式无线通信系统,把物理层的协作传输与MAC(mediumaccess control)层的协议设计相结合,研究了如何通过跨层设计来提高分布式协作传输系统的吞吐量和保证更加可靠的通信质量。我们先从MAC的角度分析和研究了协作在分布式网络中所会遇到的各种困难和挑战。然后,针对全连通网络,侧重于协作节点的选择问题,基于跨层的思想提出了一种802.11 DCF(Distributed coordination function)构架的协作MAC协议。再在此基础上,研究了多跳网络的协作MAC设计:首先,在理论上提出了一种两跳的干扰模型,从空间频率复用的角度分析了协作对于这类网络的影响,通过分析我们发现协作传输对于使用协作的链路本身具有抑制干扰的好处,但是也会造成被阻塞的节点个数增加而可能导致网络整体性能的下降;然后,为了证实协作传输对于该类网络可能带来的影响,提出了一种适用于多跳网络的基于Busy-tone的跨层协作MAC协议,为了有效地解决由协作带来的新的隐蔽站问题,该协议中加入了目的节点辅助的无冲突竞争机制,同时为了进一步提高协作节点的竞争效率,我们也提出使用分组避退的竞争方法,最后就节点密度和网络流量等因素对于多跳协作网络的性能影响进行了仿真。
     最后,我们把协作扩展到应用层,以无线传感器网络WSN(Wireless sensornetwork)的定位问题为例,研究了节点间的协作对于无线传感器网络定位的帮助。提出了一种利用节点间协作的,适用于基于测距的分布式定位方法——3/2-NANDB,它可以充分利用节点间的冗余信息,完全确定只有两个邻居节点的节点位置,而那些即使只有一个邻居节点的待估节点也可能被完全定位,或者最大可能性地估计出它们的位置,从而可以最大化网络内部可定位节点数目,扩大网络观察范围,减少GPS携带节点数量,延长网络存活时间,同时该方法也可以用来提高其他现有的基于三邻居节点定位的算法的总体性能。
Cooperative communication is a promising diversity technique that has attractedsignificant research interests,where mobile nodes share their information andtransmit cooperatively,forming a virtual antenna array and thus providing diversityto combat signal fading due to multipath propagation without requirement ofadditional antennas at each node.
     In this dissertation,we investigate the problem that how to improve theperformance of cooperative communication under various scenarios by resourceallocation on physical layer and higher layers' protocols design.
     Firstly,we analyze the outage probability of two cooperative protocols,CRC-based selection decode-and-forward (CDF) and amplify-and-forward (AF),andillustrate the different impacts they suffer from modulation and coding schemes.Furthermore,considering quality of service (QoS) requirement,an extended linkadaptation (ELA) technique is proposed for transmission rate maximization.Outageprobability optimization based power allocation and adaptive modulation and codingtechnique are jointly designed to improve its performance.Simulation results showthat with the ELA,the two merits of cooperation,improved transmission rate andincreased coverage,can be further effectively enhanced.
     Secondly,cooperative communication is integrated with the multicarrier systems.For the AF-based multicarrier cooperative system,both the optimal and suboptimalresource allocation algorithms are proposed for bit error rate (BER) minimizationand rate maximization,respectively,utilizing joint power allocation,subcarrierreassignment design and adaptive modulation and coding techniques.Simulationresults show that the proposed BER-minimization algorithms not only reduce BEReffectively,but also improve the diversity order.In addition,with the locationinformation knowledge,the optimal BER performance can be achieved just bysetting an appropriate complexity coefficient of the suboptimal algorithm.Simulation results of the rate-maximization algorithm verify its advantage of efficient date rate improvement under very low implementation complexity.
     Thirdly,for the distributed wireless communication systems,cross-layeroptimization between cooperative communication on physical layer and protocoldesign on medium access control (MAC) layer is considered.We first discussvarious issues and challenges on designing an efficient cooperative MAC.Then,focusing on helper selection,a cooperative MAC based on IEEE 802.11 DCF isproposed under the scenario of single hop networks.After that,we extend our workto multihop network scenario and propose a two-hop interference model from aMAC perspective to analyze the performance of a cooperative network in term ofspatial and frequency reuse.It is found that with cooperation,a cooperative linkbenefits from less interference due to more suppressed interference sources,however,the increased number of blocked traffic nodes can degrade the network performancedue to a lower spatial frequency reuse.To verify the influence of cooperativecommunication on such networks,a cross-layer designed busy-tone basedcooperative MAC scheme is proposed.Furthermore,destination-assistedcollision-free piggyback mechanism and group-based helper contention are proposedin the new MAC scheme to solve the new hidden terminal problem caused bycooperation and to further improve the efficiency of helper selection,respectively.Simulation of the new cooperative MAC scheme is done to investigate theinfluenced factors including node density and traffic load.Last but not least,cooperation is further extended to application layer.Takinglocation problem as an example,we investigate the problem that how to make use ofcooperation between neighbor nodes to help to solve location in wireless sensornetworks (WSNs).A distributed location method called 3/2-NANDB based ondistance measurement is proposed according to the principle of minimal hardwarecost.Due to the information sharing between neighbors,3/2-NANDB cansufficiently mine redundant information among nodes,and effectively eliminate thedilemma of node's position.It ascertains the positions of the nodes having twoneighborhoods completely and a part of nodes which only have one neighborhood as well.It achieves the goals of reducing the number of nodes equipped with GPS,maximizing the number of localizable nodes in networks,extending the networks'observation area and prolonging the lifetime of WSNs.Using the node's dilemmaelimination algorithm,it also can assist other algorithms which are based on 3-NAlocation algorithm to improve their location performance.
引文
[1] S. Frattasi, H. Fathi, F.H.P. Fitzek, R. Prasad and M.D. Katz. Defining 4G Technology from The Users Perspective [J]. IEEE Network, 2006, 20(1): 35-41.
    [2] B. Krenik. 4G Wireless Technology: When will it happen? What does it offer? [A]. In: IEEE. Proc. Asian Solid-State Circuits Conference 2008 [C]. Fukuoka: IEEE, 2008: 141-144.
    [3] M. Munoz and C.G. Rubio. A New Model for Service and Application Convergence in B3G/4G Networks [J]. IEEE Wireless Communications, 2004, 11(5): 6-12.
    [4] P. Zhang, X. Tao, J. Zhang, Y. Wang, L. Li and Y. Wang. A Vision from The Future: Beyond 3G TDD [J]. IEEE Communications Magazine, 2005, 43(1): 38-44.
    [5] Z. Abichar, Y. Peng and J.M. Chang. WiMax: The Emergence of Wireless Broadband [J]. IT Professional, 2006, 8(4): 44-48.
    [6] K. Lu, Y. Qian, H.-H. Chen and S. Fu. WiMAX Networks: From Access to Service Platform [J]. IEEE Network, 2008,22(3): 38-45.
    [7] P. Taaghol, A. Salkintzis and J. Iyer. Seamless Integration of Mobile WiMAX in 3GPP Networks [J]. IEEE Communications Magazine, 2008, 46(10): 74-85.
    [8] G.J. Fosehini and MJ. Gans. On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas [J]. Wireless Personal Commun., 1998, 6(3): 311-335.
    [9] E. Telatar. Capacity of Multi-antenna Gaussian Channels [J]. European Tran. of Telecommunications, 1999, 10(6): 555-595.
    [10] T. K. Y. Lo. Maximum Ratio Transmission [J]. IEEE Trans. Commun., 1999, 47(10): 1458-1461.
    [11] L. Zheng and D.N.C. Tse. Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-antenna Channels [J]. IEEE Trans. Information Theory, 2003, 49(5): 1073-1096.
    [12] J. W. Mark and W. Zhuang. Wireless Communications and Networking [M]. Beijing: Electronics Industry Press, 2006.
    [13] W. Lee. Mobile Communications Engineering [M]. New York: McGraw-Hill Press, 1982.
    [14] A. Nosratinia, T. E. Hunter and A. Hedayat. Cooperative Communication in Wireless Networks [J]. IEEE Commun. Mag., 2004, 42(10): 74-80.
    [15] R. Pabst, et. al.. Relay-Based Deployment Concepts for Wireless and Mobile Broadband Radio [J]. IEEE Commun. Mag., 2004, 42(9): 80-89.
    [16] P. Liu, Z. Tao, Z. Lin, E. Erkip and S. Panwar. Cooperative Wireless Communications: A Cross-Layer Approach [J]. IEEE Wireless Commun. Mag., 2006, 13(4): 84-92.
    [17] A. Bletsas and A. Lippman. Implementing Cooperative Diversity Antenna Arrays with Commodity Hardware [J]. IEEE Commun. Mag., 2006, 44(12): 33-40.
    [18] E. C. van der Muelen. Three-terminal Communication Channels [J]. Adv. Appl. Probab., 1971,3(1): 120-154.
    [19] T. Cover and A.E. Gamal. Capacity Theorems for The Relay Channel [J]. IEEE Trans. Inform. Theory, 1979, 25(5): 572-584.
    [20] A. Sendonaris, E. Erkip and B. Aazhang. User Cooperation Diversity-Part Ⅰ: System Description [J]. IEEE Trans. Commun., 2003, 51(11): 1927-1938.
    [21] A. Sendonaris, E. Erkip and B. Aazhang. User Cooperation Diversity-Part Ⅱ: Implementation Aspects and Performance Analysis [J]. IEEE Trans. Commun., 2003,51(11): 1939-1948.
    [22] J. N. Laneman, G. W. Wornell and D. N. C. Tse. An Efficient Protocol for Realizing Cooperative Diversity in Wireless Networks [A]. In: IEEE. Proc. International Symposium on Information Theory [C]. Washington, DC: IEEE, 2001:294.
    [23] J. N. Laneman, D. N. C. Tse and G. W. Wornell. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior [J]. IEEE Trans. Inf. Theory, 2004, 50(12): 3062-3080.
    [24] A. Stefanov and E. Erkip. Cooperative Coding for Wireless Networks [J]. IEEE Trans. Commun., 2004, 52(9): 1470-1476.
    [25] T. E. Hunter and A. Nosratinia. Diversity through Coded Cooperation [J]. IEEE Trans. Wireless Commun., 2006, 5(2): 283-289.
    [26] R. U. Nabar, H. Bolcskei and F. W. Kneubuhler. Fading Relay Channels: Performance Limits and Space-Time Signal Design [J]. IEEE J. Select. Areas Commun., 2004, 22(6): 1099-1109.
    [27] J. N. Laneman and G. W. Wornell. Distributed Space-Time-Coded Protocols for Exploiting Cooperative Diversity in Wireless Networks [J]. IEEE Trans. Inf. Theory, 2003,49(10): 2415-2425.
    [28] M. Uysal and H. Mheidat. Maximum-Likelihood Detection for Distributed Space-Time Block Coding [A]. In: IEEE. Proc. VTC04-Fall [C]. Los Angeles, CA: IEEE, 2004: 2419-2423.
    [29] T. Wang, Y. Yao and G. B. Giannakis, Non-Coherent Distributed Space-Time Processing for Multiuser Cooperative Transmissions [A]. In: IEEE. Proc. Global Communications Conference 2005 [C]. St. Louis, MO: IEEE, 2005: 3738-3742.
    [30] S. Yiu, R. Schober and L. Lampe. Distributed Space-Time Block Coding [A]. In: IEEE. Proc. Global Communications Conference 2005 [C]. St. Louis, MO: IEEE, 2005: 1592-1597.
    [31] R. U. Nabar, H. Bolcskei and F. W. Kneubuhler. Fading Relay Channels: Performance Limits and Space-Time Signal Design [J]. IEEE J. Select. Areas Commun., 2004, 22(6): 1099-1109.
    [32] G. Scutari and S. Barbarossa. Distributed Space-Time Coding for Regenerative Relay Networks [J]. IEEE Trans. Wireless Commun., 2005, 4(5): 2387-2399.
    [33] F. Oggier and B. Hassibi. An Algebraic Family of Distributed Space-Time Codes for Wireless Relay Networks [A]. In: IEEE. Proc. ISIT [C]. Seattle, USA: IEEE, 2006: 538-541.
    [34] S. Yiu, R. Schober and L. Lampe. Distributed Space-Time Block Coding [J]. IEEE Trans. Commun., 2006, 54(7): 1195-1206.
    [35] P. A. Anghel, G. Leus and M. Kaveh. Distributed Space-Time Cooperative Systems with Regenerative Relays [J]. IEEE Trans. Wireless Commun., 2006, 5(11): 3130-3141.
    [36] H. Mheidat, M. Uysal and N. Al-Dhahir. Equalization Techniques for Distributed Space-Time Block Codes with Amplify-and-Forward Relaying [J]. IEEE Trans. Signal Processing, 2007, 55(5): 1839-1852.
    [37] S. Savazzi and U. Spagnolini. Distributed Orthogonal Space-Time Coding: Design and Outage Analysis for Randomized Cooperation [J]. IEEE Trans. Wireless Communi., 2007, 6(12): 4546-4557.
    [38] T. Himsoon, W. P. Siriwongpairat, W. Su and K.J.R. Liu. Differential Modulations for Multinode Cooperative Communications [J]. IEEE Trans. Signal Processing, 2008, 56(7): 2941-2956.
    [39] W. Zhang and K. B. Letaief. Full-Rate Distributed Space-Time Codes for Cooperative Communications [J]. IEEE Trans. Wireless Commun., 2008, 7(7): 2446-2451.
    [40] P. Tarasak, M. Hlaing and V.K. Bhargava. Differential Modulation for Two-User Cooperative Diversity Systems [J]. IEEE J. Select. Areas Commun., 2005,23(9): 1891-1900.
    [41] T. Himsoon, W. Su and K.J.R. Liu. Differential Transmission for Amplify-and-Forward Cooperative Communications [J]. IEEE Signal Processing Letters, 2005, 12(9): 597-600.
    [42] Q. Zhao and H. Li. Performance of Differential Modulation with Wireless Relays in Rayleigh Fading Channels [J]. IEEE Commun. Letters, 2005, 9(4): 343-345.
    [43] Q. Zhao and H. Li. Differential Modulation for Cooperative Wireless Systems [J]. IEEE Trans. Signal Processing, 2007, 55(5): 2273-2283.
    [44] H. Thanongsak, W.P. Siriwongpairat, W. Su and K.J.R. Liu. Differential Modulation with Threshold-Based Decision Combining for Cooperative Communications [J]. IEEE Trans. Signal Processing, 2007, 55(7): 3905-3923.
    [45] M.R. Bhatnagar, A. Hjorungnes and L. Song. Amplify-and-Forward Cooperative Communications Using Double-Differential Modulation over Nakagami-m Channels [A]. In: IEEE. Proc. Wireless Communications and Networking Conference 2008. Las Vegas: IEEE, 2008: 350-355.
    [46] D. Chen and J.N. Laneman. Modulation and Demodulation for Cooperative Diversity in Wireless Systems [J]. IEEE Trans. Wireless Commun., 2006, 5(7): 1785-1794.
    [47] T. Kiran and B.S. Raj an. Partially-Coherent Distributed Space-Time Codes with Differential Encoder and Decoder [J]. IEEE J. Select. Areas Commun., 2007, 25(2): 426-433.
    [48] G. Wang, Y. Zhang and M. Amin. Differential Distributed Space-Time Modulation for Cooperative Networks [J]. IEEE Trans. Wireless Commun., 2006, 5(11): 3097-3108.
    [49] A. Stefanov and E. Erkip. Cooperative Coding for Wireless Networks [J]. IEEE Trans. Commun., 2004, 52(9): 1470-1476.
    [50] T. E. Hunter and A. Nosratinia. Cooperation Diversity through Coding [A]. In: IEEE. Proc. ISIT [C]. Lausanne, Switzerland: IEEE, 2002: 220.
    [51] T. E. Hunter and A. Nosratinia. Diversity through Coded Cooperation [J]. IEEE Trans. Wireless Commun., 2006, 5(2): 283-289.
    [52] T. Hunter, S. Sanayei and A. Nosratinia. Outage Analysis of Coded Cooperation [J]. IEEE Trans. Inf. Theory, 2006, 52(2): 375-391.
    [53] A. El Gamal and S. Zahedi. Capacity of a Class of Relay Channels with Orthogonal Components [J]. IEEE Trans. Inf. Theory, 2005, 51(5): 1815-1817.
    [54] Y. Liang and V. V. Veeravalli. Gaussian Orthogonal Relay Channels: Optimal Resource Allocation and Capacity [J]. IEEE Trans. Inf. Theory, 2005, 51(9): 3284-3289.
    [55] B. Schein and R. G. Gallager. The Gaussian Parallel Relay Network [A]. In: IEEE. Proc. Int Symp. Information Theory [C]. Sorrento, Italy: IEEE, 2000: 22.
    [56] L.-L. Xie and P. R. Kumar. An Achievable Rate for the Multiple-Level Relay Channel [J]. IEEE Trans. Inf. Theory, 2005, 51(4): 1348-1358.
    [57] Y. Liang and V. V. Veeravalli. Cooperative Relay Broadcast Channels [J]. IEEE Trans. Inf. Theory, 2007, 53(10): 900-928.
    [58] A. Reznik, S. Kulkarni and S. Verd(?). Broadcast-Relay Channel: Capacity Region Bounds [A]. In: IEEE, Proc. Int. Symp. Information Theory [C]. Adelaide, Australia: IEEE, 2005: 820-824. .
    [59] R. Dabora and S. Servetto. Broadcast Channels with Cooperating Decoders [J]. IEEE Trans. Inf. Theory, 2006, 52(12): 5438-5454.
    [60] Y. Liang and V. V. Veeravalli. The Impact of Relaying on the Capacity of Broadcast Channels [A]. In: IEEE. Proc. Int. Symp. Information Theory [C]. Chicago, IL: IEEE, 2004: 403.
    [61] P. Gupta and P. R. Kumar. The Capacity of Wireless Networks [J]. IEEE Trans. Inf. Theory, 2000,46(2): 388-404.
    [62] P. Gupta and P.R. Kumar. Toward An Information Theory of Large Networks: An Achievable Rate Region [A]. In: IEEE. Proc. Int. Symp. Information Theory [C]. Washington, DC: IEEE, 2001: 159.
    [63] M. Gastpar and M. Vetterli. On the Capacity of Wireless Networks: The Relay Case [A]. In: IEEE. Proc. INFOCOM 2002 [C]. New York: IEEE, 2002: 1577-1586.
    [64] M. Gastpar and M. Vetterli. On the Asymptotic Capacity of Gaussian Relay Channels [A]. In: IEEE. Proc. Int. Symp. Information Theory [C]. Lausanne, Switzerland: IEEE, 2002: 195.
    [65] A. Host-Madsen and J. Zhang. Capacity Bounds and Power Allocation for Wireless Relay Channels [J]. IEEE Trans. Inf. Theory, 2005, 51(6): 2020-2040.
    [66] A. S. Avestimehr and D. N. C. Tse. Outage Capacity of The Fading Relay Channel in The Low-SNR Regime [J]. IEEE Trans. Inf. Theory, 2007, 53(4): 1401-1415.
    [67] G. Kramer, M. Gastpar and P. Gupta. Cooperative Strategies and Capacity Theorems for Relay Networks [J]. IEEE Trans. Inf. Theory, 2005, 51(9): 3037-3063.
    [68] B. Wang, J. Zhang and A. Host-Madsen. On The Capacity of MIMO Relay Channels [J]. IEEE Trans. Inf. Theory, 2005, 51(1): 29-43.
    [69] J. Wagner, B. Rankov and A. Wittneben. On the Asymptotic Capacity of The Rayleigh Fading Amplify-and-Forward MIMO Relay Channel [A]. In: IEEE. Proc. ISIT [C]. Nice, France: IEEE, 2007: 2711-2715.
    [70] H. Bolcskei, R. U. Nabar, O. Oyman and A. J. Paulraj. Capacity Scaling Laws in MIMO Relay Networks [J]. IEEE Trans. Wireless Commun., 2006, 5(6): 1433-1444.
    [71] A.E. Gamal, M. Mohseni and S. Zahedi. Bounds on Capacity and Minimum Energy-per-Bit for AWGN Relay Channels [J]. IEEE Trans. Inf. Theory, 2006, 52(4): 1545-1561.
    [72] M. Dohler, A. Gkelias and A.H. Aghvami. Capacity of distributed PHY-layer sensor networks [J]. IEEE Trans. Vehicular Technology, 2006, 55(2): 622-639.
    [73] S. Nagaraj, D. Truhachev and C. Schlegel. Achievable Communication Rates in Ad hoc Wireless Networks Using Local Node Cooperation [A]. In: IEEE. Proc. International Conference on Communications 2006 [C]. Istanbul, Turkey: IEEE, 2006: 4052-4058.
    [74] P. A. Anghel and M. Kaveh. Exact Symbol Error Probability of A Cooperative Network in A Rayleigh-Fading Environment [J]. IEEE Trans. Wireless Commun., 2004, 3(5): 1416-1421.
    [75] A. Ribeiro, X. Cai and G. B. Giannakis. Symbol Error Probabilities for General Cooperative Links [J]. IEEE Trans. Wireless Commun., 2005, 4(3): 1264-1273.
    [76] I. Lee and D. Kim. BER Analysis for Decode-and-Forward Relaying in Dissimilar Rayleigh Fading Channels [J]. IEEE Commun. Lett., 2007, 11(1): 52-54.
    [77] L.-L. Yang and H.-H. Chen. Error Probability of Digital Communications Using Relay Diversity over Nakagami-m Fading Channels [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1806-1811.
    [78] A. Adinoyi and H. Yanikomeroglu. Cooperative Relaying in Multi-Antenna Fixed Relay Networks [J]. IEEE Trans. Wireless Commun., 2007, 6(2): 533-544.
    [79] P. A. Anghel and M. Kaveh. On the Performance of Distributed Space-Time Coding Systems with One and Two Non-regenerative Relays [J]. IEEE Trans. Wireless Commun., 2006, 5(3): 682-692.
    [80] M. Uysal, O. Canpolat and M. M. Fareed. Asymptotic Performance Analysis of Distributed Space-Time Code [J]. IEEE Commun. Lett., 2006, 10(11): 775-777.
    [81] T. Unger and A. Klein. On the Performance of Distributed Space-Time Block Codes in Cooperative Relay Networks [J]. IEEE Commun. Lett., 2007, 11(5): 411-413.
    [82] A. K. Sadek, W. Su and K. J. R. Liu. Multinode Cooperative Communications in Wireless Networks [J]. IEEE Trans. Signal Processing, 2007, 55(1): 341-355.
    [83] H. Muhaidat and M. Uysal. Cooperative Diversity with Multiple-Antenna Nodes in Fading Relay Channels [J]. IEEE Trans. Wireless Commun., 2008, 7(8): 3036-3046.
    [84] H. Shin and J. B. Song. MRC Analysis of Cooperative Diversity with Fixed-Gain Relays in Nakagami-m Fading Channels [J]. IEEE Trans. Wireless Commun., 2008, 7(6): 2069-2074.
    [85] G. Farhadi and N. C. Beaulieu. On the Performance of Amplify-and-Forward Cooperative Systems with Fixed Gain Relays [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1851-1856.
    [86] G. K. Karagiannidis, T. A. Tsiftsis and R. K. Mallik. Bounds for Multihop Relayed Communications in Nakagami-m Fading [J]. IEEE Trans. Commun., 2006, 54(1): 18-22.
    [87] N. C. Beaulieu and J. Hu. A Closed-Form Expression for The Outage Probability of Decode-and-Forward Relaying in Dissimilar Rayleigh Fading Channels [J]. IEEE Commun. Lett, 2006, 10(12): 813-815.
    [88] Z. Yi and I-M. Kim. Diversity Order Analysis of the Decode-and-Forward Cooperative Networks with Relay Selection [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1792-1799.
    [89] K. Azarian, H. E. Gamal and P. Schniter. On the Achievable Diversity-Multiplexing Tradeoff in Half-Duplex Cooperative Channels [J]. IEEE Trans. Inf. Theory, 2005, 51(12): 4152-4172.
    [90] M. Yuksel and E. Erkip. Multiple-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective [J]. IEEE Trans. Inf. Theory, 2007, 53(10): 3371-3393.
    [91] E. Stauffer, O. Oyman, R. Narasimhan and A. Paulraj. Finite-SNR Diversity-Multiplexing Tradeoffs in Fading Relay Channels [J]. IEEE J. Select. Areas Commun., 2007, 25(2): 245-257.
    [92] C. S. Patel, G. L. Stuber and T. G. Pratt. Statistical Properties of Amplify and Forward Relay Fading Channels [J]. IEEE Trans. Veh. Technol., 2006, 55(5): 1-9.
    [93] Y. A. Chau and K. Y. Huang. Channel Statistics and Performance of Cooperative Selection Diversity with Dual-hop Amplify-and-Forward Relay over Rayleigh Fading Channels [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1779-1785.
    [94] X. M. Deng and A. M. Haimovich. Power Allocation for Cooperative Relaying in Wireless Networks [J]. IEEE Commun. Lett., 2005, 9(11): 994-996.
    [95] J. Tang and X. Zhang. Cross-layer Resource Allocation Over Wireless Relay Networks for Quality of Service Provisioning [J]. IEEE J. Sel. Areas Commun., 2007, 25(4): 645-656.
    [96] H. Shan, H. Wang and Z.X. Wang. An Efficient Resource Allocation Scheme for BER Performance Improvement in Multicarrier Cooperative Systems [A]. In: IEEE. Proc. ChinaCom 2007 [C]. Shanghai, China: IEEE, 2007: 579-583.
    [97] H. Shan, H. Wang and Z.X. Wang. Joint Optimization of Subchannel Reassignment and Power Adaptation for Multicarrier Cooperative Systems [J]. Chinese Journal of Electronics, 2008, 17(2): 381-385.
    [98] Y. Li, B. Vucetic, Z. Zhou and M. Dohler. Distributed Adaptive Power Allocation for Wireless Relay Networks [J]. IEEE Trans. Wireless Commun., 2007, 6(3): 948-958.
    [99] J. Luo, R. S. Blum. L. J. Cimini and L. J. Greenstein. Decode-and-Forward Cooperative Diversity with Power Allocation in Wireless Networks [J]. IEEE Trans. Wireless Commun., 2007, 6(3): 793-799.
    [100] D. Gunduz and E. Erkip. Opportunistic Cooperation by Dynamic Resource Allocation [J]. IEEE Trans. Wireless Commun., 2007, 6(4): 1446-1454.
    [101] I. Hammerstrom and A. Wittnenben. Power Allocation Schemes for Amplify-and-Forward MIMO-OFDM Relay Links [J]. IEEE Trans. Wireless Commun., 2007, 6(8): 2798-2802.
    [102] R. Annavajjlal, P. C. Cosman and L. B. Milstein. Statistical Channel Knowledge-based Optimum Power Allocation for Relaying Protocols in the High SNR Regime [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 292-305.
    [103] M. Chen, S. Serbetli and A. Yener. Distributed Power Allocation Strategies for Parallel Relay Networks [J]. IEEE Trans. Wireless Commun., 2008, 7(2): 552-561.
    [104] G. Li and H. Liu. Resource Allocation for OFDMA Relay Networks with Fairness Constraints [J]. IEEE J. Select. Areas Commun., 2006, 24(11): 2061-2069.
    [105] T. Ng and W. Yu. Joint Optimization of Relay Strategies and Resource Allocation in Cooperative Cellular Networks [J]. IEEE J. Select. Areas Commun., 2007,25(2): 328-229.
    [106] M. Pischella and J.-C. Belfiore. Power Control in Distributed Cooperative OFDMA Cellular Networks [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1900-1906.
    [107] S. Savazzi and U. Spagnolini. Energy Aware Power Allocation, Strategies for Multihop-Cooperative Transmission Schemes [J]. IEEE J. Sel. Areas Commun., 2007,25(2): 318-327.
    [108] A. P. T. Lau and S. Cui. Joint Power Minimization in Wireless Relay Channels [J]. IEEE Trans. Wireless Commun., 2007, 6(8): 2820-2824.
    [109] T. Kang and V. Rodoplu. Algorithms for the MIMO Single Relay Channels [J]. IEEE Trans. Wireless Commun., 2007, 6(5): 1596-1600.
    [110] X. Tang and Y. Hua. Optimal Design of Non-regenerative MIMO Wireless Relays [J]. IEEE Trans. Wireless Commun, 2007, 6(4): 1398-1407.
    [111] A. Bletsas, D. P. Reed and A. Lippman. A Simple Cooperative Diversity Method based on Network Path Selection [J]. IEEE J. Select. Areas Commun., 2006, 24(3): 659-672.
    [112] Z. Lin, E. Erkip and A. Stefanov. Cooperative Regions and Partner Choice in Coded Cooperative Systems [J]. IEEE Trans. Commun., 2006, 54(7): 1323-1334.
    [113] R. Madan, N. B. Mehta, A. F. Molisch and J. Zhang. Energy-Efficient Cooperative Relaying over Fading Channels with Simple Relay Selection [A], In: IEEE. Proc. GLOBECOM 2006 [C]. San Francisco: IEEE, 2006.
    [114] D. S. Michalopoulos, G. K. Karagiannidis, T. A. Tsiftsis and R. K. Mallik. An Optimized User Selection Method for Cooperative Diversity Systems [A]. In IEEE. Proc. GLOBECOM 2006 [C]. San Francisco: IEEE, 2006.
    [115] A. S. Ibrahim, A. K. Sadek, W. Su and K. J. R. Liu. Relay Selection in Multi-Node Cooperative Communications: When to Cooperate and Whom to Cooperate with? [A]. In: IEEE. Proc. GLOBECOM 2006 [C]. San Francisco: IEEE, 2006.
    [116] A. S. Ibrahim, A. K. Sadek, W. Su and K. J. R. Liu. Cooperative Communications with Relay-Selection: When to Cooperate and Whom to Cooperate with? [J] IEEE Trans. Wireless Commun., 2008, 7(7): 2814-2827.
    [117] Y. Zhao, R. Adve and T. J. Lim. Improving Amplify-and-Forward Relay Networks: Optimal Power Allocation versus Selection [J]. IEEE Trans. Wireless Commun., 2007, 6(8): 3114-3122.
    [118] A. Bletsas, H. Shin and M. Z. Win. Outage Optimally of Opportunistic Amplify-and-Forward Relaying [J]. IEEE Commun. Lett., 2007, 11(3): 261-263.
    [119] A. Nosratinia and T. E. Hunter. Grouping and Partner Selection in Cooperative Wireless Networks [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 369-378.
    [120] C. Hucher, G. R.-B. Othman and J.-C. Belfiore. Adaptive Amplify-and-Forward Cooperative Channel [A]. In: IEEE. Proc. ISIT [C]. Nice, France: IEEE, 2007: 2706-2710.
    [121] R. Madan, N. B. Mehta, A. F. Molisch and J. Zhang. Energy-Efficient Cooperative Relaying over Fading Channels with Simple Relay Selection [J]. IEEE Trans. Wireless Commun., 2008, 7(1): 3013-3025.
    [122] P. Liu, Z. Tao, S. Narayanan, T. Korakis and S. S. Panwar. CoopMAC: A Cooperative MAC for Wireless LANs [J]. IEEE J. Selected Areas in Commun., 2007, 25(2): 340-354.
    [123] H. Zhu and G. Cao. rDCF: A Relay-Enabled Medium Access Control Protocol for Wireless Ad Hoc Networks [J]. IEEE Trans. Mobile Comput., 2006, 5(9): 1201-1214.
    [124] G. Jakllari, S. V. Krishnamurthy, M. Faloutsos, P. V. Krishnamurthy and O. Ercetin. A Cross-Layer Framework for Exploiting Virtual MISO Links in Mobile Ad Hoc Networks [J]. IEEE Trans. Mobile Comput., 2007, 6(6): 579-594.
    [125] H. Shan, P. Wang, W. Zhuang and Z.X. Wang. Cross-Layer Cooperative Triple Busy Tone Multiple Access for Wireless Networks [A]. In: IEEE. Proc. Globecom'08 [C]. New Orleans, LA, USA: IEEE, 2008.
    [126] H. Shan, W. Zhuang, and Z.X. Wang. Cooperation or Not in Mobile Ad Hoc Networks: A MAC Perspective [A]. In: IEEE. Proc. ICC'09 [C]. Dresden, Germany: IEEE, 2009.
    [127] H. Shan, W. Zhuang and Z.X. Wang. Distributed Cooperative MAC for Multi-hop Wireless Networks [J]. IEEE Communications Magazine, 2009, 47(2): 126-133.
    [128] B. Zhao and M.C. Valenti. Practical Relay Networks: A Generalization of Hybrid-ARQ [J]. IEEE J. Selected Areas Commun., 2005, 23(1): 7-18.
    [129] M. Dianati, X. Ling, S. Naik and X. Shen. A Node-Cooperative ARQ Scheme for Wireless Ad Hoc Networks [J]. IEEE Trans. Vehicular Technology, 2006, 55(3): 1032-1044.
    [130] X. Fang, T. Hui, Z, Ping and Y. Ning. Cooperative Routing Strategies in Ad Hoc Networks [A]. In: IEEE. Proc. VTC 2005-Spring [C]. Stockholm, Sweden: IEEE, 2005: 2509-2512.
    [131] C. Pandana, W.P. Siriwongpairat, T. Himsoon and K.J.R. Liu. Distributed Cooperative Routing Algorithms for Maximizing Network Lifetime [A]. In: IEEE. Proc. WCNC 2006 [C]. Hong Kong, China: IEEE, 2006: 451-456.
    [132] E. Beres and R. Adve. Cooperation and Routing in Multi-Hop Networks [A]. In: IEEE. Proc. ICC'07 [C]. Glasgow, Scotland: IEEE, 2007: 4767-4772.
    [133] F. Librino, M. Levorato and M. Zorzi. Distributed Cooperative Routing and Hybrid ARQ in MIMO-BLAST Ad Hoc Networks [A]. In: IEEE. Proc. GLOBECOM'07 [C]. Washington, DC: IEEE, 2007: 657-662.
    [134] A.E. Khandani, J. Abounadi, E. Modiano and L. Zheng. Cooperative Routing in Static Wireless Networks [J]. IEEE Trans. Commun., 2007, 55(11): 2185-2192.
    [135] Y. Sung, S. Misra, L. Tong and A. Ephremides. Cooperative Routing for Distributed Detection in Large Sensor Networks [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 471-483.
    [136] W. Ge, J. Zhang and G. Xue. Joint Clustering and Optimal Cooperative Routing in Wireless Sensor Networks [A]. In: IEEE. Proc. ICC'08 [C]. Beijing, China: IEEE, 2008: 2216-2220.
    [137] A. Ibrahim, Z. Han and K.J. Liu. Distributed Energy-Efficient Cooperative Routing in Wireless Networks [J]. IEEE Trans. Wireless Commun., 2008, 7(10): 3930-3941.
    [138] J. Zhang and Q. Zhang. Cooperative Routing in Multi-Source Multi-Destination Multi-Hop Wireless Networks [A]. In: IEEE. Proc. INFOCOM 2008 [C]. Phoenix, AZ: IEEE, 2008: 2369-2377.
    [139] B. Gui, L. Dai and L. J. Cimini. Routing Strategies in Multihop Cooperative Networks [J]. IEEE Trans. Wireless Commun., 2009, 8(2): 843-855.
    [140] D.O. de Cunha, O.M.B. Duarte and G. Pujolle. A Cooperation-Aware Routing Scheme for Fast Varying Fading Wireless Channels [J]. IEEE Commun. Letters, 2008, 12(10): 794-796.
    [141] S.C. Draper, L. Liu, A.F. Molisch and J.S. Yedidia. Routing in Cooperative Wireless Networks with Mutual-Information Accumulation [A]. In: IEEE. Proc. ICC'08 [C]. Beijing, China: IEEE, 2008: 4272-4277.
    [142] IEEE 802.11b, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed physical Layer Extension in the 2.4GHz Band [S]. IEEE, 1999.
    [143] IEEE 802.11a, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed physical Layer Extension in the 5GHz Band [S]. IEEE, 1999.
    [144] ETSI, Broadband Radio Access Networks (BRAN); HIPERLAN type 2 technical specification; Physical (PHY) layer [S]. European: ETSI, 2001.
    [145] S. Aaron and B. Liang. Enhancing WLAN Capacity by Strategic Placement of Tetherless Relay Points [J]. IEEE Trans. Mobile Computing, 2007, 6(5): 474-487.
    [146] B. Lin, P.H. Ho, L. Xie and X. Shen. Relay Station Placement in IEEE 802.16j Dual-Relay MMR Networks [A]. In: IEEE. Proc. ICC'08 [C]. Beijing, China: IEEE, 2008: 3437-3441.
    [147] J. G. Proakis. Digital Communications [M]. New York: McGraw-Hill, 2001.
    [148] W. Su, A. K. Sadek and K. J. R. Liu. SER Performance Analysis and Optimum Power Allocation for Decode-and-Forward Cooperation Protocol in Wireless Networks [A], In: IEEE. Proc. Wireless Communications and Networking Conference 2005 [C]. New Orleans, LA: IEEE, 2005: 984-989.
    [149] A. Goldsmith. Wireless Communications [M]. Cambridge University Press, 2005.
    [150] C. Lee and L. H. C. Lee. Convolutional Coding: Fundamentals and Applications [M]. Artech House Publishers, 1997.
    [151] Q. Liu, S. Zhou and G. B. Giannakis. Cross-layer Combining of Adaptive Modulation and Coding with Truncated ARQ over Wireless Links [J]. IEEE Trans. Wireless Commun., 2004, 3(5): 1746-1755.
    [152] Q. Liu, S. Zhou and G. B. Giannakis. Queuing with Adaptive Modulation and Coding over Wireless Links: Cross-Layer Analysis and Design [J]. IEEE Trans. Wireless Commun., 2005, 4(3): 1142-1153.
    [153] Q. Liu, X. Wang and G. B. Giannakis. A Cross-Layer Scheduling Algorithm with QoS Support in Wireless Networks [J]. IEEE Trans. Veh. Technol., 2006, 55(3): 839-847.
    [154] X. Wang, Q. Liu and G. B. Giannakis. Analyzing and Optimizing Adaptive Modulation Coding Jointly With ARQ for QoS-Guaranteed Traffic [J]. IEEE Trans. Veh. Technol., 2007, 56(2): 710-720.
    [155] M. Simon and M.-S. Alouini. Digital Communication over Fading Channels [M]. New Jersey: Wiley-IEEE Press, 2005.
    [156] J. Abate and W. Whitt. Numerical inversion of Laplace transforms of probability distributions [J]. ORSA J. Comput, 1995, 7(1): 36-43.
    [157] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [M]. New York, NY: Dover Publications, 1970.
    [158] I. S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products [M]. San Diego, CA: Academic Press, 1994.
    [159] M. 0. Hasna and M.-S. Alouini. Perfermance Analysis of Two-Hop Relayed Transmission over Rayleigh-Fading Channels [A]. In: IEEE. Proc. VTC-Fall [C]. Vancouver, BC, Canada: IEEE, 2002: 1992-1996.
    [160] M. O. Hasna and M.-S. Alouini. Optimal Power Allocation for Relayed Transmissions over Rayleigh Fading Channels [J]. IEEE Trans. Wireless Commun., 2004, 3(6): 1999-2004.
    [161] U.H. Reimers. DVB-The Family of International Standards for Digital Video Broadcasting [J]. Proceedings of the IEEE, 2006, 94(1): 173-182.
    [162] ETSI EN 300 401 vl.3.3. Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers [S]. European: ETSI, 2001.
    [163] A. J. Goldsmith and S.G. Chua. Variable-rate variable-power MQAM for fading channels [J]. IEEE Trans. Commun., 1997, 45(10): 1218-1230.
    [164] D. B. West. Introduction to Graph Theory [M]. Bei Jing, China: China Machine Press, 2005.
    [165] W. David. The Penguin Dictionary of Curious and Interesting Numbers [M]. Middlesex, England: Penguin Books, 1986.
    [166] B. Widrow and S. D. Stearns. Adaptive Signal Processing [M]. Englewood Cliffs, NJ: Prentice-Hall, 1985.
    [167] S. Zhou and G.B. Giannakis. Adaptive Modulation for Multi-Antenna Transmissions with Channel Mean Feedback [A]. In: IEEE. Proc. ICC'03 [C]. Anchorage, AK: IEEE, 2003: 2281-2285.
    [168] G. Kramer, I. Maric and R. D. Yates. Cooperative Communications [M]. Hanover, MA, USA: Now Publishers, 2006.
    [169] P. Biswas and Y.Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sensor Network Localization [A]. In: ACM/IEEE. Proc. the 3rd International Symposium on Information Processing in Sensor Networks [C]. Berkeley, California: ACM, 2004: 46-54.
    [170] Y. Shang, W. Ruml, Y. Zhang and M. Fromherz. Localization from Connectivity in Sensor Networks [J]. IEEE Trans. Parallel and Distributed Systems, 2004, 15(11): 961-974.
    [171] F. Zhao. Incremental Node Localization with Error Propagation Control in Ad Hoc Networks [R]. Palo Alto: PARC, 2004.
    [172] N. Bulusu, J. Heidemann and D. Estrin. GPS-less Low-cost Outdoor Localization for Very Small Devices [J]. IEEE Personal Commun., 2000, 7(5): 28-34.
    [173] D. Niculescu and B. Nath. Ad Hoc Positioning System [A]. In: IEEE. Proc. Global Telecommunications 2001 [C]. San Antonio, TX: IEEE, 2001: 2926-2931.
    [174] R. Nagpal, H. Shrobe and J. Bachrach. Organizing a Global Coordinate System from Local Information on an Ad Hoc Sensor Network [A]. In: IEEE. Proc. the 2nd International Workshop on Information Processing in Sensor Networks (IPSN'03) [C]. Berlin: Springer, 2003: 333-348.
    [175] T. He, C. D. Huang, B. M. Blum and T. Abdelzaher. Range-free Localization Schemes in Large Scale Sensor Networks. In: ACM. Proc. the 9th Annual International Conference on Mobile Computing and Networking, MOBICOM' 2003 [C]. New York: ACM, 2003: 81-95.
    [176] M. Barbeau, E. Kranakis, D. Krizanc and P. Morin. Improving Distance based Geographic Location Techniques in Sensor Networks [A]. In: ACM. Proc. Ad-Hoc, Mobile, and Wireless Networks: Third International Conference, ADHOC-NOW 2004 [C]. Berlin: Springer, 2004: 197-210.
    [177] A. Nasipuri and K. Li. A Directionality based Location Discovery Scheme for Wireless Sensor Networks [A]. In: ACM. Proc. the 1st ACM international workshop on Wireless sensor networks and applications [C]. Atlanta, Georgia, USA: ACM, 2002: 108-114.
    [178] M. P. Wylie and J. Holtzman. The Non-Line of Sight Problem in Mobile Location Estimation [A]. In: IEEE. Proc. the 5th IEEE International Conference on Universal Personal Communications [C]. Cambridge, MA: IEEE, 1996:827-831.
    [179] P. C. Chen. A Non-Line-of-Sight Error Mitigation Algorithm in Location Estimation [A]. In: IEEE. Proc. Wireless Communications and Networking Conference 1999 [C]. New Orleans, LA: IEEE, 1999: 316-320.
    [180] S. Al-Jazzar, J. Caffery and H. R. You. A Scattering Model based Approach to NLOS Mitigation in TOA Location System [A]. In: IEEE. Proc. Vehicular Technology Conference 2002[C].Birmingham.Alabama:IEEE,2002:861-865.
    [181]S.Venkatranian,J.C.Jr and H.R.You.Location Using LOS Range Estimation in NLOS Environments[A].In:IEEE.Proc.Vehicular Technology Conference 2002[C].Birmingham,Alabama:IEEE,2002:856-860.
    [182]S.S.Woo,H.R.You and J.S.Koh,“The NLOS Mitigation Technique for Position Location Using IS-95 CDMA Networks,”In:IEEE.Proc.Vehicular Technology Conference 2000[C].Boston,MA:IEEE,2000:2556-2560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700