用户名: 密码: 验证码:
基于有限元分析的双转子永磁风力发电机设计及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着资源的日益枯竭和环境保护意识的加强,风力发电作为最具竞争力、最有发展前景的一项可再生能源技术,在全球范围内得到了高度重视。双转子永磁风力发电机具有与传统电机不同的旋转模式,其电枢转子与永磁转子相向旋转,同样风速条件下发电能力提高一倍,最低工作风速降为普通永磁风力发电机的一半,最高工作风速与普通永磁风力发电机一样,能加宽工作风速范围和提高风能利用率。同时,同样的极对数下双转子永磁风力发电机的工作转速只需普通永磁风力发电机的一半即可,因此在风力发电尤其是直驱式风力发电领域具有独特的优势。
     双转子永磁风力发电机的结构设计和电磁设计相对普通电机更加复杂,动态性能与普通电机有很大不同,目前我国双转子永磁风力发电机的研究还处于起步阶段,因此对其进行设计和研究将具有重要的理论和实际意义。为此,本文设计了一种具有低起动风速的双转子永磁风力发电机,并采用有限元法对其进行了全面分析。
     首先简单介绍了双转子永磁风力发电机的工作原理、特性及数学模型,对其结构和电磁部分进行了设计。在设计过程中,利用等效磁路法对双转子永磁风力发电机进行分析计算,提出了一些新的参数计算和选取方法,在此基础上编制了基于C++语言的双转子永磁风力发电机场路结合电磁设计程序。
     针对双转子永磁风力发电机空载和负载时的模型进行了静态电磁场分析和计算,基于有限元分析和电磁设计程序详细分析了长径比、气隙长度和永磁体磁化方向长度对双转子永磁风力发电机其他参数和性能的影响,并以此为根据对这三个参数进行了优化选取,以提高双转子永磁风力发电机设计的可靠性。
     双转子永磁风力发电机作为一种新型电机,其最大创新点在于内、外转子可以自由旋转,静态磁场的分析不足以反映其动态性能,本文采用场路耦合时步有限元法对双转子永磁风力发电机进行了分析。用有限元法计算瞬态磁场时,需要考虑内、外转子之间的相对运动,普通电机运动边界的处理方法已不适用,针对双转子永磁风力发电机提出了一种双运动边界法以建立内、外转子运动边界上节点的对应关系。建立了双转子永磁风力发电机的场路耦合数学模型,并对时间进行离散,采用Newton-Raphson法处理非线性的方程组,详细分析了空载和不同负载条件下的磁场分布情况和相关性能指标。最后,基于能量法和傅立叶变换推导了双转子永磁风力发电机齿槽转矩的解析表达式,并采用Maxwell tensor法针对极弧系数的选择计算了双转子永磁风力发电机的齿槽转矩。
     用两台直流电机分别拖动内、外转子同速相向旋转,进行了三相及整流稳压后的空载、额定负载以及效率试验等,输出电压、功率及效率均达到设计要求且试验结果与程序计算结果、有限元仿真结果吻合较好,验证了双转子永磁风力发电机设计及分析的正确性。
With the increasing depletion of fuel resources and strengthening awareness of environmental protection, wind power generation, as the most competitive and promising renewable energy technologies, is receiving more and more attention all over the world. Dual-rotor permanent-magnet wind generator has a unique advantage due to its different rotation mode from the traditional motors, which is the armature part and the permanent-magnet rotor revolve at the opposite direction. Consequently, the capability of power generation is twice as much as that of traditional wind generators at the same wind speed. Furthermore, the lowest working wind speed can reduce to the half of that of traditional permanent-magnet generators while the highest keeps the same, thus widening the range of the working wind speed and improving the wind utilization. Meanwhile, the working speed of dual-rotor permanent-magnet wind generator is half of that of traditional permanent-magnet generators at the same poles, which means it would be more welcomed in the direct-driven wind generation.
     However, its structure design and electromagnetic design are more complicated and the dynamic performance is very different. So far, the research on dual-rotor permanent-magnet wind generators is still in its early stage in China,thus its design and research has an important theoretical and practical significance. A dual-rotor permanent-magnet wind generator with a low starting wind speed is designed in this paper, and the finite element method is used for a comprehensive analysis.
     A brief introduction about the principle, characteristics and mathematical model of the dual-rotor permanent-magnet wind generator is presented and the equivalent magnetic circuit method is applied to design and analyze the generator. In this process, some new methods for the calculation and selection of several parameters are proposed. At last, the electromagnetic design program of the dual-rotor permanent-magnet wind generator based on the field-circuit coupled method is compiled by C++ language.
     Then, this paper analyses and calculates the static electromagnetic field of the dual-rotor permanent-magnet wind generator at no-load and rated-load based on the finite element analysis and design process. A detailed analysis about the impact of the ratio of length to diameter, airgap length and permanent magnet length on the performance and other parameters of the dual-rotor permanent-magnet wind generator is executed, thus providing the optimization of the three parameters and improving the reliability of the dual-rotor permanent-magnet wind generator design.
     The greatest innovation of the dual-rotor permanent-magnet wind generator is its rotation mode and the magnetostatic field analysis does not reflect its dynamic performance adequately,so its field-circuit coupled time-stepping finite element analysis is carried out. When using finite element method to calculate the transient magnetic field, the relative motion between the outer and inner rotor needs to be considered and the traditional motion band method is no longer applicable, so a new double motion band method is developed to establish the relationship between the corresponding nodes. After that, a field-circuit coupled model is presented and solved by the Newton-Raphson method. The results under no-load and different load condition are given according to the model. Furthermore, the analytical expression of the cogging torque is obtained by energy method and Fourier transform and its calculation results under different pole embraces are shown by Maxwell tensor method.
     At last, the prototype test, including the no-load, rated-load and efficiency test, is finished by using two DC motors to drive the two rotors inversely at the same speed. The output voltage, power and efficiency are satisfied the design targets and a good agreement is achieved among the test, calculated and finite element results, which verifies the validity of the design and analysis of the dual-rotor permanent-magnet wind generator.
引文
[1]风力发电.百度百科, 2009
    [2]李俊峰.风力12在中国[M].北京:化学工业出版社, 2005
    [3]世界风力发电网信息中心,世界和我国风力发电发展状况, 2008
    [4]中国机电出口指南,全球新增风电装机容量创历史记录, 2008
    [5]张希良.风能开发利用[M].北京:化学工业出版社, 2005: 24-26
    [6]世界新能源-风力发电网,海上风力发电的新趋势, 2008
    [7]世界新能源-风力发电网,我国风力发电装机容量今年有望突破1千万千瓦, 2008
    [8]世界新能源-风力发电网,世界上最大风力发电基地建设项目遭遇配套瓶颈, 2008
    [9]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社, 2005
    [10]郭继高.风能发电——小型风能发电及其发电机(1)[J].微特电机, 1999(5): 39-42
    [11] Cao Jianghua and Yang Xiangyu. Design and magnetic field analysis of a dual-rotor permanent-magnet synchronous wind generator[C]. Proceedings of IEEE Conference on Electrical Machines and Systems, Wuhan, China, 2008: 3202-3205
    [12] Zhang Fengge, Neuberger N., Nolle E., etal. A new type of induction machine with inner and outer double rotors[C]. Proceedings of IEEE Conference on Power Electronics and Motion Control, Xi’an, China, 2004(1): 286-289
    [13] Qu Ronghai and Lipo T. A.. Dual-rotor radial-flux toroidally wound permanent magnet machines[J]. IEEE Trans. on Industry Applications, 2003, 39(6): 1665-1673
    [14] Qu Ronghai, Aydin M. and Lipo T. A.. Performance comparison of dual-rotor radial-flux and axial-flux permanent magnet BLDC machines [C]. Proceedings of IEEE Electric Machines and Drives Conference, Madison, US, 2003: 1948-1954
    [15] Qu Ronghai and Lipo T. A.. Design and optimization of dual-rotor radial-flux toroidally-wound permanent magnet machines[C]. Proceedings of IEEE Conference on Industry Applications, Columbia, SC, USA, 2003: 1397-1404
    [16] Qu Ronghai and Lipo T. A.. Design and parameter effect analysis of dual-rotor radial-flux toroidally-wound permanent-magnet machines[J]. IEEE Trans. on Industry Applications, 2004, 40(3): 771-779
    [17] Zhang Fengge, Liu Guangwei and Wang Xin. Characteristic simulation of a novel PMSM with opposite-rotation dual rotors[C]. Proceedings of IEEE Conference on Industrial Electronics and Applications, Harbin, China, 2007: 618-621
    [18] Zhang Fengge, Liu Guangwei, Shen Yongshan, etal. Characteristic study on a novel PMSM with opposite-rotation dual rotors[C]. Proceedings of IEEE Conference on Electrical Machines and Systems, Seoul, Korea, 2007: 805-809
    [19]徐衍亮,王法庆,冯开杰,等.双转子永磁电机电感参数、永磁电势及齿槽转矩[J].电工技术学报, 2007, 22(9): 40-44
    [20] Sivachandran P., Venkatesh P. and Kamaraj N.. Cogging torque reduction in dual-rotor permanent magnet generator for direct coupled stand-alone wind energy systems[C]. Proceedings of IEEE Conference on Sustainable Energy Technologies, Singapore, 2008: 24-28
    [21] Hamadou G. B., Masmoudi A., Abdennadher I., etal. Design of a single-stator dual-rotor permanent-magnet machine[J]. IEEE Trans. on Magnetics, 2009, 45(1): 127-132
    [22]梅端经.攻击型潜艇的对转电力推进[J].船电技术, 1995(2): 30-35
    [23]李宏,徐德民,焦振宏,等.采用PMBLDC的AUV对转螺旋桨推进系统建模与仿真[J].系统仿真学报, 2007, 19(13): 3085-3090
    [24]张式勤,邱建琪,储俊杰,等.双转式永磁无刷直流电动机的建模与仿真[J].中国电机工程学报, 2004, 24(12): 176-181
    [25] Kawamura A., Hoshi N., Tae W. K., etal. Analysis of anti-directional-twin-rotary motor drive characteristics for electric vehicles[J]. IEEE Trans. on Industrial Electronics, 1997, 44(1): 64-70
    [26]罗玉涛,周斯加,邓志君.基于双转子电动机的混合四轮驱动系统[J].机械工程学报, 2007, 43(8): 123-128
    [27]周斯加,罗玉涛,黄向东.双转子电机混合动力汽车驱动特性研究[J].中国机械工程, 2008, 19(16): 2011-2015
    [28] Okubora T., Suhama M. and Kawamura A.. Traction control characteristics of 4WD vehicle with anti-directional-twin-rotary motor[C]. Proceedings of IEEE Conference on Power Conversion, Osaka, Japan, 2002: 588-592
    [29]张东.新型双定子永磁电机的设计与研究[D].上海:上海大学, 2007
    [30] Zhu Z.Q., Howe D., Bolte E., etal. Instantaneous magnetic field distribution in brushless permanent magnet DC motors(I)—open-circuit field[J]. IEEE Trans. on Magnetics, 1993, 29(1): 124-135
    [31] Zhu Z.Q., Howe D.. Instantaneous magnetic field distribution in brushless permanent magnet DC motors(II)—armature-reaction field[J]. IEEE Trans. on Magnetics, 1993,29(1): 136-142
    [32] Zhu Z.Q., Howe D.. Instantaneous magnetic field distribution in brushless permanent magnet DC motors(III)—effect of stator slotting[J]. IEEE Trans. on Magnetics, 1993, 29(1): 143-151
    [33] Zhu Z.Q., Howe D.. Instantaneous magnetic field distribution in brushless permanent magnet DC motors(IV)—magnetic field on load[J]. IEEE Trans. on Magnetics, 1993, 29(1): 152-158
    [34]窦满锋,刘卫国.高效节能稀土永磁同步电机设计技术研究[J].西北工业大学学报, 2004,第3期: 35-39
    [35] GB/T 10760.1-1989,小型风力发电机技术[S].国家技术监督局, 1989
    [36] GB17646-1998,小型风力发电机组安全要求[S].国家质量技术监督局, 1998
    [37] JB/T 9578-1999,稀土永磁同步发电机技术条件[S].国家机械工业局, 1999
    [38]郭继高.小型交流永磁风力发电机设计特点—小型风能发电及其发电机(2)[J].微特电机, 1999(6): 36-38
    [39]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社, 1997
    [40]王秀和.永磁电机[M].北京:中国电力出版社, 2007
    [41]陈世坤.电机设计[M].北京:机械工业出版社, 2000
    [42]汤蕴璆,史乃.电机学[M].北京:机械工业出版社, 2005
    [43] Gieras J. F. and Wing M.. Permanent magnet motor technology—design and applications[M]. London: Marcel Dekker Inc., 2002
    [44] Fitzgerald A. E., Kingsley Charles and Umans S. D.. Electric Machinery[M]. New York: MaGraw-Hill Companies, Inc., 2003
    [45]上海电器科学研究所.中小型电机设计手册[M].北京:机械工业出版社, 1994
    [46]电子工业部第二十一研究所.微特电机设计手册[M].上海:上海科学技术出版社, 1997
    [47] Qu Ronghai and Lipo T. A.. Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine[J]. IEEE Trans. on Industry Applications, 2004, 40(1): 121-126
    [48] Hwang Changchou and Cho Y. H.. Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors[J]. IEEE Trans. on Magnetics, 2001, 37(4): 3021-3024
    [49] Mi Chunting, Filippa M., Liu Weiguo, etal. Analytical method for predicting the air-gapflux of interior-type permanent magnet machines[J]. IEEE Trans. on Magnetics, 2004, 40(1): 50-58
    [50] Zhu Li, Jiang S. Z., Zhu Z. Q., etal. Analysis and modeling of open-circuit airgap field distributions in multi-segment and multilayer interior permanent magnet machines[C]. Proceedings of IEEE Conference on Vehicle Power and Propulsion, Harbin, China, 2008: 1-6
    [51]傅丰礼,唐孝镐.异步电动机设计手册[M].北京:机械工业出版社, 2006
    [52]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京:东南大学, 2003
    [53] Jabbar M. A., Phyu H. N., Liu Z. J., etal. Modeling and numerical simulation of a brushless permanent-magnet DC motor in dynamic conditions by time-stepping technique[J]. IEEE Trans. on Industry Applications, 2004, 40(3): 763-770
    [54] Wang Yong, Chau K. T., Chan C. C., etal. Transient analysis of a new outer-rotor permanent magnet brushless DC drive using circuit-field-torque coupled time-stepping finite-element method[J]. IEEE Trans. on Magnetics, 2002, 38(2): 1297-1300
    [55] Wang Yong, Chau K. T., Gan Jinyun, etal. Design and analysis of a new multiphase polygonal-winding permanent-magnet brushless DC machine[J]. IEEE Trans. on Magnetics, 2002, 38(5): 3258-3260
    [56] Jabbar M. A., Phyu H. N. and Liu Z. J.. Analysis of the starting process of a disk drive spindle motor by time stepping finite element method[J]. IEEE Trans. on Magnetics, 2004, 40(4): 3204-3206
    [57] Phyu H. N., Bi C. and Song, L.. Numerical modeling and performance analysis of a disk drive spindle motor using circuit-field coupled systems[C]. Asia-Pacific Magnetic Recording Conference, Singapore, 2006: 1-2
    [58] Jabbar M. A., Liu Z. J. and Dong Jing. Time-stepping finite-element analysis for the dynamic performance of a permanent magnet synchronous motor[J]. IEEE Trans. on Magnetics, 2003, 39(5): 2621-2623
    [59] Fu W. N. and Liu Z. J.. Estimation of eddy-current loss in permanent magnets of electric motors using network-field coupled multislice time-stepping finite-element method[J]. IEEE Trans. on Magnetics, 2002, 38(2): 1225-1228
    [60] Ho S. L. and Li H. L.. Dynamic modeling of permanent magnet synchronous machines using direct-coupled time stepping finite element method[C]. Proceedings of IEEE Conference on Electric Machines and Drives, Seattle, USA, 1999: 113-115
    [61] Chan T. F., Lai L. L. and Yan L. T.. Analysis of a stand-alone permanent-magnet synchronous generator using a time-stepping coupled field-circuit method[J]. IEE Proceedings on Electric Power Applications, 2005, 152(6): 1459-1467
    [62] Chan T. F., Wang Weimin and Lai L. L.. Coupled field-circuit analysis of a surface-inset permanent-magnet synchronous generator feeding a rectifier load[C]. Proceedings of IEEE Conference on Electric Machines and Drives, Miami, Florida, USA, 2009: 1600-1604
    [63] Liu Xinhua, Jiang Jianzhong, Yu Gong, etal. Simulation of permanent magnet synchronous motor with dual closed loop by time-stepping finite element model[C]. Proceedings of IEEE Conference on Power Electronics and Motion Control, Shanghai, China, 2006: 1-5
    [64] Niu Shuangxia, Chau K. T., Jiang, J.Z., etal. Design and control of a new double-stator cup-rotor permanent-magnet machine for wind power generation[J]. IEEE Trans. on Magnetics, 2007, 43(6): 2501-2503
    [65] Liu Ruifang, Zhang Yihuang, Hu Minqiang, etal. Field circuit coupled time stepping finite element analysis on permanent magnet brushless DC motors[C]. Proceedings of IEEE Conference on Electric Machines and Systems, Nanjing, China, 2005: 2105-2108
    [66] Yan Dengjun, Liu Ruifang, Hu Minqiang, etal. Calculation of transient performance in the PMSM based on the time-stepping FEM[C]. Proceedings of IEEE Conference on Electric Machines and Systems, Beijing, China, 2003: 819-822
    [67]胡敏强,黄学良.电机运行性能数值计算方法及其应用[M].东南大学出版社, 2003
    [68]刘国强,赵凌志,蒋继娅. ANSOFT工程电磁场有限元分析[M].北京:电子工业出版社, 2005
    [69] Maxwell_2D. www.ansoft.com
    [70] Getting started a 2D transient linear motion problem. www.ansoft.com
    [71] Wang Yixuan, Wang Ying, Qiu Haifei, etal. Dynamic design and simulation analysis of 1000MW large turbo-generator[C]. Proceedings of IEEE Conference on Mechatronics and Automation, Changchun, China, 2009: 1650-1655
    [72]电磁场仿真分析工具Magnet. www.hikeytech.com
    [73]马晓荷,沈颂华. Magnet在无刷交流同步发电机空载瞬态电磁场计算中的应用[J].微电机, 2009, 42(1): 14-17
    [74] Ma Zhen, Li Jianlei, Gong Feng, etal. Application on Unloading Transient Electromagnetic Computation of Brushless AC Exciter with Magnet[C]. Proceedings ofIEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, 2008: 671-675
    [75]王泽忠,全羽生,卢斌先.工程电磁场[M].北京:清华大学出版社, 1997
    [76]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社, 1982.
    [77]盛剑霓.工程电磁场数值分析[M].西安:西安交通大学出版社, 1991.
    [78] A permanent magnet brushless DC motor problem. www.bbs.simol.cn
    [79] Nicola B. and Silverio B.. Design techniques for reducing the cogging torque in surface-mounted PM motors[J]. IEEE Trans. on Industry Applications, 2002, 38(5): 1259-1265
    [80]王秀和,杨玉波,丁婷婷,等.基于极弧系数选择的实心转子永磁同步电动机齿槽转矩削弱方法研究[J].中国电机工程学报, 2005, 25(15): 146-149
    [81]杨玉波,王秀和,丁婷婷,等.极弧系数组合优化的永磁电机齿槽转矩削弱方法[J].中国电机工程学报, 2007(6): 7-11
    [82] Zhu Z. Q., Ruangsinchaiwanich S., Ishak D., etal. Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets[J]. IEEE Trans. on Magnetics, 2005, 41(10): 3910-3912
    [83] Breton C., Bartolome J., Benito J. A., etal. Influence of machine symmetry on reduction of cogging torque in permanent-magnet brushless motors[J]. IEEE Trans. on Magnetics, 2000, 36(5): 3819 - 3823
    [84] Islan M. S., Mir S. and Sebastian T.. Issues in reducing the cogging torque of mass-produced permanent magnet brushless DC motor[J]. IEEE Trans. on Industry Applications, 2004, 40(3): 813 - 820
    [85] Zhu Z. Q. and Howe D.. Influence of design parameters on cogging torque in permanent magnet machines[J]. IEEE Trans. on Energy Conversion, 2000, 15(4): 407-417
    [86] Lateb R., Takorabet N. and Meibody-Tabar F.. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors[J]. IEEE Trans. on Magnetics, 2006, 42(3): 442-445
    [87] Lukaniszyn M., JagieLa M. and Wrobel, R.. Optimization of permanent magnet shape for minimum cogging torque using a genetic algorithm[J]. IEEE Trans. on Magnetics, 2004, 40(2): 1228-1231
    [88]杨玉波,王秀和,丁婷婷.一种削弱永磁同步电动机齿槽转矩的方法[J].电机与控制学报, 2008, 12(5): 520-523
    [89]王道涵,王秀和,丁婷婷,等.基于磁极不对称角度优化的内置式永磁无刷直流电动机齿槽转矩削弱方法[J].中国电机工程学报, 2008, 28(9): 66-70
    [90]杨玉波,王秀和,张鑫,等.磁极偏移削弱永磁电机齿槽转矩方法[J].电工技术学报, 2006, 21(10): 22-25
    [91]杨玉波,王秀和,陈谢杰,等.基于不等槽口宽配合的永磁电机齿槽转矩削弱方法[J].电工技术学报, 2005, 20(3): 40-44
    [92]王道涵,王秀和,张冉,等.不等宽永磁体削弱表面永磁电机齿槽转矩方法[J].电机与控制学报, 2008, 12(4): 380-384
    [93]宋伟,王秀和.削弱永磁电机齿槽转矩的一种新方法[J].电机与控制学报, 2004, 8(3): 214-217
    [94]王秀和,丁婷婷,杨玉波,等.自起动永磁同步电动机齿槽转矩的研究[J].中国电机工程学报, 2005, 25(18): 167-170
    [95]冀溥,王秀和,王道涵,等.转子静态偏心的表面式永磁电机齿槽转矩研究[J].中国电机工程学报, 2004, 24(9): 188-191
    [96] Cistelecan M. V. and Popescu M.. Study of the number of slots/pole combinations for low speed permanent magnet synchronous generators[C]. Proceedings of IEEE Conference on Electric Machines and Drives, Antalya, Turkey, 2007: 1616-1620
    [97] Ahmad M.S., Manap N.A.A. and Dahaman I.. Permanent magnet brushless machines with minimum difference in slot number and pole number[C]. Proceedings of IEEE Conference on Power and Energy Conference, Johor Bahru, Malaysia, 2008: 1064-1069
    [98] Ge Xin, Han Guangxian, Cheng Zhi, etal. Research of cogging torque in the brushless DC motor with fractional ratio of slots and poles[C]. Proceedings of IEEE Conference on Electrical Machines and Systems, Nanjing, China, 2005: 76-81
    [99]王兴华,励庆孚.永磁无刷直流电机磁阻转矩的解析计算方法[J].中国电机工程学报, 2002, 22(10): 104-108
    [100]王兴华,励庆孚.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算[J].中国电机工程学报, 2003, 23(3): 126-130
    [101]陈益广,王颖,沈勇环,等.宽调速可控磁通永磁同步电机磁路设计和有限元分析[J].中国电机工程学报, 2005, 25(20): 157-161
    [102] Hwang S. M., Eom J. B., Hwang G. B., etal. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing[J]. IEEE Trans. on Magnetics,2000, 36(5): 3144-3146
    [103] Markovic M., Jufer M. and Perriard Y.. Reducing the cogging torque in brushless DC motors by using conformal mappings[J]. IEEE Trans. on Magnetics, 2004, 40(2): 451-455
    [104]沈勇环,陈益广,赵维友.削弱反磁通电机齿槽转矩的两种新方法[J].电工技术学报, 2007, 22(7): 141-144
    [105]刘细平,林鹤云.双定子永磁同步电机齿槽转矩削弱方法[J].东南大学学报(自然科学版), 2007, 37(4): 618-622
    [106] Aydin M., Qu R. H. and Lipo T. A.. Cogging torque minimization technique for multiple-rotor axial-flux surface-mounted-PM motors: alternating magnet pole-arcs in facing rotors[C]. Conference Record of the 38th Industry Applications Conference, Salt Lake City, USA, 2003: 555-561
    [107] Sooriyakumar G., Perryman R. and Dodds S.J.. Cogging analysis for fractional slot/pole permanent magnet synchronous motors[C]. International Universities Power Engineering Conference, Brighton, UK, 2007: 188-191
    [108] GB/T *****.2-****,风力发电机组低速永磁同步发电机第2部分:试验方法(征求意见稿)[S].国家质量监督检验检疫总局
    [109] GB/T 1029-2005,三相同步电机试验方法[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会, 1999
    [110]胡广振,王德江,齐慧彬,陈义成.高效永磁风力发电机的设计[J].微特电机,1999(1): 25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700