用户名: 密码: 验证码:
拓扑透明MAC调度码及光正交码设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多址接入协议和方案在移动自组织网络、光码分多址网络等多用户通信网络中具有重要作用。多址接入技术的基本要求为:各用户在高效共享通信资源时,应尽可能避免或减少用户信号之间的相互干扰,为此通常需要设计一组满足一定特性的多址接入编码信号集合。此外,一些新的应用系统不仅要求能够支持更多的用户,还要求支持多种不同类型的业务,从而催生了新型的多址接入编码问题。本论文主要研究了移动自组织网络中拓扑透明媒质接入控制(MAC)调度码与光码分多址网络中光正交码的设计与分析,并获得一些重要研究结果。
     首先,基于有限域上多项式理论与集合划分,提出了一种用于支持多类业务移动自组织网络的拓扑透明MAC调度码。在保证优先级最低业务类节点一帧中至少成功传输一个数据包的前提下,推导了码长的最小值。在基于这类调度码的移动自组织网络中,码长越小,则节点的数据传输时延越小。这种调度码设计方案不仅简单,而且发送时隙选择灵活。分析表明,基于本文设计的MAC调度码的无线网络可以支持多个业务类,并能够为各类节点提供有保证的服务质量。相对于基于变重量光正交码的调度码,本文提出的拓扑透明MAC调度码在一定条件下能提供更好的系统性能。
     其次,基于有限域上多项式理论,提出了一种用于支持多类业务移动自组织网络的多信道拓扑透明MAC调度码,推导了这类调度码的最小码长,并将其与单信道拓扑透明MAC调度码的码长对比。研究表明,当信道数为H时,这类多信道拓扑透明MAC调度码的码长约为单信道拓扑透明MAC调度码码长的1/H,因此本文提出的调度码可以利用多信道资源有效减少码长。此外,在同样的网络参数情况下,本文提出的多信道MAC调度码在码长及最小保证吞吐量等方面优于扩展TDMA固定分配方案。
     接着,本文探讨了用于支持多类服务质量光码分多址系统的变重量光正交码。基于一种组合设计给出了4类循环填充的直接构造;基于半循环可分组设计,提出了循环填充的递推构造方法;基于计算机搜索的方法,给出了若干小参数循环填充的直接构造。基于以上结果,得到了两类汉明重量为3和4的最优变重量光正交码,并讨论了变重量光正交码在拓扑透明MAC调度码设计中的应用。
     另外,基于数论中的二次剩余理论,构造了四类区组长度为{4,5,6}的最优循环填充。基于循环填充与变重量光正交码的等价关系,获得了四类重量为{4,5,6}的最优变重量光正交码。更进一步,通过递推构造方法得到了更多新型变重量光正交码。这些结果扩展了最少具有三个汉明重量且最小重量为4的变重量光正交码的结果。
     最后,基于正交表(OA)和r-简单矩阵(SM),提出了一种空/波/时光正交码的构造方法——正交表-简单矩阵(OA-SM)构造。本文构造的空/波/时光正交码在每个光信道只有一个光脉冲,简称为三维每平面单脉冲码(3-DSPPC)。在已有的文献中,3-D SPPCs的构造大都仅针对互相关值等于1的情形,而利用新构造可以获得互相关大于1的光正交码。与三维光正交码的理论界相比,本文构造的一些码是渐进最优的。同时,本文还分析了新型3-D SPPCs在光码分多址系统中的误码率性能,并与已有的3-D SPPCs及多波长光正交码的性能对比。另外,本文构造的3-D SPPCs在某些情形下可以支持更多用户,同时误码率性能与其它两类码基本一致。
Multiple access protocols and schemes play a very important role in the multi-user communication networks, such as mobile ad hoc network (MANET), optical code division multiple access (OCDMA) network. The basic requirement of the multiple access techniques is to avoid or reduce the mutual interference between the signals as far as possible when a variety of users share common channel resource efficiently. Thus it is required to design a collection of multiple access coding signals satisfying certain characteristics. Moreover, some new application systems are required to support not only more users but also multi-class services and thus spawned some new multiple access coding problems. In this thesis, some important results are obtained by investigating the design and performance analysis of topology-transparent media access control (MAC) scheduling codes for MANET and optical orthogonal codes (OOCs) for OCDMA networks, respectively.
     Firstly, by using polynomials over Galois field and set partition, a construction of topology-transparent MAC scheduling code for MANET supporting multi-class services is proposed. The code length is minimized under the condition that one successful transmission slot is guaranteed for each user in lowest priority class. In MANET based on the proposed codes, the smaller the code length is, the smaller the data transmission delay will be. The proposed code has much flexibility in choosing the transmission slots and its construction is simple. The study shows that the wireless network employing the proposed MAC scheduling code can support users with multi-class services and provide guaranteed quality of services (QoS). Moreover, the proposed MAC scheduling codes outperform the MAC scheduling code based on variable-weight OOCs under certain conditions.
     Secondly, a multi-channel topology-transparent MAC scheduling code is proposed for MANET supporting multi-classes of users via polynomials over Galois field. The code length is derived and compared with the single-channel topology-transparent MAC scheduling code. It is shown that when the number of channel is H, the code length of the proposed MAC scheduling code is approximately H times smaller than the code length of single-channel MAC scheduling code. Thus the proposed code can reduce the code length by using multi-channels resources. Moreover, the numerical results show that under the same network parameters, the proposed MAC scheduling codes have better performance than the extended TDMA fixed assignment scheme in terms of code length, minimum guaranteed throughput, and so on.
     Next, variable-weight OOCs for OCDMA systems supporting multiple QoS are investigated. Four classes of optimal cyclic packing are presented explicitly based on a kind of combinatorial design. A recursive construction for optimal cyclic packing is proposed based on semi-cyclic group divisible designs (SCGDDs). By computer search, some constructions of optimal cyclic packing with small parameters are given. Based on the above results, two classes of optimal variable-weight OOCs with Hamming weights3and4are obtained. The application of the variable-weight OOCs for the design of topology-transparent MAC scheduling code is also presented.
     Then, four classes of optimal cyclic packing with block size{4,5,6} are constructed based on quadratic residues in number theory. By using the equivalence between optimal optical orthogonal code and optimal cyclic packing, four classes of optimal variable-weight OOCs with weight{4,5,6} are obtained and more new optimal variable-weight OOCs are obtained via recursive constructions. These improve the existing results on optimal variable-weight OOCs with at least three distinct Hamming weights and minimum Hamming weight4.
     Finally, a novel construction for space/wavelength/time optical code is presented by using orthogonal array (OA) and r-simple matrix (SM), which is named as OA-SM Construction. The proposed codes are with single-pulse-per-plane property and thus called three-dimensional single-pulse-per-plane code (3-D SPPC). In the literature, previously presented constructions of3-D SPPCs have maximum Hamming cross-correlation equal to one. The new constructions can produce optical orthogonal codes with maximal Hamming cross-correlation larger than or equal to one. By comparing with an upper bound of three-dimensional optical orthogonal codes, it is shown that some of the proposed3-D SPPCs are asymptotically optimal. The bit error rate (BER) performance of the proposed codes is analysed and compared with3-D SPPCs and MWOOCs in the literature. Moreover, the proposed3-D SPPCs can support more potential users in some cases, while achieving comparable performance.
引文
[1]张平.第三代蜂窝移动通信系统:WCDMA.北京:北京邮电大学出版社,2000.
    [2]于宏毅等.无线移动自组织网.北京:人民邮电出版社,2005.
    [3]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, et al. A survey on sensor networks. IEEE Communications Magazine.2002,40(8):102-114.
    [4]崔莉,鞠海玲,苗勇,等.无线传感器网络研究进展.计算机研究与发展.2005,42(1):163-174.
    [5]P. R. Prucnal. Optical code division multiple access:Fundamentals and applications. Taylor & Francis, Boca Raton,2006.
    [6]S. Kumar, V. Raghavan, J. Deng. Medium access control protocols for ad hoc wireless networks:A survey. Ad Hoc Networks.2006,4(3):326-358.
    [7]徐朝农,徐勇军,范永开.无线自组织网络MAC调度技术研究.计算机应用研究.2011,28(1):10-16.
    [8]张晓玲,梁炜,于海斌,等.无线传感器网络传输调度方法综述.通信学报.2012,33(5):143-157.
    [9]T. Saadawi, A. Epblemides. Analysis, stability, and optimization of slotted ALOHA with a finite number of buffered users. IEEE Transactions on Automatic Control.1985, 30(3):316-318.
    [10]I. Rubin. Access-control disciplines for multi-access communication channels: Reservation and TDMA schemes. IEEE Transactions on Information Theory.1979, 25(5):516-536.
    [11]Q. Xu, T. Mak, J. Ko, et al. Medium access control protocol design for vehicle-vehicle safety messages. IEEE Transactions on Vehicular Technology.2007,56(2):499-518.
    [12]F. Farnoud, B. Hassanabadi, S. Valaee. Message broadcast using optical orthogonal codes in vehicular communication systems. Proceedings of The First International Workshop on Wireless Networking for Intelligent Transportation Systems. Vancouver, Canada,2007:1-6.
    [13]F. Farnoud, S. Valaee. Repetition-based broadcast in vehicular ad hoc networks in rician channel with capture. IEEE INFOCOM 2008. Phoenix, AZ, USA,2008:1-6.
    [14]F. Farnoud, S. Valaee. Reliable broadcast of safety messages in vehicular ad hoc networks. IEEE INFOCOM 2009. Rio de Janeiro, Brazil,2009:226-234.
    [15]董天临.光纤通信与光纤信息网.北京:清华大学出版社,2005.
    [16]李传起,李晓滨.光纤通信OCDMA系统.北京:科学出版社,2008.
    [17]P. Fan, M. Darnell. Sequence design for communications applications. New York: Research Studies/Wiley,1996.
    [18]J. L. Massey, P. Mathys. The collision channel without feedback. IEEE Transactions on Information Theory.1985,31(2):192-204.
    [19]V. C. da Rocha Jr.. Protocol sequences for collision channel without feedback. Electronics Letters.2000,36(24):2010-2012.
    [20]W. S. Wong. New protocol sequences for random access channels without feedback. IEEE Transactions on Information Theory.2007,53(6):2060-2071.
    [21]C. S. Chen, W. S. Wong, Y. Q. Song. Constructions of robust protocol sequences for wireless sensor and ad hoc networks. IEEE Transactions on Vehicular Technology. 2008,57(5):3053-3063.
    [22]K. W. Shum, W. S. Wong, C. W. Sung, et al. Design and construction of protocol sequences:Shift invariance and user irrepressibility. Proceedings of IEEE International Symposiumon Information Theory. Seoul, Korea,2009:1368-1372.
    [23]K. W. Shum, C. S. Chen, C. W. Sung, et al. Shift-invariant protocol sequences for the collision channel without feedback. IEEE Transactions on Information Theory.2009, 55(7):3312-3322.
    [24]Y. Zhang, K. W. Shum, W. S. Wong. Completely irrepressible sequences for the asynchronous collision channel without feedback. IEEE Transactions on Vehicular Technology.2011,60(4):1859-1866.
    [25]吴怡,沈颖祺,沈连丰,等.基于协议序列的车辆自组织网络信道接人控制算法.电子学报.2012,40(4):826-831.
    [26]I. Chlamtac, A. Farago. Making transmission schedules immune to topology changes in multi-hop packet radio networks. IEEE/ACM Transactions on Networking.1994, 2(1):23-29.
    [27]J. H. Ju, K. V. O. Li. An optimal topology transparent scheduling method in multihop packet radio networks. IEEE/ACM Transactions on Networking.1998,6(3):298-306.
    [28]Z. Cai, M. Lu, C. N. Georghiades. Topology-transparent time division multiple access broadcast scheduling in multihop packet radio networks. IEEE Transactions on Vehicular Technology.2003,52(4):970-984.
    [29]Q. Sun, K. V. O. Li, K. Leung. A framework for topology-transparent scheduling in wireless networks. Proceedings of IEEE 71st Vehicular Technology Conference. Taipei,2010:1-5.
    [30]Y. S. Su, S. L. Su. J. S. Li. Topology-independent link activation scheduling schemes for mobile CDMA ad hoc networks. IEEE Transactions on Mobile Computing.2008, 7(5):599-616.
    [31]C. J. Colbourn, A. C. H. Ling. V. R. Syrotiuk. Cover-free families and topology-transparent scheduling for MANETs. Designs, Codes and Cryptography. 2004,32:65-95.
    [32]C. J. Colbourn, V. R. Syrotiuk, A. C. H. Ling. Steiner systems for topology-transparent access control in MANETs. Ad-hoc, Mobile, Wireless Networks. 2003,2865:247-258.
    [33]V. R. Syrotiuk, Z. Zhang, C. J. Colbourn. Transport schemes for topology-transparent scheduling. Journal of Combinatorial Optimization.2007,14(2):229-248.
    [34]W. Chu, C. J. Colbourn, V. R. Syrotiuk. Slot synchronized topology-transparent scheduling for sensor networks. Computer Communications.2006,29(4):421-428.
    [35]W. Chu, C. J. Colbourn, V. R. Syrotiuk. The effects of synchronization on topology-transparent scheduling. Wireless Networks.2006,12:681-690.
    [36]H. K. Kim, V. Lebedev. On optimal superimposed codes. Journal of Combinatorial Designs.2004,12(2):79-91.
    [37]J. Youn, B. Bose. A topology-independent transmission scheduling in multihop packet radio networks. Proceedings of the IEEE Global Telecommunications Conference, San Antonio, TX, USA,2001:1918-1922.
    [38]Q. Sun. Topology-transparent distributed scheduling in wireless networks. Thesis (Ph. D.), University of Hong Kong,2010.
    [39]I. Chlamtac, A. Farago, H. Zhang. Time-spread multiple-access (TSMA) protocols for multihop mobile radio networks. IEEE/ACM Transactions on Networking.1997,5(6): 804-812.
    [40]K. Oikonomou, I. Stavrakakis. Analysis of a probabilistic topology-unaware TDMA MAC policy for ad hoc networks. IEEE Journal on Selected Areas in Communications. 2004,22(7):1286-1300.
    [41]G. Zhang, J. Li, W. Zhang, et al. Topology-transparent schedule with reservation and carrier sense for multihop ad hoc networks. IEEE Communications Letters.2006, 10(4):314-316.
    [42]张光辉,李建东,周雷,等.多跳Ad hoc网络中支持MIMO的拓扑未知预约时分多址接入协议.电子与信息学报.2006,28(5):785-788.
    [43]C. H. Rentel, T. Kunz. MAC coding for QoS guarantees in multi-hop mobile wireless networks. Proceedings of the 1st ACM International Workshop on QoS and Security for Wireless and Mobile Networks, Montreal, Canada,2005:39-46.
    [44]Y. Xiao, Y. Pan. Differentiation, QoS guarantee, and optimization for real-time traffic over one-hop ad hoc networks. IEEE Transactions on Parallel and Distributed Systems. 2005,16(6):538-549.
    [45]S. Boztas. A robust multi-priority topology-independent transmission schedule for packet radio networks. Information Processing Letters.1995,55(5):291-295.
    [46]S. Boztas. On transmission scheduling in wireless networks. Proceedings of IEEE International Symposium on Information Theory. Seattle, Washington, USA,2006: 2754-2758.
    [47]Y. Liu, L. Zhang, V. O. K. Li, et al. Topology-transparent scheduling in mobile ad hoc networks supporting heterogeneous quality of service guarantees.46th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA,2012:1-6.
    [48]G.-C. Yang. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Transactions on Communications.1996, 44(1):47-55.
    [49]Nasaruddin, T. Tsujioka. Design of strict variable-weight optical orthogonal codes for differentiated quality of service in optical CDMA networks. Computer Networks. 2008,52:2077-2086.
    [50]万哲先.代数和编码.第三版.北京:高等教育出版社,2007.
    [51]R. A. Brualdi. Introductory combinatorics.3rd ed., Prentice-Hall,1999.
    [52]李西洋,范平志.支持多类业务的移动Ad Hoc网络拓扑透明MAC调度码.计算机应用.2012,32(9):2400-2404.
    [53]J. F. Chang, T. H. Yang. Multichannel ARQ protocols. IEEE Transactions on Communications.1993,41(4):592-598.
    [54]X. Tian, Y. Fang, T. Ideguchi. MATS:multichannel time-spread scheduling in mobile ad hoc networks. IEEE Transactions on Wireless Communications.2006,5(3): 612-621.
    [55]J. H. Ju, V. O. K. Li. TDMA scheduling design of multihop packet radio networks based on latin squares. IEEE Journal on Selected Areas in Communications.1999, 17(8):1345-1352.
    [56]李西洋,范平志.移动自组织网络中的多信道MAC调度码的设计与分析.通信学报.已录用.
    [57]J. A. Salehi. Code division multiple-access techniques in optical fiber networks-Part I: Fundamental principles. IEEE Transactions on Communications.1989,37(8): 824-833.
    [58]J. A. Salehi, C. A. Brackett. Code division multiple-access techniques in optical fiber networks-Part II:Systems performance analysis. IEEE Transactions on Communications.1989,37(8):834-842.
    [59]G.-C. Yang, W. C. Kwong. Prime codes with applications to CDMA optical and wireless networks, Norwood, MA:Artech House,2002.
    [60]S. M. Johnson. A new upper bound for error-correcting codes. IEEE Transactions on Information Theory.1962,8(3):203-207.
    [61]F. R. K. Chung, J. A. Salehi, V. K. Wei. Optical orthogonal codes:Design, analysis, and applications. IEEE Transactions on Information Theory.1989,35(3):595-604.
    [62]R. Fuji-Hara, Y. Miao. Optical orthogonal codes:Their bounds and new optimal constructions. IEEE Transactions on Information Theory.2000,46(7):2396-2406.
    [63]S. Bitan, T. Etzion. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Transactions on Information Theory.1995,41(1): 77-87.
    [64]J. Yin. Some combinatorial constructions for optical orthogonal codes. Discrete Mathematics.1998,185:201-219.
    [65]M. Buratti. Cyclic designs with block size 4 and related optimal optical orthogonal codes. Designs, Codes and Cryptography.2002,26:111-125.
    [66]G. Ge, J. Yin. Constructions for optimal (v,4,1) optical orthogonal codes. IEEE Transactions on Information Theory.2001,47(7):2998-3004.
    [67]Y. Chang, Y. Miao. Constructions for optimal optical orthogonal codes. Discrete Mathematics.2003,261:127-139.
    [68]Y. Chang, R. Fuji-Hara, Y. Miao. Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Transactions on Information Theory.2003, vol. 49(5):1283-1292.
    [69]S. Ma, Y. Chang. A new class of optimal optical orthogonal codes with weight five. IEEE Transactions on Information Theory.2004,50(8):1848-1850.
    [70]S. Ma, Y.Chang. Constructions of optimal optical orthogonal codes with weight five. Journal of Combinatorial Designs.2005, vol,13:54-69.
    [71]R. J. R. Abel, M. Buratti. Some progress on (v,4,1) difference families and optical orthogonal codes. Journal of Combinatorial Theroy, Series A.2004.106:59-75.
    [72]Y. Chang, J. Yin. Further results on optimal optical orthogonal codes with weight 4. Discrete Mathematics.2004,279:135-151.
    [73]M. Buratti, A. Pasotti. Further progress on difference families with block size 4 or 5. Designs, Codes and Cryptography.2010,56:1-20.
    [74]H. Charmchi, J. A. Salehi. Outer-product matrix representation of optical orthogonal codes. IEEE Transactions on Communications.2006,54(6):983-989.
    [75]W. C. Kwong, G.-C. Yang. Design of multilength optical orthogonal codes for optical CDMA multimedia networks. IEEE Transactions on Communications.2002,50(8): 1258-1265.
    [76]G.-C. Yang, W. C. Kwong. A new class of carrier-hopping codes for code-division multiple-access optical and wireless systems. IEEE Communications Letters.2004, 8(1):51-53.
    [77]W. C. Kwong, G.-C. Yang. Multiple-length, multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate, multimedia services. Journal on Selected Areas in Communications.2004,22(9):1640-1647.
    [78]W. C. Kwong, G.-C. Yang. Multiple-length extended carrier-hopping prime codes for optical CDMA systems supporting multirate, multimedia services. Journal of Lightwave Technology.2005,23(11):3652-3662.
    [79]N. G. Tarhuni, T. O. Korhonen, E. Mutafungwa, et al. Multiclass optical orthogonal codes for multiservice optical CDMA networks. Journal of Lightwave Technology. 2006,24(2):694-704.
    [80]V. Baby, W. C. Kwong, C.-Y. Chang, et al. Performance analysis of variable-weight multilength optical codes for wavelength-time O-CDMA multimedia systems. IEEE Transactions on Communications.2007,55(7):1325-1333.
    [81]H. Beyranvand, B. M. Ghaffari, J. A. Salehi. Multirate, differentiated-QoS, and multilevel fiber-optic CDMA system via optical logic gate elements. Journal of Lightwave Technology.2009.27(19):4348-4359.
    [82]I. B. Djordjevic, B. Vasic, J. Rorison. Design of multiweight unipolar codes for multimedia optical CDMA applications based on pairwise balanced designs. Journal of Lightwave Technology.2003,21(9):1850-1856.
    [83]F. R. Gu, J. Wu. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. Journal of Lightwave Technology.2005,23(2):740-748.
    [84]D. Wu, H. Zhao, P. Fan, et al. Optimal variable-weight optical orthogonal codes via difference packings. IEEE Transactions on Information Theory.2010,56(8): 4053-4060.
    [85]H. Zhao, D. Wu, P. Fan. Construction of optimal variable-weight optical orthogonal codes. Journal of Combinatorial Designs.2010,18:274-291.
    [86]H. Zhao, D. Wu, Z. Mo. Further results on optimal (v,{3, k},1,{1/2, 1/2})-OOCs for k= 4,5. Discrete Mathematics.2011,311:16-23.
    [87]D. Wu, P. Fan, X. Wang, et al. New classes of optimal variable-weight optical orthogonal codes based on cyclic difference families. IEICE Transactions on Fundamentals.2010,E93-A(11):2232-2238.
    [88]D. Wu, Z. Chen, M. Cheng. A note on the existence of balanced{q,{3,4},1) difference families. The Australasian Journal of Combinatorics.2008,41:171-174.
    [89]D. Wu, M. Cheng, Z. Chen, et al. The existence of balanced (v,{3,6},1) difference families. Science in China (Ser. F).2010,53:1584-1590.
    [90]X. Li, P. Fan, N. Suehiro, et al. New classes of optimal variable-weight optical orthogonal codes with Hamming weights 3 and 4. IEICE Transactions on Fundamentals,2012, E95-A(11):1843-1850.
    [91]D. Wu, P. Fan, H. Li, et al. Optimal variable-weight optical orthogonal codes via cyclic difference families. Proeeedings of IEEE International Symposium on Information Theory, Seoul, Korea,2009:448-452.
    [92]J. Jiang, D. Wu, P. Fan. General constructions of optimal variable-weight optical orthogonal codes. IEEE Transactions on Information Theory.2011,57(7):4488-4496.
    [93]M. Buratti, Y. Wei, D. Wu, et al. Relative difference families with variable block sizes and their related OOCs. IEEE Transactions on Information Theory.2011,57(11): 7489-7497.
    [94]X. Li, P. Fan, D. Wu. Constructions of optimal (v,{4,5,6},1,Q)-OOCs. IEICE Transactions on Fundamentals.2012, E95-A(3):669-672.
    [95]L. Tancevski, I. Andonovic. Wavelength hopping/time spreading code division multiple access systems. Electronics Letters.1994,30(17):1388-1390.
    [96]G.-C. Yang, W. C. Kwong. Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks. IEEE Transactions on Communications. 1997,45(11):1426-1434.
    [97]W. C. Kwong, G.-C. Yang, V. Baby, et al. Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA. IEEE Transactions on Communications.2005,53(1):117-123.
    [98]R. Omrani, G. Garg, P. V. Kumar, et al. Large families of asymptotically optimal two-dimensional optical orthogonal codes. IEEE Transactions on Information Theory. 2012,58(2):1163-1185.
    [99]S. Sun, H. Yin, Z. Wang, et al. A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks. Journal of Lightwave Technology.2006,24(4):1646-1653.
    [100]C.-C. Yang. Optical CDMA coding scheme with a large size of code space. IEEE Communications Letters.2009,13(2):45-147.
    [101]E. S. Shivaleela, K. N. Sivarajan, A. Selvarajan. Design of a new family of two-dimensional codes for fiber-optic CDMA networks. Journal of Lightwave Technology.1998,16(4):501-508.
    [102]A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, et al. Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA. Journal of Lightwave Technology.2003,21(11):2524-2533.
    [103]E. S. Shivaleela, A. Selvarajan, T. Srinivas. Two-dimensional optical orthogonal codes for fiber-optic CDMA networks. Journal of Lightwave Technology.2005,23(2): 647-654.
    [104]G.-C. Yang, W. C. Kwong. Two-dimensional spatial signature patterns. IEEE Transactions on Communications.1996,44(2):184-191.
    [105]M. Sawa. Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Transactions on Information Theory.2010,56(7): 3613-3620.
    [106]W. Liang, H. Yin, L. Qin, et al. A new family of 2D variable-weight optical orthogonal codes for OCDMA systems supporting multiple QoS and analysis of its performance. Photonic Network Communications.2008,16(1):53-60.
    [107]G.-C. Yang, T. Fuja. Optical orthogonal codes with unequal auto-and cross-correlation constraints. IEEE Transactions on Information Theory.1995,41(1): 96-106.
    [108]J.-J. Chen, G.-C. Yang. CDMA fiber-optic systems with optical hard limiters. Journal of Lightwave Technology.2001,19(7):950-958.
    [109]S. Mashhadi, J. A. Salehi. Code-division multiple-access techniques in optical fiber networks-Part III:Optical AND logic gate receiver structure with generalized optical orthogonal codes. IEEE Transactions on Communications.2006,54(8):1457-1468.
    [110]T. L. Alderson, K. E. Mellinger. Families of optimal OOCs with λ=2. IEEE Transactions on Information Theory.2008,54(8):3722-3724.
    [111]J.-H. Tien, G.-C Yang, C.-Y. Chang, et al. Design and analysis of 2-D codes with the maximum cross-correlation value of two for optical CDMA. Journal of Lightwave Technology.2008,26(22):3632-3639.
    [112]Y.-C. Lin, G.-C. Yang, C.-Y. Chang, et al. Construction of optimal 2D optical codes using (n, w,2,2) optical orthogonal codes. IEEE Transactions on Communications. 2011,59(1):194-200.
    [113]S. Kim, K. Yu, N. Park. A new family of space/wavelength/time spread three-dimensional optical code for OCDMA network. Journal of Lightwave Technology.2000,18(4):502-511.
    [114]J. Ortiz-Ubarri, O. Moreno, A. Tirkel. Three-dimensional periodic optical orthogonal code for OCDMA systems. Proeeedings of IEEE Information Theory Workshop, Paraty, Brazil,2011:170-140.
    [115]X. Li, P. Fan, K. W. Shum. Construction of space/wavelength/time spread optical code with large family size. IEEE Communications Letters.2012,16(6):893-896.
    [116]沈灏.组合设计理论.第二版.上海:上海交通大学出版社,2008.
    [117]C. J. Colbourn, J. H. Dinitz. The CRC handbook of combinatorial designs. Chapman and Hall/CRC,2006.
    [118]K. Chen, G. Ge, L. Zhu. Starters and related codes. Journal of Statistical Planning and Inference.2000,86:379-395.
    [119]G. H. Hardy, E. M. Wright. An introduction to the theory of numbers.5th ed.. Clarendon, Oxford University Press, Oxford, UK,1978.
    [120]G. Ge. On (g,4;1)-difference matrices. Discrete Mathematics.2005,301:164-174.
    [121]J. Yin. A general construction for optimal cyclic packing designs. Journal of Combinatorial Theroy, Series A.2002,97:272-284.
    [122]M. Hall, Jr.. Combinatorial theory.2nd ed.. Wiley, New York,1986.
    [123]潘承洞,潘承彪.初等数论.第二版.北京:北京大学出版社,2003.
    [124]A. S. Hedayat, N. J. A. Sloane, J. Stufken. Orthogonal arrays-theory and applications. Springer-Verlag, New York,1999.
    [125]W. Chu, S.W. Golomb. A new recursive construction for optical orthogonal codes. IEEE Transactions on Information Theory.2003,49(11):3072-3076.
    [126]W. Chu, C. J. Colbourn. Optimal (n,4,2)-OOC of small orders. Discrete Mathematics. 2004.279:163-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700