用户名: 密码: 验证码:
智能电网层次化保护构建模式及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网是国家关键基础设施,其安全事关国家经济发展和社会安定大局。国内外频繁发生的大停电事故为大电网的安全防御敲响了警钟。继电保护作为保障电网安全的第一道防线,对于快速隔离故障、有效控制事故蔓延至关重要。但在复杂的现代电网中,传统继电保护暴露越来越多的问题,如后备保护整定配合困难,电网结构或运行工况发生非预设性变化,可能发生拒动或误动,在大负荷转移情况下易引发连锁跳闸,造成大面积停电事故等。近年来,随着智能变电站信息共享技术和光纤通信技术的发展,继电保护系统可利用的信息资源发生了显著变化,为从根本上改善传统保护的性能提供了契机。本文在国家自然科学基金面上项目“应对电网灾变的有限广域智能保护的研究”(50877031)资助下,围绕基于信息共享的新型层次化继电保护系统构建模式、协调配合关系、大电网有限广域保护分区和基于多信息的故障元件判别算法等问题开展了系统深入的研究工作。本项研究意在深化热点关注的层次化保护研究内容和技术要求,提高或改善传统保护的性能,对加强电网安全、构建可靠的第一道防线具有重要的理论和现实意义。
     智能电网下新型变电站具有信息共享和集成的独特优势,对现有继电保护构建模式进行重新审视,以更好适应智能电网的发展需求,成为当前继电保护领域的研究重点之一。本文面向智能电网,基于信息共享技术,提出一种新型层次化继电保护架构体系,由间隔层保护、站域层保护和广域层保护组成。间隔层保护实现常规单个间隔元件的主保护功能和简化的后备保护功能;站域层保护也即站域保护,充分利用站域信息,整合并集成实现变电站继电保护的功能;广域层保护也即广域保护,集中区域电网冗余信息,实现电网的后备保护。进一步基于分层结构,考虑站内测量信息直采/网采模式和站间通信方式,分电压等级提出适应不同模式下的继电保护构建方案,并分析各方案的优缺点。
     一般来说,各分层继电保护研究都是相互独立的,为更好实现智能电网层次化保护功能,各层保护的保护配置及相互之间的协调配合成为本文的研究重点之一。论文根据层次化继电保护实现的功能,对间隔保护、站域保护和广域保护信息交互过程和跳闸协调配合进行了研究。在分析层次化保护信息流的基础上,研究提出了信息流过程中的信息组织、信息交互及其实现方案中的间隔层距离保护和零序保护整定、广域保护故障区域辨识等关键技术。进一步结合站域保护和广域保护跳闸决策的配合需求,具体研究了广域保护下行决策的辅助判据和复杂决策情况下的跳闸处理等。同时,也为改进间隔层保护性能,针对距离保护在潮流转移时易误动的特点,提出了一种自适应距离保护方案;为防止大范围负荷潮流转移时线路重载运行超出导线运行极限,提出一种基于热稳定约束的过负荷保护方案。
     现代电网规模庞大、结构复杂,难以对整个大电网实现单一层次化保护,如何将广域大电网划分为若干个合理的保护分区,并按分区域分别实现继电保护功能是层次化保护需解决的关键问题之一。论文在有限广域保护概念的基础上,提出大电网保护分区基本原则,主要包括分电压等级保护分区、中心站的选取、保护范围的划分、分区域边界的重叠交互等。以分区域通信量均衡性和决策中心计算量为指标,以分区数目和区域间的信息交互少、功能配合简单为约束条件,构建了保护分区性能评价体系。进一步,提出一种基于图论技术的保护分区实现方法,该方法基于电网拓扑结构构建邻接矩阵,通过计算得到明确分区范围的可达矩阵,最后,基于可达矩阵的搜索实现多种分区结果,并由分区优化实现大电网的最优分区。
     继电保护的基本任务是判别故障并快速切除故障,故障元件的判别一直是继电保护研究的重点之一。论文充分利用站域和广域范围内的冗余测量信息,研究融合多点保护动作信息的故障元件综合判据。为解决传统距离保护和零序保护存在的整定配合困难,延时长等问题,提出一种基于多源信息的距离保护和零序保护方案。针对广域信息在测量、判断和传输过程中可能出现信息缺失或信息错误,提出一种基于故障信息测度的信息容错算法,通过计算适应度函数得到广域范围内各元件的故障信息测度,基于故障元件的故障信息测度值最大,实现高可靠、高容错的故障元件判别。
     目前广域保护的验证一般采用数字仿真,但数字仿真的机电动态特性、测量误差都难以真实反应实际电网物理特性。广域动态模拟实验物理概念清晰,直观,且能真实反映实际系统的特征,是广域保护推向工程应用的重点。本文依托华中科技大学电气学院电力系统动态模拟实验室,搭建3机6节点电网模型,并模拟电网中出现的各种常规故障和复杂故障情况,采集广域范围内的故障信息,对所提出的广域保护故障元件判别算法的性能进行了试验验证。结果表明,算法在各种故障情况下可实现故障元件的准确识别,并具有良好的信息容错性能。
     论文最后对所取得的主要研究成果进行了总结,并对下一步研究工作重点进行了展望。
The power grid is the critical infrastructure whose safe operation is of greatsignificance to the national economic development and social stability. Large scaleblackouts which happen frequently domestic and overseas recently sound the alarm aboutthe security defense of power grid. As the first defense line to ensure the safety of powergrid, relay protection is of great importance for isolating fault element quickly andpreventing the fault development effectively. However, under the background of moderncomplicated power grid, more and more problems of traditional relay protections have beenexposed, such as setting cooperation of back-up protections is very difficult, fail-to-trip ormalopeartion of protections may happen if the structure or operation status of power gridchanges unintentionally, cascading trips and large scale blackout may occur undercondition of heavy load transfer and so on. In recent years, with the development ofinformation sharing technology in smart substation and fiber communication technology,the information resources which can be used by relay protection system have changedsignificantly. Meanwhile, it provides a chance for fundamentally improving theperformance of traditional relay protection. As a part of the project “Limited Wide AreaIntelligent Protection against the Catastrophe of Power Grid”(50877031) which issupported by the Natural Science Foundation of China, this dissertation conducts anin-depth and systematic study on the construction mode and cooperation scheme of novelhierarchical relay protection system based on information sharing, partition of limited widearea protection, fault element identication algorithm based on multi-information and so on.The study can deepen the research contents and technical requirements of hierarchical relayprotection system, improve the performance of traditional relay protection. It is ofimportant therotical and practical significance for the construction of reliable first defenseline and safety of power grid.
     The novel substation under background of smart grid has the advantages ofinformation sharing and information integration. Based on it, in order to meet therequirements of smart grid, revew the construction mode of traditional relay protection andpropose novel construction mode have been one of the research focuses of relay protection.Based on the information sharing technology, a novel hierarchical relay protection systemwhich consists of bay-level protection, substation-level protection and wide-area-levelprotection is proposed. The bay-level protection realizes the primary protection functionand simplified back up protection function of conventional single bay. The substation-levelprotection which is also called “substation protection” realizes the relay protection functionof the whole substation integratedly by taking full advantages of substation information.The wide-area-level protection which is also called “wide-area protection” realizes the back up protection function of the power grid with redundant information of the regional powergrid. Based on the hierarchical structure, the direct sampling/networked sampling mode ofinformation measurement in the substation and communication mode between substationsare discussed. Meanwhile, according to different sampling modes and communicationmodes, construction modes of relay protection are proposed with respect of differentvoltage levels. The advantages and disadvantages of different construction modes areanalyzed.
     Generally speaking, the researches of different level protections are independent witheach other. In order to better realize the functions of the hierarchical relay protectionsystem of smart grid, the protection configurations of different level protections and thecoordination principles are studied. According to the functions of different level protections,the information interaction process and tripping coordination among the bay-levelprotection, substation-level protection and wide-area-level protection are studied. Based onthe analysis of information flow of the hierarchical relay protection system, the informationorganization and interaction of the information flow are proposed. Meanwhile, the settingcalculation principles of the bay-level distance protection and zero-sequence overcurrentprotection, as well as the faulted area identification method of the wide-area-levelprotection are proposed. According to the requirements of the cooperation between thesubstation-level protection and wide-area-level protection, the auxiliary criteria for thedownward decisions of the wide-area-level protection and the tripping strategy undercondition of complicated decision-making are studied further. Moreover, specified to thephenomenon that maloperation of distance protection may occur under condition of heavyload transfer, a self-adptive distance protection scheme is proposed to improve theperformance of the bay-level protection. In order to prevent the transimission line operatingbeyond the limit under condition of heavy load transfer, an over-load protection based onthe constraint of thermal stability is proposed.
     Due to the large and complicated structure of modern power grid, it is difficult toprotect the whole power grid with single hierarchical relay protection system. How todivide the wide-area power grid into several reasonable protection partitions and realize therelay protection functions in accordance with different partitions are the key issues whichneeds to be solved by the hierarchical relay protection. Based on the concept of limitedwide-area protection, the basic principles of protection partition of power grid whichinclude protection partition according to different voltage levels, choice of central station,division of protection scope, the overlap and interaction of different protection partitionsand so on are proposed. The performance evaluation system of protection partition is builtwith the balance index of communication amount between different protection partitionsand calculation amount index of decision-making center. The number of protectionpartitions, the information exchange between different protection partitions and functioncoordination are taken as constraint conditions for the performance evaluation system. Animplementation method of protection partition based on graph theory is put forward. The adjacent matrix is built based on the topological structure of power grid. Then the reachablematrix which can determine the scope of protection partitions can be obtained withcalculation of adjacent matrix. Finally, various partition results can be got based on thesearch of reachable matrix. With the optimization of partitions, the optimal protectionpartition of power grid can be obtained.
     The basic task of relay protection is identifying and isolating the fault element quickly.Hence, the fault element identification is always the research focus of relay protection. Bytaking full advantages of redundant measurement information within the substation scopeand wide-area scope, the comprehensive criteria of fault element identification with fusionof action information of multi-protection are studied. In order to solve the problem that thesetting cooperations of traditional distance protection and zero-sequenceo over currentprotection are very complicated, novel distance protection scheme and zero-sequenceo overcurrent protection scheme based on multi information sources are proposed. With respect tothe information mistake and information loss which may occur during the measurement,judgement and transfer of wide-area information, an information fault tolerant algorithmbased on the measurement of fault information is proposed. The fault informationmeasurement of different elements within the wide-area scope can be obtained with thecalculation of fitness function. Based on it, the fault element can be identified with highreliability and fault tolerance.
     Currently, the digital simulation is taken to validate the performance of wide-areaprotection. However, the electromechanical dymanic characteristics and measurement errorof digital simulation can not accurately reflect the physical characteristics of actual powergrid. On the other hand, the physical concepts of dynamic simulation experiment are clearand intuitive. Meanwhile, it can accurately reflect the characteristics of actual power grid.Hence, the wide-area protection dynamic simulation experiment is of great significance forpromoting the wide-area protection into engineering application. Relying on the powersystems dynamic simulation laboratory of CEEE, HUST, a model of the power grid with3-generator and6-node is built. With the dynamic simulation model, the performance of thefault element identification algorithm of the proposed wide-area protection is validated bysimulating various conventional faults and complex faults and collecting the faultinformation within the wide-area scope. The results show that the fault elementidentification algorithm can correctly identify the fault element under various faultconditions and it has high information fault tolerance.
     In the end, the dissertation gives systematical summary and points out the furtherwork.
引文
[1]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6.
    [2]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J]。电力系统自动化,2006,30(1):1-9.
    [3]袁季修.防御大停电的广域保护和紧急控制[M].北京:中国电力出版社,2007:123-133.
    [4]赵兴勇,张秀彬.特高压输电技术在我国的实施及展望[J].能源技术,2007,28(1):52-54.
    [5] Bollen M. H. J. Travelling-Wave-Based Protection of Double-Circuit Lines. IEEProceedings-Generation, Transmission and Distribution,1993,140(1):37-47.
    [6] Lin X N,Huang J G,Zeng L J,Bo ZQQ. Analysis of Electromagnetic Transientand Adaptability of Second-Harmonic Restraint Based Differential Protection ofUHV Power Transformer [J]. IEEE Transactions on Power Delivery,2010,25(4):2299-2307.
    [7] Ding, HF; Duan, XZ. A hybrid controllable shunt reactor of transfonner type[C].2004International Conference on Power System Technology,2004,1:1174-1178.
    [8]王为国,尹项根,余江等.TCSC动态基频阻抗对故障分量保护的影响[J].电力系统自动化,1999,23(17):13~14.
    [9] Gerald E.lee, Daniel L.Goldsworthy. BPA’s Pacific AC Intertie Series Capacitor:Experience, Equipment and Protection [J]. IEEE Trans. On Power Delivery,1996,11(1):253~259.
    [10] Faruque M. O.; Yuyan Zhang; Dinavahi V. Detailed Modeling of CIGRE HVDCBenchmark System Using PSCAD/EMTDC and PSB/SIMULINK [J]. IEEETransactions on Power Delivery,21(1):378-387.
    [11] Union for the Coordination of Electricity Transmission (UCTE).Interimreport-system disturbance on4November2006. http://www.ucte.org/,2006-11-30.
    [12] Indian Power Sector. Historical background of legislative initiatives[EB/OL].http://indianpowersect or.com/electricity-regulation/,2012-8-19.
    [13] Resources forUnderstanding the Moscow Blackout of2005. PowerSystemsEngineering Research Center [Z]. Cornell University.
    [14]陈向宜,陈允平,李春艳等.构建大电网安全防御体系--欧洲大停电事故的分析及思考.电力系统自动化,2007,31(1):4-8.
    [15]侯慧,尹项根,陈庆前,等.中国南方地区500kV主网架2008年雪灾受损的分析与思考.电力系统自动化,2008,32(11):12-15.
    [16]林伟芳,孙华东,汤涌等.巴西“11·10”大停电事故分析及启示[J].电力系统自动化,2010,34(7):1-5.
    [17]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(9):14-17.
    [18]薛禹胜.综合防御由偶然故障演化为电力灾难[J].电力系统自动化,2003,27(18):1-5.
    [19] CIGRE Report. An international survey of the present status and the perspective oflong-term dynamics in power systems[R].cigre task force38-02-08,1995.
    [20] S. H. Horowitz, and A. G. Phadke,“Blackouts and relaying considerations,” IEEEPower Energy Mag., vol.4, no.5, pp.60-67, Sep./Oct.2006.
    [21]陈祥文,柳焕章.超高压线路简化整定计算的原则和方法[J].继电器,2007,35(2):11-19.
    [22]崔家佩,孟庆炎,等.电力系统继电保护与安全自动装置整定计算[M].北京:水利电力出版社,2008.
    [23] Damir Novosel, George Bartok, Gene Henneberg, et al. IEEE PSRC report onperformance of relaying during wide-area stressed conditions [J]. IEEETransactions on Power Delivery.2010,25(1):3-17.
    [24] Vahid Madani, Damir Novosel, Stan Horowitz, et al. IEEE PSRC Report on GlobalIndustry Experiences with System Integrity Protection Schemes (SIPS)[J]. IEEETransactions on Power Delivery.2010,25(4):2143-2155.
    [25] S. H. Horowitz and A. G. Phadke. Boosting immunity to blackouts [J] PowerEnergy Mag.,2003,1(5):47–53.
    [26]丛伟,潘贞存,丁磊,等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29-33.
    [27]董新洲,丁磊.数字化集成保护与控制系统结构设计方案研究[J].电力系统保护与控制,2009,37(1):1-5.
    [28]高振兴,郭创新,俞斌,等.基于多源信息融合的电网故障诊断方法研究[J].电力系统保护与控制,2011,39(6):17-23.
    [29]薄志谦,和敬涵,董新洲.电力系统的集成保护[J].继电器,2005,33(14):6-10.
    [30]王慧芳,何奔腾.输电线路集合保护及其实现[J].电网技术,2005,29(14):49-53.
    [31]徐慧明,毕天妹,黄少锋,等.基于广域同步测量系统的预防连锁跳闸控制策略[J].中国电机工程学报,2007,27(19):32-38.
    [32] J. D. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke. Synchronized phasormeasurement applications in power systems [J]. IEEE Trans. Smart Grid.,2010,1(1):20-27, Jun.2010.
    [33] Bertil Ingelsson, Per-Olof Lindstrom, Daniel Karlsson, et, al. Wide area protectionagainst voltage collapse [J]. IEEE Computer Applications on Power,1997,10(4):30-35.
    [34] Borka Milosevic, Mirosalv Begovic. Voltage-Stability Proctection and ControlUsing a Wide-Area Network of Phasor Measurements [J]. IEEE Trans. On PowerSystems,2003,18(1):121-127.
    [35] Eissa M M,Masoud M E,Elanwar M M.A novel back up wide area protectiontechnique for power transmission grids using phasor measurement unit[J].IEEETransactions on Power Delivery,2010,25(1):270-278.
    [36]尹项根,李振兴,刘颖彤,刘宝.广域继电保护及其故障元件判别问题的探讨[J]电力系统保护与控制,2012,40(5):1–9.
    [37]苗世洪,刘沛,林湘宁,等.基于数据网的新型广域后备保护系统实现[J].电力系统自动化,2008,32(10):32-41.
    [38]陈朝晖,赵曼勇,周红阳,等.基于广域一体化理念的网络保护系统研究与实施.电力系统保护与控制,2009,37(24):106-108.
    [39]曹金鹿,吴光强,符杨.110kV数字化变电站在浙江电网的应用[J]上海电力学院学报,2009,25(2):126–130.
    [40]易俊,周孝信.电力系统广域保护与控制技术[J].电网技术,2006,30(8):7-14.
    [41]张明珠,李开成,李振兴,等.基于高精度采集卡的电子式互感器校验系统设计[J].电力系统保护与控制,2010,38(15):114-118.
    [42]马义,郑建勇,梅军,等.基于IEC61850的SF6断路器在线监测系统的信息建模及通信实现[J].电力自动化设备,2010,30(2):131-134.
    [43]国家电网公司.Q/GDW441—2010智能变电站继电保护技术规范[S].北京:中国电力出版社,2011.
    [44]刘颂豪.光纤通信技术的新发展[J].光电子技术与信息,2002,15(2):1-8.
    [45] RiehardsonLJ, ForysiakW, BlowKJ.Single eliannel320Gb/s short perioddispersion managed transmission over6000km [J].Electron Lett,2000,36(24):2029-2030.
    [46]李高望,鞠文云,段献忠等,电力调度数据网传输特性分析[J].中国电机工程学报,2012,32(22):141–148.
    [47] Thomas Karagiannis, Pablo Rodriguez, Konstantina Papagiannaki. ShouldInternet Service Providers Fear Peer-Assisted Content Distribution [C]. IMC '05,October2005.
    [48] Rockerfeller G D. Fault Protection with Digital Computer [J]. IEEE Trans On PAS,1969,88(4):438~461.
    [49] CIGRE Report. Special Report for Preferential Subject2: Acceptable FunctionalIntegration in Substation P&C for Transmission System [R]. Study Committee B5Colloquium2007October15-20Madrid, SPAIN,2007.
    [50] ABB. REB500sys Station Protection [D]. ABB Switzerland Ltd,2005.
    [51]韩伟,杨小铭,仇新宏,刑宜宝.基于数字化采样的集中式保护装置[J].电力系统自动化,2010,34(11):101-104.
    [52]董新洲,丁磊.数字化集成保护与控制系统结构设计方案研究[J].电力系统保护与控制,2009,37(1):1-5.
    [53]付丽梅,席小娟,袁文嘉,李敏霞,等.新型原理的网络化变电站保护[J].电力系统保护与控制,2010,38(24):203-205.
    [54]杜振华,王建勇,罗奕飞,王彦辉,等.基于MMS与GOOSE网合一的数字化网络保护设计[J].电力系统保护与控制,2010,38(24):179-183.
    [55]董新洲,李幼仪,薄志谦.双回线无通道保护研究一故障分析和保护原理[J].电力系统自动化,2004,28(11):53-57.
    [56]赵一,罗建,鄢安河,张太升.横联差动电流方向保护闭锁措施的研究[J].继电器,2008,36(7):6-14.
    [57]王慧芳,何奔腾.输电线路集合保护及其实现[J].电网技术,2005,29(14):49-53.
    [58]张保会,周良才.变电站集中式后备保护[J].电力自动化设备,2009,29(6):1-5.
    [59]韩文庆,周志勇,王毅,等.基于负荷预测的区域变电站电压无功综合控制的研究[J].电力系统保护与控制,2012,40(8):68-72.
    [60]刘若溪,张建华,苏玲,王国栋.地区电网备自投在线投退控制策略(一)备自投投退组合在线动态选择新方法[J].电力自动化设备,2011,31(3):1-6.
    [61] Wide Area Protection and Emergency Control, Working group c-6, systemprotection subcommittee IEEE PES power system relaying committee final report,2002.
    [62] CIGRE Report. System Protection Schemes in Power Networks, CIGRE, TaskForce38.02.19,2001.
    [63]蔡运清,汪磊, Kip Morison等.广域保护(稳控)技术的现状及展望[J].电网技术,2004,28(8):21-26.
    [64] CIGRE Report. Special Report for Preferential Subject2: Acceptable FunctionalIntegration in Substation P&C for Transmission System [R]. Study Committee B5Colloquium2007October15-20Madrid, SPAIN,2007.
    [65]袁季修.电力系统安全稳定控制的规划和应用[J].中国电力,1999,32(5):29-32.
    [66] Borka Milosevic, Mirosalv Begovic. Voltage-Stability Proctection and ControlUsing a Wide-Area Network of Phasor Measurements [J]. IEEE Transactions. OnPower Systems,2003,18(1):121-127.
    [67]徐慧明,毕天姝,黄少锋,等.基于广域同步测量系统的预防连锁跳闸控制策略[J].中国电机工程学报,2007,27(16):24-30.
    [68]徐慧明,毕天姝,黄少锋,杨奇逊.计及暂态过程的多支路切除潮流转移识别算法研究[J].中国电机工程学报,2007,27(16):24-30.
    [69]薛禹胜.时空协调的大停电防御框架(二)广域信息、在线量化分析和自适应优化控制[J].电力系统自动化,2006,30(2):1-10.
    [70]薛禹胜.时空协调的大停电防御框架(三)各道防线内部的优化和不同防线之间的协调[J].电力系统自动化,2006,30(3):1-11.
    [71] Serizawa Y, Myoujin M, Kitamura K, et al. Wide-area current differential backupprotection employing broadband communications and time transfer systems [J].IEEE Transactions on Delivery,1998,13(4):1046-1052.
    [72] Y. Serizawa, H. Imamura, N. Sugaya, et, al. Experimental examination of wide areacurrent differential backup protection employing broadband communications andtime transfer systems[C]. In Proceeding.1999IEEE PES Summer Meeting:1070-1075.
    [73] Su Sheng, K. K. Li, W. L. Chan, et, al. Agent-based self-healing protection system[J]. IEEE Transactions on Power Delivery,2006,21(2):610-618.
    [74] Phadke A G, Thorp J S. Expose hidden failures to prevent cascadingoutages[J].IEEE Computer Application in Power,1996,9(3):20-23.
    [75]宋方方,毕天姝,杨奇逊.基于WAMS的电力系统多摆稳定性评估方法[J].中国电机工程学报,2006,26(16):38-45.
    [76] Tan J C, Crossley P A, Mclaren P G, et al. Application of a wide area backupprotection expert system to prevent cascading outages [J]. IEEE Transactions onDelivery,2002,17(2):350-380.
    [77] X. Y. Tong, X. R. Wang, and K. M. Hopkinson, The modeling and verification ofpeer-to-peer negotiating multiagent colored petri nets for wide-area backupprotection [J]. IEEE Transactions on Delivery,2009,24(1):61-72.
    [78] Orduna E, Garces F, Handschin E. Algorithmic-knowledge-based adaptivecoordination in transmission protection [J]. IEEE Transactions on Power Delivery,2003,18(1):61-65.
    [79]王阳光,尹项根,游大海,等.遵循IEC61850标准的广域电流差动保护IED[J].电力系统自动化,2008,32(2):53-57.
    [80] Zijad Galijasevic and Ali Abur. Fault Location Using Voltage Measurements [J]IEEE Transactions on Power Delivery,2002,17(2):441–446.
    [81]刘振亚.智能电网技术[M].北京:中国电力出版社,2010:142-220.
    [82] G. N. Ericsson. Cyber security and power system communication-essential parts ofa smart grid infrastructure [J]. IEEE Transactions on Power Delivery,2010,25(3):1501-1507.
    [83]李斌,薄志谦.面向智能电网的保护控制系统.电力系统自动化,2009,33(20):7-12.
    [84] Rockefeller G D, Wagner C L, Linders J R, et al. Adaptive transmission relayingconcepts for improved performance [J]. IEEE Transactions on Power Delivery,1988,3(4):1446-1458.
    [85]段献忠,杨增力,程逍.继电保护在线整定和离线整定的定值性能比较[J].电力系统自动化,2005,29(19):58-61.
    [86]曹国臣,蔡国伟,王海军,等.继电保护整定计算方法存在的问题与解决对策[J].中国电机工程学报,2003,23(10):51-56.
    [87] Orduna E,Garces F,Handschin E.Algorithmic-knowledge-based adaptivecoordination in transmission protection [J].IEEE Transactions on Power Delivery,2003,18(1):61-65.
    [88]吕颖,张伯明.基于集群计算机的保护定值在线校核[J].电力系统自动化,2007,31(14):12-16.
    [89]丛伟,潘贞存,赵建国,等.基于电流差动原理的广域继电保护系统[J].电网技术,2006,30(5):91-95.
    [90] LIN Xiang-ning, LI Zheng-tian, WU Ke-cheng, et al. Principles andimplementations of hierarchical region defensive systems of power grid [J]. IEEETransactions on Power Delivery,2009,24(1):30-38.
    [91]殷玮珺,袁丁,李俊刚,等.基于SDH网络的广域保护系统研究[J].电力系统保护与控制,2011,39(5):120-123.
    [92]从伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报,2006,26(21):8-14.
    [93]苏盛,段献忠,曾祥君,等.基于多Agent的广域电流差动保护系统[J].电网技术,2005,29(14):15-19.
    [94]尹项根,汪旸,张哲等.适应智能电网的有限广域继电保护分区与跳闸策略[J].中国电机工程学报,2010,30(7):1-7.
    [95]童晓阳,王晓茹,汤俊.电网广域后备保护代理的结构和工作机制研究[J].中国电机工程学报,2008,28(13):91-98.
    [96] Jiang Huang, S S Venkata. Wide area adaptive protection: architecture, algorithmsand communication[C]. Power Systems and Communications Infrastructures forthe Future, Beijing, September2002.
    [97]徐天奇,尹项根,游大海,等.广域保护系统功能与可行结构分析[J].电力系统保护与控制,2009,38(1):93-97.
    [98] Adamiak M G, Apostolov A P, Begovic M M, et al. Wide areaprotection-technology and infrastructures[J]. IEEE Transactions on powerDelivery,2006,21(2):601-609.
    [99]冯灿成.基于自组织网络的分布式广域后备保护研究[D].华中科技大学硕士论文,2010.
    [100] Lim Seong-Il, Liu Chen-Ching, Lee Seung-Jae, et al. Blocking of zone3relays toprevent cascaded events [J]. IEEE Transactions on Power Delivery,2008,23(2):747-755.
    [101] Lin Xiangning,Li Zhengtian,Wu Kecheng,et al.Principles and implementationsof hierarchical region defensive systems of power grid[J].IEEE Transactions onPower Delivery,2009,24(1):30-37.
    [102]李振兴,尹项根,张哲,等.分区域广域继电保护的系统结构与故障识别[J].中国电机工程学报,2011,31(28):95-103.
    [103]何志勤.基于故障元件识别的智能电网广域后备保护关键技术研究[D].华中科技大学博士论文,2011.
    [104] D. Dustegor, S. V. Poroseva, and M. Y. Hussaini, et al. Automated graph-basedmethodology for fault detection and location in power systems [J]. IEEETransactions on Power Delivery,2010,25(2):638-646.
    [105]从伟,潘贞存,赵建国.基于纵联比较原理的广域继电保护算法研究[J].中国电机工程学报,2006,26(21):8-14.
    [106]汪旸.高压电网有限广域智能保护研究[D].华中科技大学博士论文,2009.
    [107] F. Namdari, S. Jamali and P.A. Crossley. Power differential based wide areaprotection. Electric Power Systems Research,2007,77(12):1541-1551.
    [108]杨增力,石东源,段献忠.基于方向比较原理的广域继电保护系统[J].中国电机工程学报,2008,28(22):87-93.
    [109]汤俊.电网广域电流差动保护算法研究[D].西南交通大学硕士论文,2007。
    [110]周良才,张保会,薄志谦.广域后备保护系统的自适应跳闸策略[J].电力系统自动化,2011,35(1):55-60.
    [111]张保会,周良才.变电站集中式后备保护[J].电力自动化设备,2009,29(6):1-5.
    [112]汪旸,尹项根,张哲,等.基于遗传信息融合技术的广域继电保护.电工技术学报,2010,25(8):174-179.
    [113]汪旸,尹项根,赵逸君,等.基于遗传算法的区域电网智能保护[J].电力系统自动化,2008,32(17):40-45.
    [114] X. N. Lin, S. H. Ke, Z. T. Li,“A fault diagnosis method of power systems based onimproved objective function and genetic algorithm-Tabu search,” IEEE Trans.Power Del., vol.25, no.3, pp.1268-1274, Mar.2010.
    [115] L. He, S. L. Yang, X. J. Hu, et al,“Agent oriented intelligent fault diagnosis systemusing evidence theory,” Expert Systems with Applications, vol.39, no.3, pp.2524-2531, Feb.2012.
    [116]李丰,王来军,文明浩,等.广域后备保护智能跳闸策略研究[J].电力自动化设备,2011,31(6):84-89.
    [117] IEC Std61850-9-1, Communication networks and systems in substations-Part9-1:Specific Communication Service Mapping (SCSM)–Sampled values over serialunidirectional multidrop point to point link[S],2003.
    [118] Application of High-speed peer-to-peer Communications for protection andControl,CIGRE Paris2002,Paper34-105.
    [119]鞠平,郑世宇,徐群,等.广域测量系统研究综述[J].电力自动化设备,2004,24(7):37-41.
    [120]樊陈,黎山平,高春雷,李惠宇,等.集成式中低压数字化变电站自动化系统设计.电力系统自动化,2010,34(13):84-87.
    [121]吴国旸,王庆平,李刚.基于数字化变电站的集中式保护研究.电力系统保护与控制,2009,37(10):15-19.
    [122]付丽梅,席小娟,袁文嘉,李敏霞,等.新型原理的网络化变电站保护.电力系统保护与控制,2010,38(24):203-205.
    [123]林湘宁,夏文龙,熊玮,等.不受潮流转移影响的距离后备保护动作特性自适应调节研究[J].中国电机工程学报,2011,31(增):83-87.
    [124]陈国炎.广域后备保护原理与通信技术研究[D].华中科技大学博士论文,2012.
    [125]汪华,张哲,尹项根,等.基于故障电压分布的广域后备保护算法[J].电力系统自动化,2011,35(7):48-52.
    [126]何志勤,张哲,尹项根等.基于故障电压比较的广域后备保护新算法[J].电工技术学报,2012,27(7):274-283.
    [127] HE Zhi-qin, ZHANG Zhe, WHEN Wei, et al. Wide-area backup protectionalgorithm based on fault component voltage distribution [J]. IEEE Transactions onPower Delivery,26(4):2752-2760.
    [128]李振兴,尹项根,张哲,等.基于综合阻抗比较原理的广域继电保护算法研究.电工技术学报,2012,27(8):179-186.
    [129]梅义,丘东元,张波.基于深度优先搜索的潜在电路计算机辅助分析法[J].中国电机工程学报,2008,28(24):75-81.
    [130]石立宝,赤东阳,姚良忠.基于电网分区的负荷恢复智能优化策略[J].电力系统保护与控制,2011,39(2):1-8.
    [131]周鲲鹏,方仍存,颜烱.电网规划智能辅助决策系统的设计与实现[J].电力系统保护与控制,2012,36(2):1-6.
    [132]阎振坤.基于图论分区的电压无功优化研究[D].山东大学硕士论文,2005.
    [133]李振兴,尹项根,张哲,等.有限广域继电保护系统的分区原则与实现方法.电力系统自动化,2010,34(19):48-52.
    [134]梁永生,张基宏,张乃通. IEEE标准容限内以太网转发时延的测试与分析[J].电子学报,2008,36(1):46-50.
    [135]李振兴,尹项根,张哲,等.基于序电流相位比较和幅值比较的广域后备保护方法.电工技术学报,2013,28(1):242-250.
    [136]李振兴,尹项根,张哲,等.基于多信息融合的广域继电保护故障识别.电力系统自动化,2011,35(9):14-18.
    [137] Zhenxing Li, Xianggen Yin, Zhe Zhang, et al. A Novel Adaptive PartitioningMethod for Wide Area Protection.2011Asia-Pacific Power and EnergyEngineering Conference, APPEEC2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700