用户名: 密码: 验证码:
基于AMESim-Simulink联合仿真的再生制动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的加剧,混合动力汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车一项关键的节能技术,已经得到越来越大的重视,再生制动是指汽车在制动过程中将其一部分动能转化成其它形式的能量储存起来的过程。考虑到电机的制动能量回收率和制动稳定性两方面因素,当前的混合动力汽车大都采用电液制动相结合的再生制动方案,即在保留原有液压制动的基础上将电机引入制动系统,使能量回收制动和液压制动系统协同工作。因此,如何使摩擦制动系统和再生制动系统协调工作并能最大程度回收能量就成了一项很关键的技术。
     因此,本文以红旗牌混合动力轿车CA7220E为研究对象,对混合动力轿车的再生制动系统进行研究。主要进行的工作有:
     1.对再生制动系统的工作过程进行了动力学分析,并对能量回收的基本原理和能量回收过程进行研究。
     2.根据混合动力轿车制动系统的工作特点,在参考三种典型制动力控制策略的基础上,提出一套新的制动力控制策略,使其能够在满足制动稳定性的前提下,最大程度进行能量回收。
     3.在AMESim环境下对再生制动系统关键部件(ABS液压控制单元、真空助力器、制动主缸、电机、电池、车轮)进行建模,同时建立15自由度整车再生制动系统动态仿真平台。
     4.根据提出的制动力控制策略,在Matlab/Simulink环境下建立该再生制动系统算法模型,包括制动力分配模型和ABS液压系统控制单元模型,并将该算法模型嵌入到整车动态仿真平台进行联合仿真。
     5.选取不同的制动工况,对该动态联合仿真模型进行仿真,验证本文提出的控制策略是否可行,并根据仿真结果,对模型中相应参数进行调整,使制动效果达到最优。
Hybrid Electric Vehicle(HEV: Hybrid Electric Vehicle) has been a new orientation for vehicle as it combines the two advantages of low emission and low fuel consumption. As a key technology to reduce energy consumption, regenerative braking has been paid more and more attention. Regenerative braking is a technology to change one part of the vehicle’s kinetic energy to other forms of energy(such as electricity) or transfer this part of energy to other parts(such as Super High-speed Fly Wheel) to store it when braking. This part of the energy will be released when the vehicle drives or accelerates, so we can improve the vehicle’s fuel economy effectively.
     At the present time, the research about Hybrid Electric vehicle in our country is just in the beginning, so the study of regenerative braking system is relatively weak. Considering the braking performance and braking stability, most HEV utilize both hydraulic braking system and regenerative system at the same time, which reserve the intrinsic hydraulic braking system and introduce the motor into braking, so how to make the hydraulic braking system cooperate with the regenerative braking system on condition of the braking stability is a key technology for HEV. The regenerative braking system applied on HEV presently in our country have many problems, such as the hydraulic braking force can not be controlled accurately, the reduced energy is limited and so on. There is a gap between domestic and foreign regenerative braking system.
     Based on the achievement of our laboratory in the national“863”program of hybrid electric vehicle, this paper did some research about the regenerative braking system, combining with the actual demand of the hybrid electric vehicle”CA7220E”in the“eleventh Five-Year”. By consulting some domestic and foreign literature, we have acquired some results as following:
     1. Analysis was done about the working process of the regenerative braking system ,the HEV’s structure and the basic theory of the energy reducing.
     2. After doing some analyses about the braking process of hybrid electric vehicle, we consulted three typical braking force distribution control strategies, combining with the actual demand of the HEV, and then we finally proposed a braking force distribution control strategy, which can improve fuel consumption effectively on condition of the vehicle’s braking stability. This strategy can meet the demand of the ECE braking law, and reduce braking energy effectively.
     3. A dynamic vehicle model for regenerative braking system has been built up based on AMESim in this paper, which includes some models for the key parts of the HEV braking system, such as the motor model, the battery model and the semi-empirical tire model and so on. The modeling course used theoretical modeling approach combined with mathematical modeling.
     4. An arithmetic model has been built under the environment of Matlab/Simulink, which include a braking force distribution control model and a sub-model for ABS hydraulic braking system.This are done based on the proposed braking force distribution control strategy. We can do a co-simulation with this arithmetic model and the dynamic vehicle model to assort the motor braking system with the ABS hydraulic braking system.
     5. Do simulation with the co-simulation model under different typical braking cycles(different initialized velocities,braking intensities and adherence coefficients). Adjust the parameters according to the simulation results. The results indicates that this HEV braking system can reduce the fuel consumption effectively on condition of the braking stability.It can reduce fuel consumption by 61.44% under condition of small braking intensity when the initialized velocity is 60km/h, and this validate that the model is reasonable and feasible.
     As one of the key technology of HEV, the regenerative braking system plays an important role in HEV study and research, the work of this paper will be a coaching significance for the further study of regenerative braking system.
引文
[1]. 陈清泉,孙逢春.现代电动汽车技术.北京:北京理工大学出版社,2002.
    [2]. 颜增品.世界电动汽车电池技术的发展现状.世界汽车,1997(10):5~7.
    [3]. 任世源.浅议混合动力汽车[J].天津汽车,1999 年 01 期.
    [4]. 何洪文.混合驱动车辆动力传动系合理匹配研究[D].长春:吉林大学,2000.
    [5]. 陈清泉,孙逢春.混合动力电动汽车基础.北京:北京理工大学出版社,1993.
    [6]. 邢伟岩,宋振寰,周雅夫.混合动力电动汽车进入实用化的关键因素[J].现代车用动力.(第 3 期总第 107 期)2002 年 8 月.1~4.
    [7]. 曾小华.混合动力客车节能机理与参数设计方法研究[D].吉林大学博士学位论文.
    [8]. 郑伟.HEV 再生制动系统与 ABS 协调控制建模与仿真的研究[D].武汉理工大学硕士学位论文.
    [9]. TOYOTA Motor Corporation.Development of electric motors for the Toyota hybrid vehicle“PRIUS”.The 16th International Electric Vehicle Symposium and Exposition.Beijing,China,1999.
    [10]. M. Ozaki,T. Shinpo,N. Furukawa.A combined brake system for energy regeneration.The 15th International Electric Vehicle Symposium and Exposition,Brussels,Belgium,1998.
    [11]. Cikanek,S. R.Electric vehicle regeneration antiskid braking and traction control system.United States Patent,#5,450,324,USA,1995.
    [12]. Cikanek,S. R.Fuzzy logic electric vehicle regenerative antiskid braking and traction control system.United States Patent,#5,358,317,USA,1994.
    [13]. 蒋励.基于理想制动力分配曲线的复合制动设计[J].汽车科技.2006年 7 月第四期.
    [14]. 祝亚民.基于双离合器混合动力系统再生制动策略及硬件在环仿真研究[D].重庆大学硕士学位论文.
    [15]. 林志煌,基于电机_电池高效工作的 HEV 再生制动仿真研究[D].重庆大学硕士学位论文.
    [16]. Eiji Nakamura,Masayuki soga,etc.Development of Electronically Controlled Brake System for Hybrid Vehicle.SAE Paper.2002-01-0300.
    [17]. http://www.carkee.com/messageInfo.jsp?messageID=11919.
    [18]. H.Ishitani,Y. Baba,R. Matsuhashi. Evaluation of Energy efficiency of a Commercial HEV,Prius,at City driving, EVS16,1999.
    [19]. Masami Ogura,Yasushi Aoki. The HONDA EV PLUS Regenerative Braking System,EVS14,USA,,1997.
    [20]. Toshifumi Takaoka,Osamu Harada.Highly efficient and super low emission hybrid vehicle.
    [21]. Tatsuo Teratani , Kohjiro Kuramochi , Development of Toyota Mild-hybrid system (THS-M).Toyota Technical Review,2002,Vol.52 No.1 Sep.2002:46~51.
    [22]. Sumiko Sekiguchi,,Koichi Kondo,etc.Development of Electrical 4WD System for Hybrid Vehicles.Toyota Technical Review.2002,Vol.51 No.2 Mar,2002.86~89.
    [23]. Y.Sasaki,,A.Otomo,,F.Kawahata,A.Matui.Toyota Braking System for Hybrid Vehicle with Regenerative System.EVS-14,proceeding CD,1997.
    [24]. Masami Ogura,and Yasushi Aoki and Steve Mathison.The Honda EV Plus Regenerative Braking System.EVS-14,proceeding CD.1997.
    [25]. Koichi Fukuo,Akira Fujimura.Development of the ultra-low-fuel consumption hybrid car-INSIGHT.JSAE Review.JSAE20014016,2001:95~103.
    [26]. Isaya Matsuo,Takeshi Miyamoto.The Nissan hybrid vehicle.SAE 2000-01-1568,2000:1~9.
    [27]. Hidehiro Oba,Akihiro Yamanaka,etc. Development of a Hybrid Powertrain System Using CVT in a Minivan.Toyota Technical Review.2002,Vol.51 No.2 Mar.74~79,2002:52~57.
    [28]. S.R Cikanek.Electric Vehicle Braking System[C].Proceedings of the 14th International Electric Vehicle Symposium,Orlando,Florida,USA,1997.
    [29]. K.E.Balley.Dynamic Model and Coordinated Control System for a Hybrid Electric Vehicle[C].14th International Electric Vehicle Symposium,1997.
    [30]. Yimin Gao.Electronic Braking System of EV and HEV—Integration of Regenerative Braking ,Automatic Braking Force Control and ABS[C].SAE paper 2001-01-2478.
    [31]. Gao Hongwei,Gao Yimin.Mehrdad Ehsanil.A Neural Network Based SRM Drive Control Strategy for Regenerative Braking in EV and HEV[C].IEEE International Electric Machines and Drives Conference :571-575.
    [32]. Hoon Yeo.Performance Analysis of Regenerative Braking System for parallel Hybrid Electric Vehicle Using HILS.19th International Electric Vehicle Symposium(EVS19):438-448.
    [33]. Michael Panagiotidis,George Delagrammatikas,etc. Development and use of a regenerative braking model for a parallel hybrid electric vehicle..SAE 2000-01-0995.
    [34]. A.M.Walker,M.U.Lamperth and S.Wilkins.On Friction Braking Demand with Regenerative Braking.SAE2002-01-2581.
    [35]. 王鹏宇,段幼华,张国强,并联式混合动力客车再生制动控制策略仿真研究[J],中国科技论文在线,2006 年 12 月.
    [36]. 王鹏宇,混合动力汽车复式制动系统的设计与性能方针[D],吉林大学硕士学位论文.2005 年.
    [37]. 段幼华,混合动力轿车复式制动系统的研究[D].吉林大学硕士学位论文.2007.
    [38]. Yimin Gao,Liping Chen and Mehrdad Ehsani. Investigation of the Effectiveness of Regenerative Braking for EV ang HEV..SAE1999-01-2910.
    [39]. 何洪文.混合驱动车辆动力传动系合理匹配研究[D],长春:吉林大学.2000
    [40]. 方泳龙.汽车制动理论与设计.国防工业出版社.2005 年 1 月.
    [41]. 王鹏宇,王庆年,胡安平,于远彬.基于 Simulink-AMESim 联合仿真的混合动力客车再生制动系统分析[J].吉林大学学报(工学版).2008 年 2 月.第 38 卷 增刊.7~11.
    [42]. 张立军,朱博,贾云雷.依 ECE 法规进行汽车制动力分配新方法[J].辽宁工程技术大学学报.第 24 卷第 2 期.
    [43]. 付永领,祁晓野编.AMESim 系统建模和仿真.北京航空航天大学出版社.2006 年 2 月.
    [44]. http://www.simwe.com/jour/prog/p001009.htm.
    [45]. 程振东,田晋跃,刘刚.车辆全液压制动系统执行机构建模及仿真[J].系统仿真学报.2006 年 3 月.第 18 卷第 3 期.
    [46]. 王鹏宇,王庆年,段幼华.混合动力轿车再生制动系统动态仿真[J].中国科技论文在线.
    [47]. 彭栋.混合动力汽车制动能量回收与 ABS 集成控制研究.上海交通大学博士学位论文.2007 年.
    [48]. Niels J.Schouten,,Mutasim A.Salman,Naim A.Kheir..Energy management strategies for parallel hybrid vehicles using fuzzy logic.Control Engineering Practice,2003,Vol.11:171-177.
    [49]. Chitoshi Yokota,Yoshimori Nakamura,Shigeru Yada.Development ofthe 2001 year model Civic.JSAE Review 2002,Vol.23:387-399.
    [50]. 李君.车辆 ABS 控制系统快速开发研究.上海交通大学博士学位论文[D].2002 年 4 月.
    [51]. 刘溧.汽车 ABS 仿真试验台的开发与液压系统动态特性的研究[D].博士学位论文.长春:吉林工业大学,2000 年.
    [52]. 郭伟.真空助力器带主缸总成试验方法的研究[D].吉林大学硕士学位论文.2007 年 4 月.
    [53]. 赵凯,基于反求设计的汽车真空助力器总成的研究[D].西南交通大学研究生学位论文.2007 年.
    [54]. 王裕鹏,赵龙庆.典型轮胎模型及其发展趋势[J].农业装备与车辆工程.2006 年第 12 期.
    [55]. 邱杰,原渭兰.数字计算机仿真中消除代数环问题的研究[J].计算机仿真.2003,20(7):33-35.
    [56]. 姚俊,马松辉.SIMULINK 建模与仿真[M].西安:西安电子科技大学出版社.2002.
    [57]. The Math Works,,Inc, Full Product Family Help Version 6.5.1.199709(R13) Service Pack 1)[DB/OL].www.math-works.com,2003.
    [58]. 邱杰,原渭兰.数字计算机仿真中消除代数环问题的研究[J].计算机仿真.第 20 卷 第七期.
    [59]. 吕廷秀.混合动力轿车再生制动与防抱死集成控制系统研究[D].吉林大学硕士学位论文.2007 年.
    [60]. 李艳彩.基于四轮模型的汽车 ABS 控制策略的研究[D].河北工业大学硕士学位论文.2007 年.
    [61]. 余志生.汽车理论.机械工业出版社,2004 年第三版.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700