用户名: 密码: 验证码:
植物适应干扰机制和干扰对植被过程影响的若干例证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰对植被的作用可概括为两个方面:植物种或植被对干扰的适应和干扰对植被的作用。植物在物种水平适应干扰时表现的可塑性反应、在种群水平适应干扰时表现的均衡反应、在群落或植被水平适应干扰时表现的功能类型的分异以及干扰在植被过程中对植物繁殖体扩散的作用、对种子库组成的作用、对植物种组成和生物量的作用已成为研究的焦点,并且正被深入地研究。基于对干扰研究趋势的了解,本论文选择如下6个方面进行了例证研究,其中前3个方面论述的是植物在3个水平(包括物种、种群、群落或植被)对干扰的适应,后3个方面论述的是干扰对植被过程(包括种子传播、种子库组成、植物种组成、地上生物量)的作用。
     ● 植物在物种水平对干扰的可塑性适应。比较了来自三个国家、具有从很干旱到很湿润范围的原始生境背景的20个植物种的幼苗根系对旱化土壤的反应。
     ● 植物在种群水平对干扰的均衡适应。研究了海拔梯度、沙埋和砍伐等干扰方式对砂生槐种群的作用。
     ● 植物在群落水平对干扰的功能类型适应。根据已有文献,对沙坡头流沙逆转、生境旱化过程中的植被动态进行了植物功能类型的解释。
     ● 干扰在植被过程中对繁殖体扩散的作用。以对砂生槐种群种子库格局和种子传播方式的调查为基础,阐述了风、水、动物、重力等引发的干扰对砂生槐种子传播的作用。
     ● 干扰在植被过程中对种子库组成的作用。以科尔沁沙地为例,对不同放牧强度下沙质草地种子库特征进行了研究。
     ● 干扰在植被过程中对植物种和生物量的作用。通过对河北坝上草地沙漠化过程中的植物种丰富度和生物量以及褐沙蒿、冷蒿在群落中重要值变化的研究,对沙漠化过程中的植被过程特别是两种蒿属植物对植被退化和沙漠化阶段的指示意义进行了探讨。
     通过这些例证研究,得出了一些植物适应干扰和干扰对植被作用的结论。
     (1)对于植物幼苗根系对旱化土壤的形态反应的比较研究表明:幼苗形态可塑性是植物适应旱化土壤的机制之一;来自干旱生境的植物种的幼苗比来自湿润生境的植物种的幼苗具更明显的形态反应。
     (2)对于砂生槐适应干扰的研究表明,快速生长与慢速生长、有性繁殖与无性繁殖间的均衡是重要的植物适应干扰机制。
Effects of disturbance on vegetation can be summarized in two categories: 1) adaptations of species or vegetation to disturbance; and 2) roles of disturbance in determining vegetation processes. Plastic responses of plant species to disturbance, tradeoffs between variables within populations in response to disturbance, differentiation of plant functional types in plant communities (or vegetation) in relation to disturbance, and roles of disturbance in dispersing diaspores, determining seed composition, species composition and above-ground biomass have attracted extensive attentions of ecologists in recent years. To determine the trait variations associated with disturbance history and current disturbance regime as well as the interactions between these factors, global-scale comparisons of numerous individual studies are required. Therefore, several case studies concerning 6 aspects are presented in this thesis.Plastic responses of plant species to disturbance. 20 species from habitats of widely varying moisture status, ranging from marsh to desert in three countries, were selected to compare the morphological responses of their seedlings' roots to drying soil.Trade-offs between variables in populations in response to disturbance. A study on the roles of an altitudinal gradient, sand burial and cutting in Sophora moorcroftiana population characteristics was conducted.Differentiation of plant functional types in plant communities in relation to disturbance. According to existed literature, an analysis on vegetation dynamics concerning shifting sand reversion and habitat drying at Shapotou was carried out with reference to plant functional types.Role of disturbance in dispersing diaspores. Based on the surveys of seed bank patterns and seed dispersal ways of Sophora moorcroftiana, the roles of dispersal agents such as wind force, flowing water, animals and gravity, which are sources of disturbance in dispersing seeds of S. moorcroftiana, were discussed.Role of disturbance in determining seed composition. In the Horqin Sandy Land, soil seed bank characteristics of sandy steppe under different grazing regimes were explored.Roles of disturbance in determining species composition and above-ground biomass.
    Based on the investigation of shifts of species richness, above-ground biomass and importance value shift of Artemisia intramongolica and A. frigida at Bashang in Hebei Province, the vegetation process, and especially, the indicating roles of the two Artemisia species in the desertification process were discussed. The conclusions in specific adaptations to disturbance and roles of disturbance on vegetation processes derived from these case studies are listed here.(1) The comparison of the morphological responses in seedlings' roots to drying soil showed that 1) morphological plasticity in seedlings' roots is one of the adaptive mechanisms of plants to drying soil; and 2) seedlings of species from dry habitats make more appropriate morphological responses to the onset of drought than do seedlings of species from wet habitats.(2) The study on performances of Sophora moorcroftiana showed that trade-offs between rapid and slow growth, sexual and vegetative reproduction in populations are important adaptations of plants to disturbances.(3) The study on vegetation dynamics at Shapotou showed that 1) with the changes of disturbance types, vegetation processes are characterized as the shift of primary plant functional types; and 2) compared with species composition and lifeforms, plant functional types have more universal significance in describing vegetation dynamics.(4) The study on seed dispersal of Sophora moorcroftiana showed that 1) wind force, flowing water, animals and gravity all contributed to the diaspore dispersal and the formation of population patterns although their effects on seed distribution were different; 2) disturbance has positive effects on vegetation.(5) In the Horqin Sandy Land, with the increase of grazing intensity, seed composition and seed number in the soil seed bank changed in four aspects: 1) seed bank density declined; 2) seed composition proportion of annuals increased; 3) seed number proportion of annuals decreased, but that of leguminous species increased; 4) the correlation between seed number in the seed bank and species frequency in the vegetation became poorer. The influence degree of grazing on soil seed bank is one of indexes in determining grazing intensity.(6) At Bashang, with desertification occurring, the vegetation structure was modified in two aspects: 1) invasion of shrubs; 2) the increase in the proportion of annuals. However, the above-ground biomass did not change linearly. A conclusion is that degree of species dominance is more sensitive to desertification than above-ground biomass, and that species
    composition and indicating species, rather than biomass, seem to be the more important factor in determining desertification intensities.These case studies are significant in ecological restoration and vegetation management.(1) To successfully establish artificial vegetation on sand dunes in arid area through seeding is greatly relies on the emergence and survival of seedlings. It might be helpful to select species, which can adjust their root morphologies and exploit deeply buried water resources in the seedling phase in drying soil, as sand binders.(2) The characteristics of Sophora moorcroftiana (such as trade-offs in growth and reproduction, morphological characteristics which may have drought-resistant significance, long life span and slow growth) in response to disturbance mean that it can be selected as a sand binder in its distributed area.(3) In sand-fixing practice, psammophytes, ruderals and drought tolerators have different functions. An expected result can be realized if vegetation management protocol is established based on the analysis of roles of different plant functional types in vegetation process.(4) In the Horqin Sandy Land, because the treatment of 6 sheep unit/ha had caused the evident decrease in seed density of soil seed bank and strikingly poor relativity between seed number in the seed bank and species frequency in the vegetation, it should be taken as intense grazing regime.(5) At Bashang, Artemisia intramongolica is an indicator of serious desertification. A. frigida is an indicator of grassland degradation due to over-grazing, or of vegetation restoration after serious desertification. Therefore, when carrying out restoration projects of desertified land at locations like Bashang, Artemisia frigida could be introduced to prevent desertified lands from further deterioration, Artemisia intramongolica could be introduced to rapidly restore the desertified land.
引文
[1] A.T加也里(赵兴梁译).1958.论沙地造林与水分关系.北京:科学出版社.
    [2] Abernethy, V. J. & Willby, N. J. 1999, Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecology 140: 177-190.
    [3] Abulfatih, H. A. 1995. Seed germination in Acacia species and their relation to altitudinal gradient in southwestern Saudi Arabia. Journal of Arid Environments 31: 171-178.
    [4] Allen, E. B. 1988. Some trajectories of succession in Wyoming sagebrush grassland: implications for restoration. 89-112. In Allen, E. B. (ed), The Reconstruction of Disturbed Arid Lands-an ecological approach. London: Westview Press.
    [5] Auld, T. D. & Denham, A. J. 1999. The role of ants and mammals in dispersal and post-dispersal seed predation of the shrubs Grevillea (Proteaceae). Plant Ecology 144: 201-213,
    [6] Barrera, M. D., Frangi, J. L., Richter, L. L., Perdomo, M. H. & Pinedo, L. B. 2000. Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. Journal of Vegetation Science 11: 179-188.
    [7] Bekker, R. M., Lammerts, E. J., Schutter, A. & Grootjans, A. P. 1999. Vegetation development in dune slacks: the role of persistent seed banks. Journal of Vegetation Science 10: 745-754.
    [8] Bekker, R. M., Verweij, G. L., Smith, R. E. N., Reine, R., Bakker, J. P. & Schneider, S. 1997. Soil seed banks in European grasslands: does land use affect regeneration perspectives? Journal of Applied Ecology 34: 1293-1310.
    [9] Bohm, W. 1979. Methods of Studying Root Systems. Berlin: Springer-verlag.
    [10] Bohning-Gaese, K., Gaese, B. H. & Rabemanantsoa, S. B. 1999. Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guiliaumini. Ecology 80: 821-832.
    [11] Boot, R. 1989. The significance of size and morphology of root systems for nutrient acquisition and competition, pp. 299-311. In Lambers, H. et al (eds), Causes and Consequences of Variation in Growth Rate and Productivity of higher plants. The Hague: SPB Academic Publishing.
    [12] Bowers, J. E. 1996. Seedling emergence on Sonoran Desert dunes. Journal of Arid Environments 33: 63-72.
    [13] Box, E. O. 1995. Factors determining distributions of tree species and plant functional types. Vegetatio 121: 101-116.
    [14] Briggs, D. & Waiters, S. M. 1984. Plant Variation and Evolution (2nd Ed ). Cambridge: Cambridge University Press.
    [15] Burton, P. J., Robertson, K. R., Iverson, L. R. & Risser, P. G. 1988. Use of resources partitioning and disturbance regimes in the design and management of restored prairies. 46-88. In Allen, E. B. (ed), The Reconstruction of Disturbed Arid Lands-an ecological approach. London: Westview Press.
    [16] Cain, M. L., Damman, H. & Muir, A. 1998. Seed dispersal and the Holocene migration of woodland herbs. Ecological Monographs 68: 325-347.
    [17] Campbell, B. D., Stafford , D. M. & Ash, A. J. 1999. A rule-based model for the functional analysis of vegetation change in Australasian grasslands. Journal of Vegetation Science 10: 723-730.
    [18] Casanova, M. T & Brock, M. A. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147: 237-250.
    [19] Chambers, J. C., MacMahon, J. A & Haefner, J. H. 1991. Seed entrapment in alpine ecosystems: effects of soil particle size and diaspore morphology. Ecology 72: 1668-1677.
    [20] Chambers, J. C. & MacMahon, J. A. 1994. A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems. Annual Review on Ecological system 25: 263-292.
    [21] Chapin, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E. & Tilman, D. 1997. Biotic control over the functioning of ecosystems. Science 277: 500-509.
    [22] Crawford, R. M. M. 1989. Studies in Plant Survival. Oxford: Blackwell Scientific Publications.
    [23] Crawley, M. J. 1986. Plant Ecology. Oxford: Blackwell Scientific Publications.
    [24] Cross, A. F. & Schlesinger, W. H. 1999. Plant regulation of soil nutrient distribution in the northern Chihuahuan Desert. Plant Ecology 145: 11-25.
    [25] del Barrio, J., Luis-Calabuig, E. & Tarrega, R. 1999. Vegetative response of Arctostaphylos uva-ursi to experimental cutting and burning. Plant Ecology 145: 191-195.
    [26] DePuit, E. J. & Redente, E. F. 1988. Manipulation of ecosystem dynamics on reconstructed semiarid lands. 162-204. In Allen, E. B. (ed), The Reconstruction of Disturbed Arid Lands-an ecological approach. London: Westview Press.
    [27] Diaz Barradas, M. C., Zunzunegui, M., Tirado, R., Ain-Lhout, F. & Garcia Novo, F. 1999. Plant functional types and ecosystem function in a Mediterranean shrubland. Journal of Vegetation Science 10: 709-716.
    [28] Diaz, S. & Cabido, M 1997. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Sciences 8: 463-474.
    [29] Diaz, S., Cabido, M., Zak, M., Martinez Carretero, E. & Aranibar, J. 1999. Plant functional traits, ecosystem structure, and land-use history along a climatic gradient in central western Argentina. Journal of Vegetation Science 10: 651-660.
    [30] Dobson, A. P., Bradshaw, A. D. & Baker, A. J. M. 1997. Hopes for the future: restoration ecology and conservation biology. Science 277:515-522.
    [31] Ellenberg, H. 1979. Zeigwerte der Gefa B pflanzen Mitteleuropas. 2nd edn. Scripta Geobotanica, 9. Goltze Gottingen.
    [32] Escudero, A., Albert, M. J., Pita, J. M. & Perez-Garcla, F. P. 2000. Inhibitory effects of Artemisia herba-alba on the germination of the gypsophyte Helianthemum squamatum. Plant Ecology 148: 71-80.
    [33] Ffolliott, P. F., Fisher, J. T., Sachs, M., DeBoer, D. W., Dawson, J. O. & Fulbright, T. E. 1998. Role of demonstration projects in combating desertification. Journal of Arid Environments 39: 155-163.
    [34] Fitter, A. H. 1991. The ecological significance of root system architecture: an economic approach, pp 229-243. In Atkinson, D. (ed), Plant Root Growth, An Ecological Perspective. Special publication number 10, British Ecological Society. Oxford: Blackwell Scientific Publications.
    [35] Fredrickson, E., Havstad, M., Estell, R. & Hyder, P. 1998. Perspectives on desertification: south-western United States. Journal of Arid Environments 39: 191-207.
    [36] Fukami, T. 2001. Sequence effects of disturbance on community structure. OIKOS 92: 215-224.
    [37] Gales, K. 1979. Effects of water supply on partitioning of dry matter between roots and shoots in Lolium perenne. Journal of Applied Ecology 16: 863-877.
    [38] Ghermandi, L. 1997. Seasonal patterns in the seed bank of a grassland in north-western Patagonia. Journal of Arid Environments 35: 215-224.
    [39] Goudie, A. S. 1990. Techniques for Desert Reclamation. Chichester: John Wiley & Sons Ltd.
    [40] Grime, J. P. 1979. Plant Strategies & Vegetation Processes. Chichester: John Wiley & Sons.
    [41] Grime, J. P. 1988. The C-S-R model of primary plant strategies. 371-393. In Gottlieb, L. D. & Jain, S. K.(eds), Plant Evolutionary Biology. London: Chapman and Hall.
    [42] Grime, J. P. 1993. Ecology sans frontieres. OIKOS 68: 385-392.
    [43] Grime, J. P. 1997. Biodiversity and ecosystem function: the debate deepens. Science 277: 1260-1261.
    [44] Grime, J. P., Campbell, B. D., Mackey, J. M. L. & Crick, J. C. 1991. Root plasticity, nitrogen capture and competitive ability. 381-397. In Atkinson, D. (ed.), Plant Root Growth, An Ecological Perspective. Special publication number 10, British Ecological Society. Oxford: Blackwell Scientific Publications.
    [45] Grime, J. P., Hodgson, J. G. & Hunt, R. 1988. Comparative Plant Ecology, a functional approach to common British species. Unwin Hyman, London.
    [46] Grime, J. P., Thompson, K., Hunt, R. et al. 1997. Integrated screening validates primary axes of specialisation in plants. OIKOS 79: 259-281.
    [47] Guo, Q., Brown, J. H., Valone, T. J. & Kachman, S. D. 2000. Constrains of seed size on plant distribution and abundance. Ecology 81: 2149-2155.
    [48] Guo, Q., Rundel, P. W. & Goodall, D. W. 1998. Horizontal and vertical distribution of desert seed banks: patterns, causes and implications. Journal of Arid Environments 38: 465-478.
    [49] Gutierrez, J. R., Lopez-Cortes, F. & Marquet, P. A. 1998. Vegetation in an altitudinal gradient along the Rio Loa in the Atacama Desert of northern Chile. Journal of Arid Environments 40: 383-399.
    [50] Hadar, L., Noy-Meir, I. & Perevolotsky, A. 1999. The effect of shrub clearing and grazing on the composition of a Mediterranean plant community: functional groups versus species. Journal of Vegetation Science 10: 673-682.
    [51] Hamblin, A. & Tennant, D. 1987. Root length density and water uptake in cereals and grain legumes: how well are they correlated? Australian Journal of Agricultural Research 38: 513-527.
    [52] Harper, J. L. 1977. Population Biology of Plants. London: Academic Press.
    [53] Hegazy, A. K. 2000. Intra-population variation in reproductive ecology and resource allocation of the rare biennial species Verbascum sinaiticum Benth., in Egypt. Journal of Arid Environments 44: 185-196.
    [54] Hegazy, A. K., EI-Demerdash, M. A. & Hosni, H. A. 1998. Vegetation, species diversity and floristic relations along an altitudinal gradient in south-west Saudi Arabia. Journal of Arid Environments 38: 3-13.
    [55] Hendrix, S. D., Nielsen, E. , Nielsen, T. & Schutt, M. 1991. Are seedlings from small seeds always inferior to seedlings from large seeds? Effects of seed biomass on seedling growth in Pastinaca sativa L. New Phytologist 119: 299-305.
    [56] Hendry, G. A. F. & Grime, J. P. 1993. Methods in Comparative Plant Ecology, a laboratory manual. London: Chapman & Hall.
    [57] Hodgson, J. G. & Grime, J. P. 1990. The role of dispersal mechanisms strategies and seed banks in the vegetation dynamics of the British landscape. 65-81. In Bunce, R. G. H. & Howard, D. C. (Eds), Species Dispersal in Agricultural Habitats. London: Belhaven Press.
    [58] Hooper, D. U. & Vitousek, P. M. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277: 1302-1305.
    [59] Huang, Z. & Gutterman, Y. 1998. Artemisia monosperma achene germination in sand: effects of sand depth, sand/water content, cyanobacterial sand crust and temperature. Journal of Arid Environments 38: 27-43.
    [60] Huante, P., Rincon, E. & Gavito, M 1992. Root system analysis of seedlings of seven tree species from a tropical dry forest in Mexico. Trees 6: 77-82.
    [61] Hubbard, J. A. & McPherson, G. R. 1999. Do seed predation and dispersal limit downslope movement of a semi-desert grassland / oak woodland transition? Journal of Vegetation Science 10: 739-744.
    [62] Hunt, E. R., & Nobel, P. S. 1987. AIIometric root/shoot relationships and predicted water uptake for desert succulents. Annals of Botany 59:571-577.
    [63] Inglis, G. J. 2000. Disturbance-related heterogeneity in the seed bank of a marine angiosperm. Journal of Ecology 88: 88-99.
    [64] Ishikawa, S. & Kachi, N. 2000. Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats. Ecological Research 15: 241-247.
    [65] Jalili, A. 1991. An Investigation of the Influence of Drought and Other Soil Factors on the Structure of A Calcareous Grassland. PhD. Thesis, University of Sheffield.
    [66] Johnston, A., Smoliak, S. & Stringer, P. W. 1969. Viable seed populations in prairie topsoils. Canadian Journal of plant Science 49: 75-82.
    [67] Jongejans, E. & Schippers, P. 1999. Modeling seed dispersal by wind in herbaceous species. OIKOS 87: 362-372.
    [68] Kalisz, S., Hanzawa, F. M., Tonsor, S. J., Thiede, D. A. & Voigt, S. 1999. Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium grandiflorum. Ecology 80: 2620-2634.
    [69] Kassas, M. 1995. Desertification: a general review. Journal of Arid Environments 30: 115-128.
    [70] Kasusya, P. 1998. Combating desertification in northern Kenya (Samburu) through community action: a community case experience. Journal of Arid Environments 39: 325-329.
    [71] Khalil, A. A. M. & Grace, J. 1992. Acclimation to drought in Acer pseudoplatanus L. (Sycamore) seedlings. Journal of Experimental Botany 43: 1591-1602.
    [72] Kinucan, R. J. & Smeins, F. E. 1992. Soil seed bank of a semiarid Texas grassland under three long-term (36 years) grazing regimes. American Midland Naturalist 128: 11-21.
    [73] Kleyer, M. 1999. Distribution of plant functional types along gradients of disturbance intensity and resource supply in an agricultural landscape. Journal of Vegetation Sciences 10: 697-708.
    [74] Kolb, K. J. & Sperry, J. S. 1999. Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80: 2373-2384.
    [75] Kotze, D. C. & O'Connor, T. G. 2000. Vegetation variation within and among palustrine wetland along an altitudinal gradient in Kwazulu-Natal, South Africa. Plant Ecology 146: 77-96.
    [76] Kramer, P. J. 1949. Plant and Soil Water Relationships. London: Mcgraw-Hill.
    [77] Krizek, D. T., Carrel, A., Mirecki, R. M., Snyder, F. W. & Bunce, J. A. 1985. Comparative effects of soil moisture stress and restricted root zone volume on morphogenetic and physiological responses of soybean (Glycine max (L.) Merr.). Journal of Experimental Botany 36: 25-38.
    [78] Kummerow, J. 1980. Adaptation of roots in water-stressed native vegetation. 57-73. In Turner, N. C. & Kramer, P. J. (eds): Adaptation of Plants to Water and High Temperature Stress. New York: John Wiley & Sons.
    [79] Landsberg, J., Lavorel, S. & Stol, J. 1999. Grazing response groups among understorey plants in arid rangelands. Journal of Vegetation Sciences 10: 683-696.
    [80] Lavorel, S. 1999. Ecological diversity and resilience of Mediterranean vegetation to disturbance. Diversity and Distribution 5: 3-13.
    [81] Lavorel, S., Mclntyre, S. & Grigulis, K. 1999a. Plant response to disturbance in a Mediterranean grassland How many functional groups? Journal of Vegetation Science 10: 661-672.
    [82] Lavorel, S., Rochette, C. & Lebreton, J. D. 1999b. Functional groups for response to disturbance in Mediterranean old fields. OIKOS 84: 480-498.
    [83] Le Houerou, H. N. 2000. Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Research and Rehabilitation 14: 101-135.
    [84] Lenssen, J., Menting, F., van der Putten, W & Blom, K. 1999. Control of plant species richness and zonation of functional groups along a freshwater flooding gradient. OIKOS 86: 523-534.
    [85] Leps, J., Brown, V. K. & Diaz Len, T. A. et al. 2001. Separating the chance effect from other diversity effects in the functioning of plant communities. OIKOS92: 123-134.
    [86] Levitt, J. 1972. Responses of Plants to Environmental Stress. London: Academic Press.
    [87] Li, S., Harazono, Y., Oikawa, T., Zhao, H., He, Z. & Chang, X. 2000. Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forestry Meteorology 102: 125-137.
    [88] Liddle, M. J., Parlange, J. L. & Bulow-Olsen, A. 1987. A simple method for measuring diffusion rates and predation of seed on the soil surface. Journal of Ecology 75: 1-8.
    [89] Liu Z. & Zhao, W. 2001. Shifting sand control in central Tibet. AMBIO 30: 376-380.
    [90] Liu, H., Cui, H., Pott. R. & Speier, M. 2000. Vegetation of the woodland-steppe transition at the southeastern edge of the Inner Mongolian Plateau. Journal of Vegetation Science 11: 525-532.
    [91] Mabbutt, J. A. 1986. Desertification indicators. Climatic Change 9: 113-122.
    [92] Magda, D. & Jarry, M. 2000. Prediction of cutting effects on a population of Chaerophyllum aureum-a demographic approach. Journal of Vegetation Science 11:485-492.
    [93] Major, J. & Pyott, W. T. 1966. Buried, viable seeds in two California bunchgrass sites and their bearing on the definition of a flora. Vegetatio Ⅻ (5): 253-282.
    [94] Mani, M. S. 1978. Ecology & Phytogeography of High-altitude Plants of the Northwest Himalaya. London: Chapman and Hall.
    [95] Manzano, M. G. & Navar, J. 2000. Processes of desertification by goats overgrazing in the Tamaulipan thornscrub (matorral)in north-eastern Mexico. Journal of Arid Environments 44: 1-17.
    [96] Matson, P. A., Parton, W. J., Power, A. G. & Swift, M. J. 1997. Agricultural intensification and ecosystem properties. Science 277: 504-508.
    [97] Maximov, N. A. 1929. The Plant in Relation to Water. London: George Allen & Unwin.
    [98] Mclntyre, S., Diaz, S., Lavoral, S. & Cramer, W. 1999a. Plant functional types and disturbance dynamics-Introduction. Journal of Vegetation Science 10: 604-608.
    [99] Mclntyre, S., Lavorel, S., Landsberg, J. & Forbes, T. D. A. 1999b. Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science 10: 621-630.
    [100] Meissner, R. A. & Facelli, J. M. 1999. Effects of sheep exclusion on the soil seed bank and annual vegetation in chenopod shrublands of South Australia. Journal of Arid Environments 42: 117-128.
    [101] Mesleard, M., Lepart, J., Grillas, P. & Mauchamp, A., 1999. Effects of seasonal flooding and grazing on the vegetation of former ricefield in the Rhone delta (Southern France). Plant Ecology 145: 101-114.
    [102] Middleton, B. 2000. Hydrochory, seed banks, and regeneration dynamics along the land scape boundaries of a forested wetland. Plant Ecology 146: 169-184.
    [103] Milberg, P. & Hansson, M. L. 1993. Soil seed bank and species turnover in a limestone grassland. Journal of Vegetation Science 4: 35-42.
    [104] Milton, S. J., Dean, W. R. J. & Ellis, R. P. 1998. Rangeland health assessment: a practical guide for ranchers in arid Karoo shrublands. Journal of Arid Environments 39: 253-265.
    [105] Mitchell, D. J., Fullen, M. A. & Trueman, I. C. & Fearnehough, W. 1998. Sustainability of reclaimed desertified land in Ningxia, China. Journal of Arid Environments 39: 239-251.
    [106] Nash, M. S., Whitford, W. G., De Soyza, A. G., Van Zee, J. W. & Havstad, K. M. 1999. Livestock activity and Chihuahuan Desert annual-plant communities: boundary analysis of disturbance gradients. Ecological Applications 9: 814-823.
    [107] Newman, E. I. 1966. Relationship between root growth of flax (Linum usitatissimum) and soil water potential. New Phytologist 65: 273-283.
    [108] O'Connor, T. G. & Pickett, G. A. 1992. The influence of grazing on seed production and seed bank of some African savana grasslands. Journal of Applied Ecology 29: 247-260.
    [109] Okubo, A. & Levin, S. A. 1989. A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70: 329-338.
    [110] Ortega-Rubio, A., Romero-Schmidt, H., Arguelles-Mendez, C. & Castellanos-Vera, A. 1995. Effect of wind on a Ferocactus fordii Var. fordii population on Piedra Island, Baja California Sur, Mexico. Journal of Arid Environments 31: 15-19.
    [111] Otani, T. & shibata, E. 2000. Seed dispersal and predation by Yakushima macaques, Macaca fuscata yakui, in a warm temperate forest of Yakushima Island, southern Japan. Ecological Research 15: 133-144.
    [112] Parsons, R. F. 1997. Carpobrotus modestus (Aizoaceae), a post-fire pioneer in semi-arid southern Australia. Journal of Arid Environments 37: 453-459.
    [113] Pausas, J. G. 1999. Mediterranean vegetation dynamics: modeling problems and functional types. Plant Ecology 140: 27-39.
    [114] Pavon, N.P., Hernandez-Trejo, H. & Rico-Gray, V. 2000. Distribution of plant life forms along an altitudinal gradient in the semi-arid vally of Zapotitlan, Mexico. Journal of Vegetation Science 11:39-42
    [115] Pillar, V. D. 1999. On the identification of optimal plant functional types. Journal of Vegetation Science 10: 631-640.
    [116] Portas, C. A. M. & Taylor, H. M. 1976. Growth and survival of young plant roots in dry soil. Soil Science 121: 170-175.
    [117] Price, E. A. C. & Marshall, C. 1999. Clonal plants and environmental heterogeneity. Plant Ecology 141: 3-7.
    [118] Puigdefabregas, J. & Mendizabal, T. 1998. Perspectives on desertification: western Mediterranean. Journal of Arid Environments 39: 209-224.
    [119] Read, D. J. & Bartlett, E. M., 1972. The physiology of drought resistance in the soy-bean plant (Glycine max). I. The relationship between drought resistance and growth. Journal of Applied Ecology 9: 487-499.
    [120] Reader, R. J., Jalili, A., Grime, J. P., Spencer, R. E. & Matthews, N. 1993. A comparative study of plasticity in seeding rooting depth in drying soil. Journal of Ecology 81: 543-550.
    [121] Reichman, J. 1984. Spatial and temporal variation of seed distributions in Sonoran desert soils. Journal of Biogeography 11: 1-11.
    [122] Riswan, S. & Hartanti, L. 1995. Human impacts on tropical forest dynamics. Vegetatio 121: 41-52.
    [123] Rubio, J. L. & Bochet, E. 1998. Desertification indicators as diagnosis criteria for desertification risk assessment in Europe. Journal of Arid Environments 39: 113-120.
    [124] Rundel, P. W. & Gibson, A. C. 1996. Ecological Communities and Process in a Mojave Desert Ecosystem. Cambridge: Cambridge University Press.
    [125] Rundel, P. W. & Nobel, P. S. 1991. Structure and function in desert root systems. 349-378. In Atkinson, D. (ed.), Plant Root Growth, An Ecological Perspective. Special publication number 10, British Ecological Society. Oxford: Blackwell Scientific Publications.
    [126] Russi, L., Cocks, P. S. & Roberts, E. H. 1992. Seed bank dynamics in a Mediterranean grassland. Journal of Applied Ecology 29: 763-771.
    [127] Sanderson, E. W., Ustin, S. L. & Foin, T. C., 2000. The influence of tidal channels on the distribution of salt marsh plant species in Petaluma Marsh, CA, USA. Plant Ecology 146: 29-41.
    [128] Schenk, H. J. 1999. Clonal splitting in desert shrubs. Plant Ecology 141: 41-52.
    [129] Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A. & Whitford, W. G. 1990. Biological feedbacks in global desertification. Science 247: 1043-1047.
    [130] SchOnherr, J. 1982. Resistance of plant surfaces to water loss: transport properties of cutin, suberin and lipids. 153-180. In Lange, O. L., Noble, P. S., Osmond, C. B. & Ziegler, H (eds), Encyclopedia of Plant Physiology, New Series Volume 12B, Physiological Plant Ecology Ⅱ, Water Relations and Carbon Assimilation. New York: Springer-Verlag.
    [131] Seely, M. K. 1998. Can science and community action connect to combat desertification? Journal of Arid Environments 39: 267-277.
    [132] Sharma, K. D. 1998. The hydrological indicators of desertification. Journal of Arid Environments 39: 121-132.
    [133] Sharp, R. E. & Davies, W. J. 1985. Root growth and water uptake by maize plants in drying soil. Journal of Experimental Botany 36: 1441-1456.
    [134] Shone, M. G. T., Whipps, J. M. & Flood, A. V. 1983. Effects of Iocalised and overall water stress on assimilate partitioning in barley between shoots, roots and root exudates. New Phytologist 95: 625-634.
    [135] Simpson, R. L., Leck, M. A. & Parker, V. T. 1989. Seed banks: general concepts and methodological issues. 3-7. In Leck, M. A., Parker, V. T. & Simpson, R. L. (Eds), Ecology of Soil Seed Banks. San Diego: Academic Press.
    [136] Singh, H. P. 1998. Sustainable development of the Indian desert: the relevance of the farming systems approach. Journal of Arid Environments 39: 279-284.
    [137] Skidmore, E. L. 1986. Wind erosion control. Climatic change 9: 209-218.
    [138] Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D. & Kigel, J. 2000. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. Journal of Applied Ecology 37: 224-237.
    [139] Thompson, K. & Grime J. P. 1979. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology 67: 893-921.
    [140] Thompson, K. 1978. The occurrence of buried viable seeds in relation to environmental gradients. Journal of Biogeography 5: 425-430.
    [141] Thompson, K. 1986. Small-scale heterogeneity in the seed bank of an acidic grassland. Journal of Ecology 74: 733-738.
    [142] Thompson, K. 1987. Seed and seed banks. New Phytologists 106 (Suppl.1): 23-34.
    [143] Thompson, K. 1992. The functional ecology of seed banks. 231-258. In Fenner, M. (ed), Seeds: the Ecology of Regeneration in Plant communities. Wallinford: CAB International.
    [144] Thompson, K., Band, S. R & Hodgson, J. G. 1993. Seed size and shape predict persistence in soil. Functional Ecology 7: 236-241.
    [145] Thompson, K., Hodgson, J. G, Grime, J. P., Rorison, I. H., Band, S. R. & Spencer, R. E. 1993. Ellenberg numbers revisited. Phytocoenologia 23: 277-289.
    [146] Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M. & Siemann, E. 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300-1302.
    [147] Tomas, M. A., Carrera, A. D. & Poverene, M 2000. Is there any genetic differentiation among populations of Piptochaetium napostaense (Speg.) Hack (Poaceae) with different grazing histories? Plant Ecology 147: 227-235.
    [148] Turner, N. C. & Kramer, P. J. 1980. Adaptation of Plants to Water and High Temperature Stress. New York: John Wiley & Sons.
    [149] Tutin, T. G., Heywood, V. H. et al. 1964-1980. Flora Europaea (5 vols). Cambridge: Cambridge University Press.
    [150] Valone, T. J. & Kelt, D. A. 1999. Fire and grazing in a shrub-invaded arid grassland community: independent or interactive ecological effects? Journal of Arid Environments 42: 15-28.
    [151] Van der Merwe, J. P. A. & Kellner, K. 1999. Soil disturbance and increase in species diversity during rehabilitation of degraded arid rangelands. Journal of Arid Environments: 41: 323-333.
    [152] Van Rheede van oudtshoorn, K. & Van Rooyen, M. W. 1999. Dispersal Biology of Desert Plants. Berlin: Springer-Verlag.
    [153] Van Rooyen, A. F. 1998. Combating desertification in the southern Kalahari: connecting science with community action in South Africa. Journal of Arid Environments 39: 285-297.
    [154] Verstraete, M. M. 1986. Defining desertification: a review. Climatic Change 9: 5-18.
    [155] Vetaas, O. R. 2000. The effect of environmental factors on the regeneration of Quercus semecarpifofia Sm. In Central Himalaya, Nepal. Plant Ecology 146: 137-144.
    [156] Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. 1997. Human domination of earth's ecosystems. Science 277: 494-499.
    [157] Wang, Z, Wang, G. & Liu, X. 1998. Germination strategy of the temperate sandy desert annual chenopod Agriophyllum squarrosum. Journal of Arid Environments 40: 69-76.
    [158] Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Gamier, E. & Eriksson, O. 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science 10: 609-620.
    [159] Westcott, D. A. & Graham, D. L. 2000. Pattern of movement and seed dispersal of a tropical frugivore. Oecologia 122: 249-257.
    [160] Witkowski, E. T. F. & Garner, R. D. 2000. Spatial distribution of soil seed banks of three African savana woody species at two contrasting sites. Plant Ecology 149: 91-106.
    [161] Ypersele, J. P. V. & Verstraete, M. M. 1986. Climate and desertification-editorial. Climatic Change 9: 1-4.
    [162] Yumoto, T. 1999. Seed dispersal by Salvin's Curassow, Mitu salvini (Cracidae), in a tropical forest of Colombia: direct measurements of dispersal distance. Biotropica 31: 654-660.
    [163] Zha, Y. & Gao, J. 1997. Characteristics of desertification and its rehabilitation in China. Journal of Arid Environments 37: 419-432.
    [164] Zhang, W. & Skarpe, C. 1996. Small-scale vegetation dynamics in semi-arid steppe in Inner Mongolia. Journal of Arid Environments 34 : 421-439.
    [165] 于云江,辛越勇,刘家琼,于志勇.1998.风和风沙流对不同固沙植物生理状况的影响.植物学报 40:962-968.
    [166] 中国科学院内蒙古宁夏综合考察队.1985.内蒙古植被,北京:科学出版社.
    [167] 中国科学院兰州沙漠研究所沙坡头沙漠科学研究站.1986.腾格里沙漠东南缘铁路沿线流沙固定的原理与措施.中国沙漠 6(3):1-19.
    [168] 中国科学院青藏高原综合科学考察队.1984.西藏农业地理.北京:科学出版社.
    [169] 中国科学院青藏高原综合科学考察队.1985.西藏植物志.北京:科学出版社.
    [170] 中国科学院青藏高原综合科学考察队.1988.西藏植被.北京:科学出版社.
    [171] 王为义.1980.砂生槐抗旱形状观察.植物学报 22:293-294.
    [172] 王仁忠.1998.放牧和刈割干扰对松嫩草原羊草草地影响的研究.生态学报 18:210-213.
    [173] 王刚,王宗灵,冯波,施搠筠,刘家琼.1996.Agriophyllum squarrosum种群动态与种内竞争 中国沙漠(16 Supp 1):20-24.
    [174] 王刚和张大勇.1996.生物竞争理论.西安:陕西科学技术出版社.
    [175] 王刚和梁学功.1995.沙坡头人工固沙区的种子库动态.植物学报 37:231-237.
    [176] 王庆锁,董学军,陈旭东,杨宝珍.1997.汕蒿群落不同演替阶段某些群落特征的研究.植物生态学报 21:531-538.
    [177] 王宗灵,王刚,刘新民.1997.5种沙漠植物种子的萌发生态学研究.中国沙漠 17(Supp.3):16-20.
    [178] 王宗灵,王刚,梁学功.1995.沙坡头人工固沙区植被的排序及生态分析.95-104.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,沙漠生态系统研究.兰州:甘肃科学技术出版社.
    [179] 王金亭,李渤生,陈伟烈,张经炜.1980.西藏高原草原植被的基本特征.植物学报 22:161-169.
    [180] 王海鸥和周瑞莲.1999.高温胁迫下差巴嘎蒿和冷蒿的生理变化及其抗热性研究.中国沙漠 19(Supp 1):55-58.
    [181] 王康富.1960.辽宁省章古台主要固沙植物的习性.182-198.林业集刊,第三号.北京:科学出版社.
    [182] 王康富和蒋瑾.1991.沙坡头地区固沙植物种的选择问题.126-138.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [183] 白·图格吉扎布,郝敦元,特·塔拉.1995.卡森堡植被演替趋势分析-超球面模型应用实例. 73-78.见李博(主编),现代生态学讲座.北京:科学出版社
    [184] 白永飞,李凌浩,黄建辉,陈佐忠.2001.内蒙古高原针茅草原植物多样性性与植物功能群组成对群落初级生产力稳定性的影响.植物学报 43:280-287.
    [185] 石庆辉,刘家琼,李玉俊.1996.沙坡头铁路人工植被的演变与恢复措施.中国沙漠 16(Supp 1):25-29.
    [186] 石庆辉.1991.沙坡头地区主要植物物候.425-437.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [187] 石庆辉.1993.腾格里沙漠东南缘沙坡头地段铁路北侧人工植被演替动态.89-107.中国科学院沙坡头沙漠试验研究站年报(1991—1992年).兰州:甘肃科学技术出版社.
    [188] 石庆辉.1995.沙坡头地段人工植被区植物生长与立地条件变化的研究.116-123.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,沙漠生态系统研究.兰州:甘肃科学技术出版社.
    [189] 石庆辉和刘家琼.1995.沙坡头铁路两侧人工植被区天然植被动态.105-115.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,沙漠生态系统研究.兰州:甘肃科学技术出版社.
    [190] 刘中民,吴佐祺.杨喜林等.1963.几种主要沙生植物的特性及栽培的研究.43-59.治沙研究,第五号.北京:科学出版社.
    [191] 刘忠民.1991.木岩黄芪水分关系的研究.干旱区资源与环境 5(3):99-107.
    [192] 刘忠民.1992.木岩黄芪的繁殖特点及其与沙生适应性的关系.植物生态学与地植物学学报 16:136-142.
    [193] 刘忠民.1996.西藏日喀则固沙植物引种的比较研究.中国沙漠 16(3):326-330.
    [194] 刘志民等.1998.西藏一江两河中部流域沙漠化土地综合整治研究.北京:中国环境科学出版社.
    [195] 刘家琼,邱明新,蒲锦春,鲁作民.1982.我国荒漠典型超旱生植物-红砂.植物学报 24:485-489.
    [196] 刘家琼,蒲锦春,刘新民.1987.我国沙漠中部地区主要不同生态类型植物的水分关系和旱生结构的比较研究.植物学报 29(6):662-673.
    [197] 刘家琼.1983.超旱生植物-珍珠的形态解剖和水分生理特征.生态学报 3(1):15-20.
    [198] 刘媖心.1995.试论我国沙漠地区植物区系的发生与形成.植物分类学报 33:131-143.
    [199] 刘媖心,李玉俊,杨喜林.1991.沙生植物的根系.185-209.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [200] 刘媖心.1987.包兰铁路沙坡头地段铁路防沙体系的建立及其效益.中国沙漠 7(4):1-11.
    [201] 刘媖心.1992.中国沙漠植物志,第二卷.北京:科学出版社.
    [202] 刘媖心和黄兆华.1997.腾格里沙漠治理40年.中国沙漠 17(4):1-10.
    [203] 刘慎谔.1985a.动态地植物学-基本理论的探讨及其应用.179-228.刘慎谔文集.北京:科学出版社.
    [204] 刘慎谔.1985b.章古台的天然固沙与人工固沙造林.136-144.刘慎谔文集.北京:科学出版社.
    [205] 刘新民,赵哈林,赵爱芬.1996.科尔沁沙地风沙环境与植被.北京:科学出版社
    [206] 刘新民,赵哈林,徐斌.1993.科尔沁草原生态系统破坏与恢复的机制.12-26.见刘新民和赵哈林(主编),科尔沁沙地生态环境综合整治研究.兰州:甘肃科学技术出版社.
    [207] 刘增文和李雅素.1997.论森林干扰.陕西林业科技 No.1:28-32.
    [208] 朱震达,刘恕,邸醍民.1989.中国的沙漠化及其防治.北京:科学出版社.
    [209] 朱震达,陈广庭.1994.中国土地沙质荒漠化.北京:科学出版社.
    [210] 朱震达.1994.最近十年来中国北方农牧交错地区土地沙质荒漠化发展趋势的一例.中国沙漠 14(4):1-7.
    [211] 朱震达.1998.关于中国土地荒漠化概念的商榷.中国沙漠 18(Supp.1):1-5.
    [212] 西藏自治区土地管理局.1994.西藏自治区土壤资源.北京:科学出版社.
    [213] 许清云.1986.腾格里沙漠东缘流沙飞播成效与封育,利用关系的初步研究.中国沙漠 6(2):40-42.
    [214] 许毓英.1992.西藏砂生槐种子营养成分的初步研究.自然资源学报 7:379-381.
    [215] 宋光辉,王晓林,寇晓军.2000.火烧对树木种子的影响.森林防火:2000年第二期.
    [216] 张伟.1992.奈曼旗过牧沙漠化草地在封育条件下植被的演变及其恢复.干旱区资源与环境 6 (3):74-84.
    [217] 张强和王振先.1986.伊克昭盟植被演替与土地沙漠化的关系.89-105.中国科学院兰州沙漠研究所集刊,第二号.北京:科学出版社.
    [218] 张景光,刘新民,王刚,王宗灵.1996.沙坡头地区固定沙丘类短命植物Eragrostis poaeoides的生长模型研究.中国沙漠 16(Supp 1):89-91.
    [219] 李永宏.1994.内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议.植物生态学报 18:68-79.
    [220] 李玉俊.1991.沙坡头地区沙地育苗试验.279-296.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁复人民出版社.
    [221] 李宏俊和张知彬.2001.动物与植物种子更新的关系Ⅱ 动物对种子的捕食、扩散、贮藏及与幼苗建成的关系.生物多样性 9:25-37.
    [222] 李进.1991.差巴嘎蒿的分布及其在天然植被演替中的地位.中国沙漠 11(2):55-60.
    [223] 李进和张秀伏.1991.差巴嘎蒿特性的初步研究.中国沙漠 11(1):50-58.
    [224] 李金贵.1991.沙坡头降水特点分忻.中国沙漠 11(1):44-49.
    [225] 李鸣冈.1963.关于沙坡头格状新月形沙丘森林植物条件类型划分及固沙植物选定的问题.37-42.治沙研究,第五号.北京:科学出版社.
    [226] 李鸣冈.1980.铁路两侧流沙固定的原则和措施.27-48.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究.银川:宁夏人民出版社.
    [227] 李鸣冈,刘媖心,刘中民,陈文瑞.廖次远,钱泰涛,蒋瑾.1960.包兰铁路中卫段腾格里沙漠地区铁路沿线固沙造林的研究.1-112.林业集刊,第三号.北京:科学出版社.
    [228] 李政海,田桂泉,鲍雅静.1997.生态学中的干扰理论及其相关概念.内蒙古大学学报(自然科学版)28:130-134.
    [229] 李政海,鲍雅静,寇香玉.1999.不同人为干扰对草原植物与群落净初级生产力的影响、内蒙古大学学报(自然科学版)30:745-750.
    [230] 李新荣,石庆辉,张景光等.1998.沙坡头地区人工植被演变过程中植物多样性变化的研究.中国沙漠 18(Supp 4):23-29.
    [231] 李新荣,张景光,王新平等.1999.干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究.中国沙漠 19(Supp.):165-169.
    [232] 杨允菲和祝玲.1995.松嫩平原碱化草甸朝鲜碱茅种子散布机制的分析.植物学报 37:222-230.
    [233] 杨根生,黄兆华,邸醒民等.1994.中国腾格里沙漠东南缘自然环境特点及飞播治沙研究.北京:科学出版社.
    [234] 杨喜林和李玉俊.1991.沙坡头沙漠植物引种30年.139-151.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [235] 杨喜林和邱国玉.1990.沙漠化过程中植物群落组成的分析-以神木大保地区为例.中国沙漠 10(2):20-28.
    [236] 沈渭寿.1986.油蒿在沙坡头地区沙地植被演替中的地位.中国沙漠 6(4):13-22.
    [237] 沈渭寿.1988.沙坡头沙地人工植被的群落学特征.中国沙漠 8(3):1-7.
    [238] 沈渭寿.1996.雅鲁藏布江中游沙地植物区系特征.植物分类学报 34:276-281.
    [239] 辛晓平,高琼.李宜垠,杨正宇.1999.放牧和水淹干扰对松嫩平原碱化草地空间格局影响的分形分析.植物学报 41:307-313.
    [240] 邱扬.1 998.森林植被的自然火干扰.生态学杂志 17:54-60.
    [241] 邱扬,李湛东,徐化成.1997.兴安落叶松种群的稳定性与火干扰关系的研究.植物研究 17:441-446.
    [242] 邱国玉和石庆辉.1993.沙坡头人工固沙区沙地水分动态和植被演替.120-126.中国科学院 沙坡头沙漠试验研究站年报(1991—1992年).兰州:甘肃科学技术出版社.
    [243] 陈小勇和宋永昌.1997.洪水干扰对青冈种群更新的影响.热带亚热带植物学报 5:53-58.
    [244] 陈文瑞.1980.包兰线中(卫)甘(塘)段铁路两侧的土壤类型及其特性.9-26.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究.银川:宁夏人民出版社.
    [245] 陈文瑞.1991.沙坡头地段铁路两侧29年人工植被区的水量平衡.66-75.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [246] 陈利顶和傅伯杰.2000.干扰的类型、特征及其生态学意义.生态学报 20:581-586.
    [247] 陈怀顺和刘志民.1997.砂生槐种群特点及其在河谷植被中的作用.资源生态环境刚络研究动态 8(3):18-22.
    [248] 陈尚,马艳,李自珍,王刚.1999.克隆植物种子繁殖和营养繁殖的适合度分析和度量.生态学报 19:287-290.
    [249] 周海燕.1999.水分胁迫对冷蒿和差巴嘎蒿体内水分状况的影响.中国沙漠 19(Supp 1):26-29.
    [250] 周海燕和赵爱芬.1998.冷蒿和差巴嘎蒿抗旱性机理的比较研究.中国沙漠 18(supp.2):56-60.
    [251] 宛涛和卫智军.1991.谈冷蒿特性与冷蒿草场的利用.内蒙古农牧学院学报 12(2):48-52.
    [252] 宝音,张强,赵雪等,1994.河北丰宁沙漠化土地综合整治试验示范区规划设计研究.中国沙漠 14(4):8-14.
    [253] 林有润.1982.论蒿属的演化系统兼论蒿属与邻近属的亲缘天系.植物研究 2(2):1-60.
    [254] 林有润.1988.中国蒿属志:中国蒿属植物的系统分类、分布和主要经济用途.木本植物研究 8(4):1-61.
    [255] 罗菊春,王庆锁,牟长城,王襄平.1997.干扰对大然红松林植物多样性的影响.林业科学 33(6):498-503.
    [256] 郎奎健.1987.数理统计、调查规划、经营管理IBMPC系列程序集.北京:中国林业出版社.
    [257] 侯学煜.1982.中国植被地理及优势植物化学成分.北京:科学出版社.
    [258] 侯学煜.1987.中国温带干旱荒漠区植被地理分布.植物学集刊,第二集.北京:科学出版社.
    [259] 赵文智.1998.砂生槐沙生适应性初步研究.植物生态学报 22:79-384.
    [260] 赵文智和程国栋.2000.人类土地利用的土要生态后果及其缓解对策.中国沙漠 20:369-374.
    [261] 赵兴梁.1991.沙坡头地区植物固沙问题的探讨.27-57.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [262] 赵哈林,张铜会,常学礼等.1999a.科尔沁沙质放牧草地植物多样性及生态化的分异规律研究.中国沙漠 19(Supp.1):35-39.
    [263] 赵哈林,张铜会,常学礼等.1999b.科尔沁沙质放牧草地植被分异规律的聚类分析.中国沙漠 19(Supp.1):40-44.
    [264] 赵哈林,李胜功,张铜会,根本正之,大黑俊哉.1997b.不同放牧强度下沙质草地生产力变化及合理利用评价.中国沙漠 17(Supp.1):109-114.
    [265] 赵哈林,根本正之,大黑俊哉,刘新民.1997a.内蒙古科尔沁沙地放牧草地的沙漠化过程.中国沙漠 17 (Supp.1):15-24.
    [266] 赵爱芬和周海燕.1999.沙地冷蒿种群的耐牧机理研究初报.中国沙漠 19(Supp 1):65-68.
    [267] 倪健.2001.区域尺度的中国植物功能型与生物群区.植物学报 43:419-425.
    [268] 徐化成,李湛东,邱扬.1997.大兴安岭北部地区原始火干扰历史的研究.生态学报 17:338-343.
    [269] 郭勤峰.1995.物种多样性研究的现状及趋势.89-107.见李博(主编),现代生态学讲座.北京:科学出版社.
    [270] 高玉葆.1995.植物对于水分胁迫的适应性反应及其生态学意义.10-23.见李博(主编),现代生态学讲座.北京:科学出版社.
    [271] 梁学功和王刚.1993.沙坡头人工固沙区种子库动态及对植被演替方向的预测.270-274.见中国科学院沙坡头沙漠试验研究站年报(1991—1992年).兰州:甘肃科学技术出版社.
    [272] 黄子琛,蒲锦春,赵翠仙,李风芹,王继和,郭劲玲,施茜.1984.民勤和沙坡头地区荒漠植物的净光合速率及co_2补偿点.中国沙漠 4(1):23-30.
    [273] 黄子琛.1991.荒漠植物的生态生理乱研究.210-244.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究(二).银川:宁夏人民出版社.
    [274] 黄兆华和刘媖心.1991.我国沙区重要蒿属植物的特性及应用.干旱区资源与环境 5(1):12-21.
    [275] 黄建辉,白永飞,韩兴国.2001.物种多样性与生态系统功能:影响机制及有关假说.生物多样性 9:1-7.
    [276] 黄振英,Gutterman,Y,胡正海,张新时.2001.白沙蒿种子萌发特性的研究Ⅱ环境因素的影响.植物生态学报 25:240-246.
    [277] 黄振英和Gutterman,Y.2000.Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel.植物学报 42:71-80.
    [278] 舒立福,田晓瑞,吴鹏超,李骞.1999.火干扰对森林水文的影响.土壤侵蚀与水土保持学报 5(6):82-85.
    [279] 董玉祥,刘玉璋,刘毅华.1995.沙漠化若干问题研究.西安:西安地图出版社.
    [280] 董光荣.董玉祥,李森,刘玉璋.尹秉高.1996.西藏“一江两河”中部流域土地沙漠化防治规划研究.北京:中国环境科学出版社.
    [281] 董鸣和张称意.2001.第六届克隆植物生态学国际会议概况.植物学报 43:438-439.
    [282] 廖次远 蒋瑾,钱太涛.1980.固沙植物种的选择及其特性的研究.60-120.见中国科学院兰州沙漠研究所沙坡头沙漠科学研究站编著,腾格里沙漠沙坡头地区流沙治理研究.银川:宁夏人民出版社.
    [283] 臧润国和徐化成.1998.林隙(Gap)干扰研究进展.林业科学 34:90-98.
    [284] 樊江文.1997.在不同压力和干扰条件下鸭茅和黑麦草的竞争研究.草业学报 6(3):23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700