用户名: 密码: 验证码:
水—桥墩动力相互作用机理及深水桥梁非线性地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于跨江、跨海桥梁及西部库区的高墩深水桥梁,由于桥墩位于深水当中,地震作用下水—桥墩动力相互作用会对桥墩产生动水压力作用。然而,目前国内外对强震作用下深水桥梁的地震响应尚缺乏深入的研究。本文以深水桥梁为对象,对强震作用下深水桥梁地震响应进行系统的理论分析与振动台试验,从而为深水桥梁地震响应的精细化模拟及基于性能的抗震设计提供坚实的理论基础,具有重要的理论意义和工程价值。主要创新工作和研究成果如下:
     (1)基于辐射波浪理论,采用分离变量法,建立了深水桥墩地震动水压力考虑水体压缩性和自由表面波影响的计算公式,深入分析了自由表面波和水体压缩性对桥墩地震动水压力的影响。研究表明,自由表面波仅在荷载激励频率较低时影响水面附近的动水压力,对于实际桥墩结构而言自由表面波影响并不明显;水体压缩性仅在荷载激励频率较高时影响动水压力,而地震作用的主要频率小于使水体压缩性产生明显影响的荷载激励频率。因此,在深水桥墩地震动水压力计算中,可忽略自由表面波和水体压缩性的影响,可利用附加质量概念,分析深水桥墩在地震作用下的动力响应,且附加质量随着桥墩截面半径和水深的增加而增大。
     (2)深水桥墩地震动水压力分析中一般假定水底为完全刚性反射边界,而忽略水底柔性介质对动水压力波的吸收作用。通过引入水底反射系数建立了深水桥墩考虑水底柔性反射边界影响的地震动水压力计算公式,并分析了水底柔性反射边界对桥墩地震动水压力的影响。研究表明,当考虑水底柔性介质对动水压力波的吸收作用时,水底柔性反射边界会在特定的荷载激励频率范围内对桥墩动水压力产生影响,且动水压力随着水底反射系数的减小而变小;尽管考虑水底柔性边界条件后会降低动水压力作用,但水底柔性边界对动水压力的降低作用不明显。因此,在深水桥墩地震动水压力分析中可以忽略水底柔性反射边界的影响。
     (3)建立了地震作用下水—桥墩动力相互作用分析方法,并基于ABAQUS软件平台开发了动水压力计算程序,通过与数值方法的对比分析,验证了本文方法的正确性;同时分析了考虑不同频谱特性地震波输入、空心墩体内域水体和桥梁上部结构附加质量等因素时动水压力对深水桥墩地震响应的影响。研究表明,动水压力增大了桥墩结构的地震响应,其影响随着输入地震波的不同而有所差异;空心截面桥墩内域水体的动水压力对桥墩地震响应的影响明显,所以当桥墩存在内域水体时其内域水体的动水压力作用不容忽视;随着上部结构附加质量的减小,动水压力对桥墩地震响应的影响增大。
     (4)建立了考虑地震动空间效应的深水桥梁地震响应分析方法,对某深水连续刚构桥进行了非线性地震响应分析,同时考虑不同地震动输入机制,进行了一致激励、行波激励和多点激励,研究了动水压力对深水桥梁地震响应的影响。研究表明,动水压力对桥梁结构地震响应的影响主要是增大了桥梁结构的动力响应,其影响程度随着输入地震波、墩梁约束条件的不同而变化;考虑行波激励和多点激励时动水压力对桥梁动力响应的影响较一致激励而言有所差异;所以深水桥梁地震响应分析应考虑动水压力作用,同时应根据场地条件采用合适的地震动输入机制。
     (5)采用Morison方程和绕射波浪理论考虑不同尺度桥墩的波浪作用,建立了波浪作用下深水桥梁动力响应分析方法,对某深水桥梁进行了地震和波浪联合作用下的动力响应分析。研究表明,当波浪沿桥梁不同方向入射时,波浪作用对桥梁结构的动力响应影响有所差异;波浪作用对桥梁结构动力响应的影响较地震作用对桥梁结构动力响应的影响小;深水桥梁动力响应分析中考虑地震和波浪联合作用时,由于两者单独作用下的动力响应峰值并不出现在同一时刻,所以桥梁结构的动力响应幅值并不是地震和波浪分别作用下的动力响应幅值的叠加。
     (6)通过模型振动台试验,研究了水—桥墩的动力相互作用,并基于对模型试验的数值分析,验证了本文所建立水—桥墩动力相互作用分析方法的正确性。按动力相似原理进行模型设计并采用自制的加重橡胶作为模型材料,利用吸波材料模拟实际水域对动水压力波的耗散作用,在地震模拟振动台上对桥墩模型进行动力特性及正弦波和地震波作用下的动力响应试验,同时分析水底柔性反射边界的影响。研究表明,地震动水压力减小了桥墩结构的自振频率,同时地震动水压力作用增大了桥墩结构的动力响应;水底柔性介质对地震动水压力具有吸收作用,但其影响可以忽略;本文方法能够较好的模拟地震动水压力对深水桥墩地震响应的影响。
As for most of the cross-sea and cross-river bridges or the reservoir area bridges in West China, the bridge piers are usually located in deep water. Therefore, with a consideration of the water–bridge pier dynamic interaction, the earthquake induced hydrodynamic pressure on bridge piers is significant. However, there is still a lack of further research about the seismic responses of bridges in deep water both at home and abroad. Theoretical study and shaking table test are developed for earthquake response analysis of bridges in deep water under earthquake excitation, which has great theoretical significance and engineering value to improve theoretical basis for the earthquake hazard refined simulation and performance based seismic design of bridges in deep water. The following innovative work and achievements are include:
     (1) earthquake induced hydrodynamic pressure formulary of bridge piers in deep water is established based on radiation wave theory and variables separation method, which can consider free surface wave and water compressibility. Meanwhile, the influence of free surface wave and water compressibility on earthquake induced hydrodynamic pressure on bridge piers is studied. The results indicate that: free surface wave will only influence hydrodynamic pressure about the vicinity of water surface under low-frequency load excitation, and this influence can be ignored in seismic analysis of bridge piers. Water compressibility only takes effect on hydrodynamic pressure under high frequency load excitation, and it is found that the primary frequency of earthquake action is smaller than the frequency threshold that water compressibility starts to have obvious effect on hydrodynamic pressure on bridge pier in deep water. In conclusion, the influence of free surface wave and water compressibility can be ignored in the calculation of earthquake induced hydrodynamic pressure on bridge piers in deep water. Added mass concept can be used to analyze seismic responses of bridge piers in deep water, and hydrodynamic added mass will increase with the increase of bridge pier radius and the relative water depth.
     (2) Earthquake induced hydrodynamic pressure on bridge piers in deep water is usually established based on rigid bottom reflection boundary, and the absorption action of bottom flexible medium on hydrodynamic pressure wave is ignored. Earthquake induced hydrodynamic pressure formulary of bridge piers in deep water is established by introducing bottom reflection coefficient, which can consider the influence of bottom flexible reflection boundary Furthermore, the influence of flexible reflection boundary on hydrodynamic pressure on bridge piers is analyzed. The results indicate that: earthquake induced hydrodynamic pressure on bridge piers will be changed in special load excitation frequency range when bottom flexible reflection boundary is considered, and hydrodynamic pressure on bridge piers will be decreased with the reduction of reflection coefficient. Although earthquake induced hydrodynamic pressure on bridge piers in deep water will be decreased, and this decrease effect on hydrodynamic pressure is not obvious. Therefore, the influence of bottom flexible reflection boundary on earthquake induced hydrodynamic pressure on bridge piers in deep water can be ignored.
     (3) Water-bridge pier dynamic interaction analysis method is established, and program of applied hydrodynamic pressure on bridge piers is complied based on ABAQUS software platform, which is verified by comparisone with numerical method. Also, the influence of earthquake induced hydrodynamic pressure on seismic responses of bridge pier is analyzed when different earthquake excitations and internal water within the bridge pier with hollow section are considered. The results indicate that: dynamic responses of bridge pier are augmented because of earthquake induced hydrodynamic pressure action, which changes with different earthquake excitations. The effect of hydrodynamic pressure induced by internal water on bridge pier with hollow section seismic responses can’t be ignored. Influence of hydrodynamic pressure on dynamic responses of bridge piers in deep water increases with the decrease of the upper structure added mass.
     (4) Seismic response analysis method of bridges in deep water is established, which can consider spatial variation of ground motion. Nonlinear seismic response analysis of continuous rigid-framed bridge is made by considering the earthquake induced hydrodynamic pressure; meanwhile, earthquake inputs including uniform excitation、traveling wave effect and multi-support excitation are respectively adopted. The results indicate that: dynamic responses of bridge are augmented because of earthquake induced hydrodynamic pressure action, and the influence of hydrodynamic pressure on seismic responses of bridge changes with different earthquake wave excitations and constraint condition about pier-box girder. The effect of hydrodynamic pressure on earthquake responses analysis of bridge is different under traveling waves or multi-support excitation relative to uniform excitation. In conclusion, hydrodynamic pressure action should be necessarily considered in seismic responses analysis of bridges in deep water, and earthquake excitation should employ reasonable earthquake input.
     (5) Morison equation and radiation wave theory are used to consider wave load for different size of bridge pier, analysis method of bridges in deep water under wave action is established. Dynamic responses analysis of bridges in deep water under wave and earthquake combined action is made. The results indicate that: the effect of wave action on bridge changes with different wave incident directions, meanwhile, the influence about wave action on bridge is smaller than earthquake action. Wave and earthquake action on bridge can’t be simplified into a simple linear superimposition when wave and earthquake action are considered at the meantime.
     (6) Water-bridge pier dynamic interaction is studied with a scaled bridge pier model shaking table test, and the analysis method of water-bridge pier dynamic interaction established is verified. Shaking table test of water-large diameter bridge pier dynamic interaction is carried out. Dynamic similarity ratio design is made using self-made rubber material, and absorbing material is adopted to simulate water area dissipative action on hydrodynamic pressure wave. Experiments for dynamic characteristic and dynamic response of bridge pier in deep water is are performed under the shaking table simulated earthquake excitation. Meanwhile, influence of flexible reflection boundary of bottom on hydrodynamic pressure is analyzed. The results indicate that: natural frequency of bridge pier is decreased and dynamic responses of bridge pier are also augmented because of hydrodynamic pressure effect. Nevertheless, the influence of flexible reflection boundary on earthquake induced hydrodynamic pressure on bridge pier can be ignored. The earthquake induced hydrodynamic pressure action on bridge piers can be well simulated using the analysis method established in this dissertation.
引文
[1]项海帆. 21世纪世界桥梁工程的展望[J].土木工程学报, 2000, 33(3): 1-6.
    [2]沈聚敏,周锡元,高小旺等.抗震工程学[M].北京:中国建筑工业出版社, 2000.
    [3]艾伦威廉斯著,北京城市节奏科技发展有限公司策划.建筑与桥梁抗震设计[M].北京:中国水利水电出版社, 2004.
    [4]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社, 2001.
    [5]伊藤学等著刘健新等译.超长大桥梁建设的序幕-技术者的新挑战[M].北京:人民交通出版社, 2002.
    [6]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动, 2003,23(2): 68~76.
    [7]李忠献,岳福青,周莉.地震时桥梁碰撞分析的等效Kelvin撞击模型[J].工程力学, 2008,25(4): 128~133.
    [8] Dumanogluid A A, Soyluk K. A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect[J]. Engineering Structures, 2003, 25(10): 1301~1310.
    [9] Lou L, Zerva A. Effects of spatially variable ground motions on the seismic response of a skewed, multi-span, RC highway bridge[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7-10): 729~740.
    [10] Dameron R A, Sobash V P, Lam I P. Nonlinear seismic analysis of bridge structures foundation-soil representation and ground motion input[J]. Computers & Structures, 1997, 64(5-6): 1251~1269.
    [11]中华人民共和国铁道部. GB50111-2006.铁路工程抗震设计规范.北京:中国计划出版社, 2006.
    [12]中华人民共和国建设部. JTGTB02-01-2008.公路桥梁抗震设计细则.北京:中国计划出版社, 2008.
    [13] Liaw C Y, Chopra A K. Dynamics of towers surrounded by water[J]. Earthquake Engineering and Structural Dynamics, 1974, 3(1): 33~49.
    [14] Zhou D, Cheung Y K. Vibration of vertical rectangular plate in contact with water on one side[J]. Earthquake Engineering and Structural dynamics, 2000,29(5): 693~710.
    [15] Mccormick M E. Hydrodynamic coefficients of a monolithic circular offshore structure[J]. Earthquake Engineering and Structural dynamics, 1989, 18(2): 199~216.
    [16] Goyal A, Chopra A K.Earthquake analysis of intake-outlet towers including tower-water-foundation-soil interaction[J]. Earthquake Engineering and Structural dynamics, 1989, 18(3): 325~344.
    [17] Sun K, Nogami T. Earthquake induced hydrodynamic pressure on axisymmetric offshore structures[J]. Earthquake Engineering and Structural dynamics, 1991, 20(5): 429~440.
    [18]赖伟.地震和波浪作用下深水桥梁的动力响应研究[D].上海:同济大学博士学位论文, 2004.
    [19]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.
    [20]张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析[J].中国海洋大学学报, 2005, 35(5):823-826.
    [21] Walker D A G, Taylor R E. Wave diffraction from linear arrays of cylinders[J]. Ocean Engineering, 2005, 32(17-18): 2053-2078.
    [22] Wu B J, Zheng Y H, You Y C, et.al. On diffraction and radiation problem for two cylinders in water of finite depth[J]. Ocean Engineering, 2006, 33(5-6): 679-704.
    [23] Yilmaz O, Incecik A, Turkey. Analytical solutions of the diffraction problem of a group of truncated vertical cylinders[J]. Ocean Engineering, 1998, 25(6):385-394.
    [24] Bao W G, Fujihashi K, Kinoshita T. Interaction of a submerged elliptic plate with waves[J]. Journal of Hydrodynamics, 2010, 22(5): 77-82.
    [25]滕斌,宁德志.波浪对直墙前垂直圆柱的绕射[J].海洋工程, 2003, 21(4):48-52.
    [26]李世森.波浪与大直径圆筒结构相互作用的研究[D].天津:天津大学博士学位论文, 1999.
    [27]王丽勤.二维与三维随机波浪对半圆型防波堤作用的研究[D].大连:大连理工大学博士学位论文, 2006.
    [28]李玉成,滕斌.波浪对海上建筑物的作用[M].北京:海洋出版社, 2002.
    [29] Wepf D H, Wolf J P, Bachmann H. Hydrodynamic-stiffness matrix based onboundary elements for time-domain dam-reservoir-soil analysis[J]. Earthquake Engineering and Structural dynamics, 1988, 16(3): 417~432.
    [30] Aviles J, Sanches-Sesma F J. Water pressures on rigid gravity dams with finite reservoir during earthquake[J]. Earthquake Engineering and Structural dynamics, 1989, 18(4): 527~537.
    [31] Fenves G, Chopra A K. Effects of reservoir bottom absorption and dam-water-foudation rock interaction on frequency response functions for concrete gravity dams[J]. Earthquake Engineering and Structural dynamics, 1985, 13(1): 13~31.
    [32] Fok K, Chopra A K. Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility[J]. Earthquake Engineering and Structural dynamics, 1986, 14(2): 155~184.
    [33] Chandrashaker R, Humar J L. Fluid-foundation interaction in the seismic response of gravity dams[J]. Earthquake Engineering and Structural dynamics, 1993, 22(12): 1067~1084.
    [34] Gregory F, Chopra A K. Simplified earthquake analysis of concrete gravity dams combined hydrodynamic and foundation interaction effect[J]. Earthquake Journal of Engineering Mechanics , 1985, 111(6): 736~756.
    [35] Chong-Hung Z, Raymond Z. Earthquake hydrodynamic pressure on dams[J]. Journal of Hydraulic Engineering , 2006, 132(11): 1128~1133.
    [36]王忠.坝库相互作用及抗震技术研究[D].四川:四川大学博士学位论文, 2001.
    [37]王进廷.高混凝土坝-可压缩库水-淤砂-地基系统地震反应分析研究[D].北京:中国水利水电科学研究院博士学位论文, 2001.
    [38] Dogangum A, Durmus A, Ayvaz Y. Static and dynamic analysis of rectangular tanks by using the lagrangian fluid finite element[J]. Computers & Structures, 1996, 59(3): 547~552.
    [39] Sweedan A M I. Equivalent mechanical model for seismic forces in combined tanks subjected to vertical earthquake excitation[J]. Thin-Walled Structures, 2009, 47(8-9): 942-952.
    [40] Cho J R, Song J M, Lee J K. Finite element techniques for the free-vibration and seismic analysis of liquid-storage tanks[J]. Finite Elements in Analysis and Design, 2001, 37(6-7): 467-483.
    [41] Livaoglu R. Investigation of seismic behavior of fluid-rectangulartank-soil/foundation systems in frequency domain[J]. Soil Dynamics and Earthquake Engineering, 2008, 28(2): 132-146.
    [42] Han R S, Xu H Z. A simple and Accurate Added Mass Model for Hydrodynamic Fluid-Structure Interaction Analysis[J]. Journal of the Franklin Institute, 1996, 333(6): 929-945.
    [43] Zhou D, Liu W Q. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross-section[J]. Applied Mathematical Modelling, 2007, 31(10): 2249-2265.
    [44] Chen B F. The significance of earthquake-induced dynamic forces in coastal structures design[J]. Ocean Engineering, 1995, 22(4): 301-315.
    [45] Chen B F. Dynamic response of coastal structures during earthquake including sediment-sea-sturcture interaction[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(5-8): 445-467.
    [46] Chen B F. Hydrodynamic forces on concrete sea wall and breakwater during earthquake: effects of bottom sediment layers and back-fill soil[J]. Ocean Engineering, 2002, 29(7): 783-814.
    [47] Chen B F. 3D nonlinear hydrodynamic analysis of vertical cylinder during earthquake. I: rigid motion [J]. Journal of Engineering Mechanics, 1997, 123(5): 458-465.
    [48] Bathe K J, Zhang H, Ji S H. Finite element analysis of fluid flows fully coupled with structural interactions[J]. Computers & Structures, 1999, 72(1): 1-16.
    [49] Wang X D. Analytical and computational approaches for some fluid-structure interaction analyses[J]. Computers & Structures, 1999, 72(1-3): 423~433.
    [50] Sigrist J F, Garreau S. Dynamic analysis of fluid-structure interaction problems with modal methods using pressure-based fluid finite elements[J]. Finite Elements in Analysis and Design, 2007, 43(4): 287~300.
    [51] Fan S C, Li S M, Yu G Y. Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method[J]. Journal of Applied Mechanics, 2005, 72(4): 591~598.
    [52]高学奎,朱晞.地震动水压力对深水桥墩的影响[J].北京交通大学学报, 2006, 30(1):55-58.
    [53] Bai D G, Chen G X, Wang Z H. Seismic response analysis of the large bridge pier supported by group pile foundation considering the effect of wave and current action[C]. Proceeding Of 14th World conference on earthquakeengineering, beijing. China, 2008.
    [54] Martinelli L, Barbella G, Feriani A. A numerical procedure for simulating the multi-support seismic response of submerged floating tunnels anchored by cables[J]. Engineering Structures, 2011, 33(10): 2850~2860.
    [55]黄信.地震激励下水—桥墩动力相互作用分析[D].天津:天津大学硕士学位论文, 2008.
    [56] Goyal A, Chopra A K. Simplified earthquake analysis of intake-outlet towers[J]. Journal of Structural Engineering, 1991, 117(3): 767~788.
    [57] Goyal A, Chopra A K. Simplified evaluation of added hydrodynamic mass for intake towers[J]. Journal of Structural Engineering, 1989, 115(7): 1393~1412.
    [58] Goyal A, Chopra A K. Earthquake response spectrum analysis of intake-outlet towers[J]. Journal of Structural Engineering, 1991, 117(3): 1413~1433.
    [59] Havard E. Hydrodynamic parameters for a two-body axisymmetric system[J]. Applied Ocean Research, 1995, 17(2): 103~115.
    [60] Williams A N. Hydrodynamic interactions between submerged cylinders [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1986, 113(4): 364~380.
    [61] Choudhury D, Ahmad S M. Stability of waterfront retaining wall subjected to pseudo-static earthquake forces[J]. Ocean Engineering, 2007, 34(14-15): 1947~1954.
    [62] Kok k,Thanos I. Structure-wave interaction under earthquake excitation[J]. Journal of Offshore Mechanics and Arctic Engineering, 1990, 112(1): 65~73.
    [63] Liao W G .Hydrodynamic interaction of flexible structures[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1985, 111(4): 719~731.
    [64] Williams A N. Analysis of the base-excited response of intake-outlet towers by a Green's function approach[J]. Engineering Structures, 1991, 13(1): 43~53.
    [65] Yamada Y, Iemura H, Kawano k, et.al. Seismic response of offshore structures in random seas[J]. Earthquake Engineering and Structural Dynamics, 1989, 18(7): 965~981.
    [66] Michael I, Wu S R. Wave and earthquake effects on axisymmetric offshore structures[J]. Applied Mathematics and Mechanics, 1984, 5(4): 1437~1477.
    [67] Pilato M D, Perotti F, Fogazzi P. 3D dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation[J]. Engineering Structures, 2008, 30(1): 268~281.
    [68] Goyal A, Chopra A K. Hydrodynamic and foundation interaction effects in dynamics of intake towers earthquake responses[J]. Journal of Structural Engineering, 1989, 115(6): 1386~1395.
    [69] Gao Y, Yuan W C, Jin X G. Soil-structure-water interaction of a cable-stayed bridge under seismic excitation[C]. Proceeding Of 14th World conference on earthquake engineering, beijing. China, 2008.
    [70] Koh H M, Kim J K, Park J H. Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results[J]. Earthquake Engineering and Structural Dynamics, 1998, 27: 109~124.
    [71] Wu Y C. Nonlinear hydrodynamic pressures on structures during earthquake[J]. Ocean engineering, 1988, 15(6): 603~610.
    [72] Earthquake Engineering Research Institute(EERI). Hydrodynamic pressure and added mass for axisymmetric bodies [R]. Rep. No. 80-12, CA, 1980.
    [73] Chen B F. Viscous free surface effect on coastal embankment hydrodynamic[J]. Ocean Engineering, 1999, 26(1): 47~65.
    [74] Fischer F D, Seeber R. Dynamic response of vertically excited liquid storage tanks considering Liquid-Soil interaction[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(3): 329~342.
    [75]阎承大,张楚汉.拱坝地震动水压力分析的配点法[J].地震工程与工程振动, 1990, 10(4): 73-82.
    [76]李德玉,张伯艳,王海波等.重力坝坝体-库水相互作用的振动台试验研究[J].中国水利水电科学研究院学报, 2003, 1(3): 216-220.
    [77]隆文非,张凡,舒仲英等.重力坝坝体-库水-气幕相互作用的振动台试验[J].水利水电科技进展, 2006, 26(5): 10-13.
    [78] Panigrahy P K, Saha U K, Maity D. Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks[J]. Ocean engineering , 2009, 36(3-4): 213~222.
    [79] Maheri M R, Severn R T. Experimental added-mass in modal vibration of cylindrical structures[J]. Engineering Structures, 1992, 14(3):163-175.
    [80] Wu J S, Hsieh M. An experimental method for determining the frequency- dependent added mass and added mass moment of inertia for a floating body in heave and pitch motions[J]. Ocean Egineering, 2001, 28(4): 417~438.
    [81] Mitri F G. Theoretical and experimental determination of the acoustic radiation force acting on an elastic cylinder in a plane progressive wave-far fieldderivation approach[J]. New Journal of Physics, 2006, 8(8): 1~14.
    [82] Tanaka Y, Hudspeth R T. Restoring forces on vertical circular cylinders forced by earthquake[J]. Earthquake Engineering and Structural Dynamics, 1988, 16(1): 99~119.
    [83]李悦.强震作用下动水压力对深水桥梁动力性能的影响研究[D].北京:北京科技大学博士学位论文, 2010.
    [84] Lu X Y, Ling G C. Three dimensional instability of an oscillating viscous flow past a circular cylinder[J]. Applied Mathematics and Mechanics, 2003, 24(7): 791~800.
    [85] Terro M J, Rohman M A. Wave induced forces in offshore structures using linear and nonlinear forms of morison’s equation[J]. Journal of Vibration and Control, 2007, 13(2): 139~157.
    [86] Mostafa Y E, Hesham M. Response of fixed offshore platforms wave and current loading including soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(4): 357~368.
    [87] Burrows R, Tickell R G, Hanmes D, et. al. Morison wave force coefficients for application to random seas[J]. Applied Ocean Research, 1997, 19(3-4): 183~199.
    [88] Yilmaz O. An interative procedure for the diffraction of water waves by multiple cylinders[J]. Ocean Egineering, 2004, 31(11-12): 1437~1446.
    [89] Bhatta D D, Rahman M. On scattering and radiation problem for a cylinder in water of finite depth[J]. International Journal of Egineering Science, 2003, 41(9): 931~967.
    [90] Zheng Y H, Shen Y M, You Y G, et. al. Hydrodynamic properties of two vertical truncated cylinders in waves[J]. Ocean Egineering, 2005,32(3-4): 241~271.
    [91] Chatjigeorgiou I K, Mavrakos S A. An analytical approach for the solution of the hydrodynamic diffraction by arrays of elliptical cylinders[J]. Applied Ocean Research, 2010,32(2): 242~251.
    [92]余志兴,缪国平,尤云祥.大数量桩柱波浪力的机理研究[J].船舶力学, 2003, 7(1): 1~11.
    [93]滕斌,赵明,李玉成.波浪对上部开孔带内柱的圆筒结构的绕射[J].海洋学报, 2001, 23(6): 133~142.
    [94]宁德志,滕斌,宋向群.正交直墙前直立圆柱的波浪绕射的解析研究[J].海洋科学进展, 2004, 22(1): 29~35.
    [95]缪国平,刘应中.任意截面大尺度垂直柱体的波浪力和水动作用力[J].海洋学报, 1991, 13(5): 728~735.
    [96] Zhu S P, Mitchell L. Diffraction of ocean waves around a hollow cylindrical shell structure[J]. Wave Motion, 2009, 46(1): 78~88.
    [97] Dorfmann A A. Water waves diffraction by circular plate[J]. Journal of Applied Mathematical Modelling, 1994, 18(3): 114~123.
    [98] Chen M, Rahman M. Water wave diffraction analysis by boundary elements[J]. Journal of Computational and Applied Mathematics, 1999, 110(2): 287~304.
    [99] Bai W, Taylor R E. Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition[J]. Applied Ocean Research, 2007, 29(1-2): 55~71.
    [100] Au M C, Brebbia C A. Diffraction of water for vertical cylinders using boundary element[J]. Applied Mathematical Modelling, 1983, 7(2): 106~114.
    [101] Turnbull M S, Borthwick A G L, Taylor R C. Wave-structure interaction using coupled structured-unstructured finite element meshes[J]. Applied Ocean Reaearch, 2003, 25(2): 63~77.
    [102] Stojek M, Markiewicz M, Mahrenholtz O. Diffraction loads on multiple vertical cylinders with rectangular cross section by Treffz-type finite elemnts[J]. Computers and Structures, 2000, 75(4): 335~345.
    [103] Zhao M, Cheng L, Teng B. Numerical simulation of solitary wave scattering by a circular cylinder array[J]. Ocean Engineering, 2007, 34(3-4): 489~499.
    [104] Kleefsman K M T, Fekken G, Veldman A E P, et .al. A volume-of-fluid based simulation method for wave impact problems[J]. Journal of Computational Physics , 2005, 206(10): 363~393.
    [105]张洪生,冯文静,王亚玲等.非线性波传播的新型数值模拟模型及其实验验证[J].海洋学报, 2007, 29(4): 137~147.
    [106]杨池,刘应中.非线性波浪绕射问题的数值计算[J].水动力学研究与进展, 1991, 6(2): 10~16.
    [107]任冰,李雪临,王永学.波浪冲击过程流场变化特性试验研究[J].海洋工程, 2006, 24(4): 68~74.
    [108]李玉成,滕斌,陈兵.波浪在水流作用下的变形[J].水动力学研究与进展, 1995, 10(2): 173~184.
    [109]李玉成,何明.作用于小尺度方柱上正向波浪力[J].海洋学报, 1996, 18(3): 107~120.
    [110] Cuomo G, Shimosako K I, Takahashi S. Wave-in-deck load on coastal bridgesand the role of air[J]. Coastal Engineering, 2009, 56(8): 793~809.
    [111] Anandkumar A, Sundar V, Graw K U, et .al. Pressure and forces on inclined cylinders due to regular waves[J]. Ocean Engineering, 1995, 22(7): 747~759.
    [112] Akyildiz H. Experimental investigation of pressure distribution on a cylinder due to the wave diffraction in a finite water depth[J]. Ocean Engineering, 2002, 29(9): 1119~1132.
    [113]李玉成,刘大中,苏小军等.直墙上不规则波近破波的波浪力[J].水动力学研究与进展, 1997, 12(4): 456~469.
    [114]张宁川,俞聿修.不规则波作用下的群桩效应[J].海洋通报, 1993, 12(1): 95~101.
    [115]谢世楞,李炎保,吴永强等.圆弧面防波堤波浪力初步研究[J].海洋工程,2006, 24(1): 14~18.
    [116]俞聿修,缪莘.波浪作用于垂直桩柱上的横向力[J].海洋学报, 1989, 11(2): 248~261.
    [117] Aviles J, Li X Y. Hydrodynamic pressures on axisymmetric offshore structures considering seabed flexibility[J]. Computers & Structures,1998, 27(9): 937~956.
    [118] ABAQUS6.9-1帮助文档[EB/OL]. Abaqus Verification Manual.
    [119]岳戈,梁宇白,陈晨等. ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社, 2010年.
    [120] Lee J, Fenves G L. A plastic-damage concrete model for earthquake analysis of dams[J]. Earthquake engineering and structural dynamics,1998, 27(9): 937~956.
    [121]刘振宇,李乔,赵灿辉等.深水连续刚构桥地震响应分析[J].地震工程与工程振动, 2009, 29(4):119-124.
    [122] Bayraktar A, Dumanoglu A A. The effect of the asynchronous ground motion on hydrodynamic pressures[J]. Computers & Structures, 1998, 68(1-3): 271~ 282.
    [123]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动, 2003,23(2): 68~76.
    [124] Dumanogluid A A, Soyluk K. A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect[J]. Engineering Structures, 2003, 25(10): 1301~1310.
    [125] Lou L, Zerva A. Effects of spatially variable ground motions on the seismic response of a skewed, multi-span, RC highway bridge[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7-10): 729~740.
    [126] Dameron R A, Sobash V P, Lam I P. Nonlinear seismic analysis of bridge structures foundation-soil representation and ground motion input[J]. Computers & Structures, 1997, 64(5-6): 1251~1269.
    [127]孙建梅.多点输入下大跨空间结构抗震性能和分析方法的研究[D].南京:东南大学博士学位论文, 2005.
    [128]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学博士学位论文, 2003.
    [129]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社, 2004年.
    [130]章关永.桥梁结构试验[M].北京:人民交通出版社, 2002年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700