用户名: 密码: 验证码:
葛根素体内药动学及葛根黄酮自微乳化软胶囊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葛根素是中药葛根的主要成分,临床上广泛用于治疗心血管疾病。本文旨在研究葛根素在肠粘膜的吸收性质及肝脏的首过效应,从而阐明影响口服吸收的因素;研究其他药物对葛根素药动学的影响,从而为临床上合理用药提供依据;研究制备葛根黄酮自微乳化软胶囊,并对其体内药动学过程进行了研究。
     首先,以外翻肠囊法考察了葛根素在肠粘膜的吸收性质。葛根素在空肠、回肠和结肠的吸收均具有自身浓度抑制作用,表明葛根素在各肠段的吸收有可能存在主动转运的过程。pH值对葛根素在肠粘膜的透过性没有显著性影响。吐温-80和二乙二醇单乙醚(Transcutol P)对葛根素的肠吸收具有一定的促进作用。1,2-丙二醇对葛根素的肠吸收无显著性影响。随着P-糖蛋白抑制剂地高辛和维拉帕米浓度的增大,葛根素的肠粘膜透过性增强,当浓度分别达到50μg/ml和200μg/ml时,这种作用具有一定的饱和性,证明葛根素的肠吸收存在主动转运过程。
     以Caco-2细胞为模型考察了葛根素在肠粘膜的透过性。葛根素在Caco-2细胞的转运呈现较强的方向性,随着葛根素浓度的增加,其表观渗透率(PDR)降低(2.1~1.4)。随着温度升高表观渗透率增大。当加入代谢抑制剂KCN和2,4-二硝基苯酚时,葛根素的表观渗透率降低(由1.7分别降至1.0和1.2)。当加入100μg/ml维拉帕米时,A面到B面的表观渗透系数Papp(A→B)从0.84±0.18×10~(-7)cm/s增加到1.01±0.17×10~(-7)cm/s,而B面到A面的Papp(B→A)从1.43±0.18×10~(-7)cm/s降低到1.11±0.24×10~(-7)cm/s。通过外翻肠囊法和Caco-2细胞法研究证明葛根素经肠粘膜的转运可能存在外排泵P-糖蛋白的作用。
     采用离体大鼠肝灌流技术测定了不同浓度葛根素(1,10和50μg/ml)在肝脏的消除率分别为0.511±0.045、0.378±0.026、0.425±0.040ml/min。不同类型药物对葛根素肝脏消除率影响不同,如维拉帕米和红霉素对葛根素在大鼠离体肝脏的消除有抑制作用;利福平对葛根素在大鼠离体肝脏的消除有促进作用;硝苯地平和3-正丁基苯酞对葛根素的消除无显著性影响。
     制备了大鼠和豚鼠的肝微粒体,建立了肝微粒体体外代谢研究模型,对葛根素代谢进行了研究。随着肝微粒体蛋白浓度的增大,葛根素呈线性消除。葛根素可被肝微粒体代谢成大豆甙元(40min时不足原药葛根素量的1%),其代谢机理为NADPH依赖性的氧化代谢。NADH对葛根素代谢基本没有催化作用,在大鼠肝微粒体中,葛根素和大豆甙元可与CYP450形成抑制性复合物。葛根素在大鼠和豚鼠肝微粒体中的代谢率无显著性差别。
     采用HPLC法研究了一些药物与葛根素联合用药后在大鼠体内对葛根素药动学的影响。静脉用药时,低剂量的乳糖酸红霉素和维拉帕米对葛根素从大鼠体内
Puerarin is one of the main active constituents of Pueraria lobata, and it has been used for the treatment of senile ischemic cerebrovascular disease.
    The main objectives of this research were to study the intestinal absorption and first-pass effect of puerarin, pharmacokinetic changes of coadministration with other drugs in rats, to prepare the Self-microemulsifying drug delivery systems (SMEDDS) of Pueraria lobata and to research its pharmacokinetics in different animals.
    The intestinal transport of puerarin was performed by applying everted intestinal sacs method. With an increase of the concentration of puerarin, puerarin absorption across intestinal membrane was increased in the rat jejunum, ileum and colon, but there exited a saturable transport process for puerarin. pH values didn't affect intestinal absorption of puerarin in different sacs. Tween-80 and Transcutol P increased the intestinal absorption of puerarin, and 1,2-Propanediol had no effect on the intestinal absorption of puerarin. With an increase of the concentration of verapamil and digoxin, puerarin absorption across intestinal membrane increased in the rat jejunum, ileum and colon, but when the concentration of digoxin and verapamil was 50 and 200 μg/ml, the increase had a saturable process, so it was indicated that the transport of puerarin across intestinal membrane was mediated by efflux transport.
    The Caco-2 cell model was used to study the transport of puerarin across the intestinal membrane. The transport of puerarin across Caco-2 cell monolayers was directional. With the increase of the concentration of puerarin, the permeability coefficient ratio (PDR) was decreased from 2.1 to 1.4. With the increase of temperature, PDR was increased. When KCN and 2,4-dinitrophenol were added, the permeability coefficient ratio was decreased from 1.7 to 1.0 and 1.2, respectively. When 100 μg/ml verapamil was added, the permeability coefficient of apical to basolateral was increased from 0.84±0.18×10~(-7) cm/s to 1.01 ±0.17×10~(-7) cm/s, and the permeability coefficient of basolateral to apical was decreased from 1.43±0.18×10~(-7) cm/s to 1.11 ±0.24×10~(-7) cm/s. From the everted intestinal sacs and Caco-2 cell models, it was proved that puerarin was transported across intestinal membrane by efflux pump-P-glyprotein.
    The hepatic clearance of puerarin during isolated rat liver perfusion were 0.511 ±
引文
[1] 马佳佳,李红梅,董治宇,裴建明.葛根素的药理作用及其临床应用.第四军医大学学报,2002,23:64-66.
    [2] 樊小容:葛根素临床药理研究进展.时珍国医国药,2000,11(11):1037-1038.
    [3] 朱庆磊,吕欣然.葛根素的药理学和临床应用研究进展.中草药,1997,28(1):693-696.
    [4] 王东,肖玉兰,李炳光.葛根素治疗冠心病心绞痛100例临床观察.河南中医杂志,2001,17(2):9-10.
    [5] 朱杰,陈东工,杨青.葛根素治疗老年不稳定型心绞痛临床观察.辽宁药物与临床,2001,4(1):17-19.
    [6] 王宁,王于玉.葛根素治疗基底动脉供血不足的TCD研究.安徽中医临床杂志,2001,13(1):31-32.
    [7] 郑乐群,王克贤.葛根素治疗急性脑梗死30例疗效观察.临床医学,2001,21(4):44-45.
    [8] 金昔陆,朱秀媛.葛根素在大鼠、家兔、犬中的药物动力学.中国药理学报,1992,13(3):284-288.
    [9] 路玫,李妮,蒙大平,郭炎荣,陈远华.葛根素在糖尿病肾病患者中的药动学.中国医院药学杂志,2000,20(12):718-720.
    [10] 张志荣,游学均,魏振平,何勤,李少伟.愈风宁心胶囊在兔体内的药动学和生物利用度研究.中国药学杂志,1997,32(4):224-226.
    [11] Ekins S. Past, present, and future applications of precision-cut liver slices for in vitro xenobiotic metabolism. Drug Metab Rev, 1996, 28:591-623.
    [12] Brikett DJ, Machenzie PI, Veronese ME, Miners JO. In vitro approaches can predict human drug metabolism. Trends Pharmacol Sci, 1993, 14:292-294.
    [13] Rodrigues AD. Use of in vitro human metabolism studies in drug development. An industial perspective. Biochem Pharmacol, 1994, 48:2147-2156.
    [14] Wrighton SA, Ring BJ, VandenBranden M. The use of in vitro metabolism techniques in the planning and interpretation of drug safety studies. Toxicol Pathol, 1995, 23:199-208.
    [15] Guillouzo A. Acquisiton and use of human in vitro liver preparations. Cell Biol Toxicol, 1995, 11:141-145.
    [16] Bader A, Zech K, Creme O, Christians U, Ringe B, Pichimayr R, Sewing KF. Use of organotypical cultures of primary hepatocytes to analyse drug biotrausformation in man and animals. Xenobiotica, 1994, 24(7):623-633.
    [17] Shah NH, Carvajal MT, Patel CI, et al. Self-emulsifying drug delivery systems (SEDDS) with polyglycolzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm, 1994, 106(1):15-23.
    [18] Itoh K, Tozuka Y, Oguchi T, Yamamoto K. Improvement of physicochemical properties of N-4472 part Ⅰ formulation design by using self-microemulsifying system. Int J Pharm, 2002, 238:153-160.
    [19] Kovarik JM, Mueller EA, Van B, et al. Reduced inter-and intra-individual variability in cyclosporin pharmacokinetics from a micrioomulsion formulation. J Pharm Sci, 1994, 83(3):444-449.
    [20] Panayiotis PC. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res, 1995, 12(11):1561-1572.
    [21] Charman SA, Charman WN, Rogge MC, et al. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm Res, 1992, 9(1):87-95.
    [22] Pounton CW. Effects of the inclusion of a model drug on the performance of self-emulsifying formulation. J Pharm. Pharmacol. 1985, 37(1):1-11.
    [23] Christopher JHP, William NC. In vitro assessment of oral lipid based formulations. Adv Drug Deliev Roy, 2001, 50:S127-S147.
    [24] Farah N, Laforet J P, Denis J. Self-microemulsifying drug delivery systems for improving dissolution of drugs: in vitro/in vivo evaluation. Pharm Res, 1994, 11 (Suppl):S202-S213.
    [25] Hauss D J, Fogal S E, Ficorilli J V, et al. Lipid based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor. J Pharm Sci, 1998, 87(2):164-172.
    [26] Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharma Biopharmac, 2000, 50(1):179-186.
    [1] Jennifer BD, Hands L. Oral Drug Absorption. New York: Marcel Dekker, 2000.
    [2] Jonker C; Hamman JH; Kotze AF. Intestinal paracellular permeation enhancement with quaternised chiosan: in situ and invitro evaluation. Int J Pharm, 2002, 238:205-213.
    [3] Tomei S; Torimoto M; Hayashi Y, et al. Kinetic characterization of carrier-mediated transport systems for D-glucose and taurocholate in the eveted sacs of the rat colon. Biol Pharm Bull, 2003, 26(6): 899-901.
    [4] 胡一桥,郑梁元,钱陈钦,郁伟海.离子型药物酚红的小肠吸收研究,中国药科大学学报,1996,27(6):355-359.
    [5] Dudeja PK, Anderson KM, Harris JS, Buckingham L, Coon JS. Reversal of multidrug resistance phenotype by suffactants: relationship to membrane lipid fluidity. Arch Biochem Biophys, 1995, 319:309-315.
    [6] 彭文兴,汪新亮,李焕德.体内药物相互作用新位点-P-糖蛋白.中国临床药理学杂志,2001,17(5):386-390.
    [7] Hidlgo U, Rarb TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as model system for intestinal epithelial perbeality. Gastroenterology. 1989, 96:736-742.
    [8] Engman H, Tannergren C, Artusson P, et al. Enantioselective transport and CYP3A4-mediated metabolism of R/S-verapamil in Caco-2 cell monolayers. Eur J Pharm Sci, 2003, 19:57-65.
    [9] Lee K, Thakker DR. Saturable transport of H_2-antagonists ranitidine and famotidine across Caco-2 cell monolayers. J Pharm Sci, 1999, 88(7):670-687.
    [10] Mohamed ES, Ginsk M, Rhodes C. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release, 2002, 81:355-365.
    [11] BH Stewart, OH Chart, N Jezyk, D Fleisher. Discrimination between drug candidates using models for evaluation of intestinal absorption. Adv Drug Deliv Rev, 1997, 23:27-45.
    [12] Gharat L, Taneja R, Natthida W, et al. Targeted drug delivery systems 6: intracellular bioreductive activation, uptake and transport of an anticancer drug delivery system across intestinal Caco-2 cell monolayers. Int J Pharm, 2001, 219:1-10.
    [13] Yamashita S, Furnhayashi T, Kataoka M, et al. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci, 2000, 10:195-204.
    [14] Mizuuchi H, Katsura T, Hashimoto Y, et al. Transepithlial transport of diphenhydramine across monolayers of the human intestinal epithelial cell line Coco-2. Pharm Res, 2000, 17(5):539-545.
    [15] Kristina W, Galijatovic A, Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem Pharmacology, 1999, 58:431-438.
    [16] Cox DS, Gao H, Raje S, et al. Enhancing the permeation of marker compounds and enaminone anticonvulsants across Caco-2 monolayers by modulating tight junctions using zonula occludens toxin. Eur J Pharm Biopharm, 2001, 52:145-150.
    [17] Haber BA, Mohn KL, Diamond RH, et al. Induction patterns of 70 genes during nine days after hepaterctomy define the temporal course of liver regeneration. J Clin Invest, 1993, 91:1319-1341.
    [18] Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Cace-2) cells. Biechem Biophys Res Commun, 1991, 175(3):880-885.
    [19] Earvin L, John P, Mehran Y. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm Res, 2000, 17(10):11681174.
    [20] Satio H, Inui KI. Dipeptide transporters in apical and basolateral membranes of the human intestine cell line Cute-2. Am J Physiol, 1993, 265:289-293.
    [21] Liang E, Proudfoot J, Yazdanian M. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Cace-2 cell monolayers. Pharm Res, 2000, 17(10):1168-1180.
    [1] Inoue, Hiroki; Yokota, Hiroshi; Makino, Tsunehisa; Yuasa, Akira; Kato, Seiyu. Bisphenol A glucuronide, a major metabolite in rat bile after liver perfusion.Drug Metab. Dispos., 2001, 29(8):1084-1087.
    [2] Taki, Yoko; Sakane, Toshiyasu; Nadai, Tanekazu; Sezaki, Hitoshi; Amidon, Gordon L.; Langguth, Peter; Yamashita, Shinji. First-pass metabolism of peptide drugs in rat perfused liver. J. Pharm. Pharmacol., 1998, 50(9):1013-1018.
    [3] Zaman, Nuzhat; Tam, Yun K.; Jewell, Lawrence D.; Coutts, Ronald T. Effects of taurine supplementation in parenteral nutrition-associated hepatosteatosis and lidocaine metabolism; a study using isolated rat liver perfusion. Drug Metab. Dispos., 1996, 24(5):534-541.
    [4] 陈琼宇,白燕,付淑莉.氯化镍对大鼠离体肝脏的毒性研究.工业卫生与职业病,1995,21(6):340-343.
    [5] Zaman, Nuzhat; Tam, Yun K.; Jewell, Lawrenced D.; Coutts, Ronald T. Effects of intravenous lipid as a source of energy in parenteral nutrition associated hepatic dysfunction and lidocaine elimination: a study using isolated rat liver perfusion. Biopharm. Drug Dispos., 1997, 18(9):803-819.
    [6] Chow, Fung-Sing; Piekoszewski, Wojciech; Jusko, William J. Effect of hematocrit and albumin concentrafion of hepatic clearance of tacrolimus (FK506) during rabbit liver peffusion. Drug Metab. Dispos., 1997, 25(5):610-616.
    [7] Fukuyama, Takako; Yamaoka, Kiyoshi; Tabata, Kenji; Nakagawa, Terumichi. Inhibitory effect of pentobarbital on biliary excretion of diclofenac in a rat liver perfusion system. J. Pharm. Pharmacol., 1996, 48(7):734-737.
    [8] Yoshisue, Kunihiro; Yamamoto, Yoshio; Yoshida, Ken-Ichiro; Saeld, Mayuko; Minami, Yoshinori; Esumi, Yoshio; Kawaguchi, Yasuro. Pharmacokinetics and biological fate of 3-(2,2,2-trimethylhydrazinium)propionate dihydrate (MET-88), a novel cardioprotective agent, in rats. Drug Metab. Dispos., 2000, 28(6):68%694.
    [9] Tirona, Rommel G; Schwab, Andreas J.; Geng, Wanping; Pang, K. Sandy. Hepatic clearance model: comparison of the dispersion and Goresky models in outflow profiles from multiple indicator dilution rat liver studies. Drug Metab. Dispos., 1998, 26(5):465-475.
    [10] Ogawara, Ken-ichi; Nishikawa, Makiya; Takakura, Yoshinobu; Hashida, Mitsuru. Pharmacokinetic analysis of hepatic uptake of galactosylated bovine serum albumin in a perfused rat liver. J. Controlled Release, 1998, 50(1-3):309-317.
    [11] Furitsu, Hisao; Ogawara, Ken-ichi; Fujita, Takuya; Yamashita, Fumiyoshi; Takakura, Yoshinobu; Sezaki, Hotoshi; Hashida, Mitsuru. Pharmacokinetics analysis of scavenger receptor-mediated uptake of anionized proteins in the isolated perfused rat liver.Int. J. Pharm., 1997, 151(1):15-26.
    [12] Yamazaki, Masayo; Kobayashi, Kazuo; Sugiyama, Yuichi. Primary active transport of pravastatin across the liver canalicular membrane in normal and mutant Eisai hyperbilirubinemi1 rats. Biopharm. Drug Dispos., 1996, 17(8):645-659.
    [13] Takino, Toichi; Nagahama, Eiko; Kakutani, Toshiyuki Sakaedanee; Yamashita, Fumiyoshi; Takakura, Yoshinobu; Hashida, Mitsuru. Pharmacokinetic disposition analysis of lipophilic drugs injected with various lipid carriers in the single-pass rat liver perfusion system. Int. J. Pharm., 1995, 114(1):43-54.
    [14] 沈国胜,张银娣,沈建平.离体大鼠肝灌流方法的改进.广东药学院学报,1995,11(2):95-97.
    [15] 张滋,吴满平,庄庆祺,梅美珍.一种简易的大鼠离体肝脏灌流装置.生物化学与生物物理学报,.1982,12(6):567-573.
    [16] Sang Baek Koh; Bong Suk Cha; Jong Ku Park; Soung Hoon Chang; Sei Jin Chang. The metabolism and liver toxicity of N,N-dimethylformamide in the isolated rat liver. Yonsei Medical Journal, 2002, 43(4):491-499.
    [17] 印绮平,奚念朱,王宏图,张静华.适于研究药物相互作用的肝脏灌流模型.中国临床药学杂志,1999,8(1):36-39.
    [18] Spatzenegger M, Jaeger W. Clinical importance of hepatic oytochrome P450 in the drug metabolism. Drug Metab Rev, 1995, 27:397-417.
    [19] Damkier P, Hansen LL, Brosen K. Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br J Clin Pharmacol, 1999, 48:829-838.
    [20] Labbe L, Turgeon J. Clinical pharmacokinetics of mexiletine. Clin Pharm, 1999, 37:361-368.
    [21] Lowry OH, Rosebrough NJ, Fan, AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951, 193:265-275.
    [22] Omura T, Sate R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem, 1964, 239:2370-2378.
    [23] Yamazki H, Shimada T. Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6-18-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab Dispos, 1998, 16:521-526.
    [24] Spatzenegger M, Jaeger W. Clinical importance of hepatic cytechrome P450 in the drug metabolism. Drug Metab Rev, 1995, 27:397-417.
    [25] 许振华,周宏灏.细胞色素氧化酶P450与药物代谢.中国临床药理学杂志,1996,12(2):115-119.
    [26] Gonzalez FJ. The molecular biology of cytochrome P450s. Pharmacol Rev, 1989, 40:243-288.
    [27] Gibson GG, Skett P. Introduction to drug metabolism, second edition, Blackic Academic & Professional, an imprint of Chapman & Hall. 1996, 35.
    [1] 萧参;陈坚行.生物药剂分析方法的认证.中国药学杂志,1993,28(7):425-427.
    [2] Cumminis CL, Jacobsen W, Benet LZ. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J Pharmacol Exp Ther, 2002, 12(1):36-40.
    [3] Lin XD, Zhang L, Xie L. Effect of p-glycoprotein inhibitors erythromycin and cyclosporin A brain pharmacokinetics of nimodipine in rats. Eur J Drug Metab Pharmacoldnet, 2003; 28:309-313.
    [4] Labbe L, Turgeon J. Clinical pharmacokinetics of mexiletine. Clin Pharmacokinet, 1999, 37(5):361-367.
    [5] Graham RA, Downey A, Mudra D, Krueger L, Carroll K, Chengelis C, Madan A, Parkinson A. In vivo and in vitro induction of cytochrome P450 enzymes in beagle dogs. Drug Metab Dispos, 2002, 30:1206-1213.
    [6] 李中东,施孝金,钟明康.细胞色素P450与蛋白酶抑制剂的药物相互作用.中国新药杂志,2003,12(3):169-170.
    [7] 殷立新,孙莉,刘秀菊,郭进.葛根素注射液与28种药物配伍的稳定性.华西药学杂志,2002,17(5):388-389.
    [8] Takaaki Y, Yosbihiro K, Saito K, et al. Urinary and biliary metabolites of puerarin in rats. Bio Pharm Bull, 1995, 18(2):300-203.
    [9] 吴丽花,马萌.肠壁CYP3A和P—糖蛋白与口服药物生物利用度.中国药房,2003,14(7):437-438.
    [10] Zhang Y, Benet LZ. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet, 2001, 40(3): 159-165.
    [11] Tran CD, Timmins P, Comway BR, et al. Investigation of the coordinated functional activities of cytochromeP450 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells. J Pharm Sci, 2002, 91(1):117-129.
    [12] 崔宏晏,崔宏杰.酒精与药物的相互作用.滨洲医学院学报,2003,26(2):146-147.
    [13] 江明性.药理学.第四版.北京:人民卫生出版社,1996,36.
    [1] USP2807651.
    [2] 精细有机化工手册.
    [3] 精细有机化工手册.
    [1] Shah NH, Carvajal MT, Patel CI, et aL Soft-emulsifying drug delivery systems (SEDDS) with polyglycolzed glycerides for improving in vitro dissolution and oral absorption of lipophilio drugs. Int J Pharm, 1994, 106(1):15-23.
    [2] Itoh K, Tozuka Y, Oguohi T, Yamamoto K. Improvement of physicochemical properties of N-4472 part Ⅰ formulation design by using self-microemulsifying system Int J Pharm, 2002, 238:153-160.
    [3] Pouton CW. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm, 1985, 27:335-342.
    [4] Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilie drugs. Eur J Pharma Biopharmae, 2000, 50(1):179-185.
    [5] Craig DQM, Barker SA, Banning D, et al. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy, Int J Pharm, 1995, 114 (1):103-110.
    [6] Gershanik T, Benzene S, Benita S. Interaction of the serf-emulsifying lipid drug delivery system with mucosa of everted rat intestime as a function of sarface charge and droplet size. Pharm Res, 1998, 15(6):863-870.
    [7] Tarr BD, Yalkowsky SH. Enhanced intestinal absorption of cyclosporeine in rats through the reduction of emulsion droplets size. Pharm Res, 1989, 6(1):40-43.
    [8] Chamman SS, Charman WN, Rogge MC, et al. Self-emulsifying drug delivery systems: formulationand biopharmaceutic evaluation of an investigation lipophilie compound. Pharm Res, 1992, 9(1):87-93.
    [9] Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res, 1995, 12(11):1561-1572.
    [10] Shui-Mei Khoo, Andrew JH, et al. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine, Int J Pharm, 1998, 167:155-164.
    [11] Kommuru TR, Garley B, Khan MA, et al. Self-emulsifying drug delivery systems (SEDDS) of ceanzymeQ10: formulation development and bioavailability assessment, Int J Pharm, 2001, 212 (1):233-246.
    [12] Bachynsky MO, Shah NH, Paatel CI, et al. Factors affecting the efficiency of a self-emulsifying oral delivery system. Drug Development Ind Pharm, 1997, 23(8):809-814.
    [1] 徐贵霞,王玉丽,全东琴.自乳化释药系统的体外评价.解放军药学学报,2003,19(3):195-197.
    [2] Shah NH, Carvajal MT, Patel CI, et al. Self-emulsifying drug delivery systems (SEDDS) with polyglycolzed glycerides for improving in vitro dissolution and oral absorption of lipophlic drugs. Int J Pharm, 1994, 106(1):15-23.
    [3] Khoo, SM. Andrew JH, et al. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int J Pharm, 1998:167:155-164.
    [4] Kim JY, Ku YS. Enhanced absorption of indomethacin after oral or rectal administration of a self-emulsifying system containing indomethacin to rats. Int J Pharm 2000, 194:81-89.
    [5] Takaaki Y, Yoshihiro K, Kenichi S, et al. Urinary and biliary metabolites of puerarin in rats. Bio Pharm Bull, 1995, 18(2):300-303.
    [6] 朱秀嫒,苏成业,李振华等.葛根有效成分的代谢研究Ⅲ.葛根素的代谢及其药代动力学分析.药学学报,1979,14(6):349-355.
    [7] 张志荣,游学均,魏振平等.愈风宁心胶囊在家兔体内的药动学和生物利用度研究.中国药学杂志,1997,32(4):224-226.
    [8] 卢弘,邢东明,孙虹等.金森脑泰注射剂中葛根素在正常和缺血再灌模型大鼠体内的药动学研究.中国药学杂志,2002,37(1):41-44.
    [9] 黄熙,任平,张莉等.HPLC法测定犬口服养阴通脑颗粒后血浆中的葛根素.中国药科大学学报,2001,32(2):127-129.
    [10] 杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用.药学学报,2000,35(10):797-800.
    [11] Lennernas H, Palm K, Fagerholm U, et al. Comparision botween active and passive drug transport in human intestinal epithelial (Caco-2) cells in vitro and human jejunum in vivo. Int. J. Pharm., 1996, 127:103-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700