用户名: 密码: 验证码:
甘氨酸亚铁螯合物的肠道吸收特点及其生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸铁是第三代铁源添加剂,具有生物学效价高、吸收率高、化学结构稳定、增强免疫力、利于环保等特点,是当前国内外研制和开发应用的热点。医学研究表明,氨基酸螯合铁在动物体内具有很高的生物学利用率,相当于同水平硫酸亚铁的125-185%。甘氨酸为分子量最小的氨基酸,甘氨酸亚铁在体内应更容易被吸收利用。研究表明,氨基酸铁螯合物高生物学效价与其高效的吸收转运机制有关,但其吸收转运机制仍尚未明确。本研究对甘氨酸亚铁螯合物在缺铁大鼠模型体内铁调控特点、体外肠上皮细胞模型(Caco-2)的吸收转运特点及其在断奶仔猪、肉仔鸡的生物学效应进行了探讨。
     主要研究内容和结果如下:
     1、建立了缺铁SD大鼠模型。结果表明,21日龄SD大鼠饲喂2周低铁日粮后,血液血红蛋白水平下降到107.67g/L,血清铁及肝脏铁水平大幅下降,表明SD大鼠缺铁模型已建立。同时研究发现,与对照组相比,大鼠饲喂2周缺铁日粮后体重极显著减轻,体重降低18.03%(P<0.01);血清TIBC提高了29.37%(P<0.01),SF含量降低了27.71%(P<0.01),CAT含量降低了12.40%(P<0.05);肝脏Hepcidin相对表达量大幅下调,仅为无机铁组的6%;缺铁组大鼠十二指肠DMT1相对表达量大幅提高,是无机铁组的2.55倍;FP1相对表达量也显著增加,为无机铁组的2.79倍;而PepTl相对表达量没有明显差异。
     2、研究了甘氨酸亚铁对缺铁SD大鼠生长发育、铁代谢指标及机体铁调控的影响。选用体重为66.43±6.86g的缺铁SD大鼠90只(公母各半),随机分为3组,无机铁组(FeSO4,添加Fe 35 mg/kg,对照组)、甘氨酸组(FeSO4+Glycine,添加Fe 35 mg/kg,摩尔比Fe:AA=1:2)和有机铁组(Fe-Gly,添加Fe 35 mg/kg),试验期为2周。结果表明,与无机铁组相比,甘氨酸亚铁组大鼠体重增加幅度最大,增加了4.05%(P>0.05);甘氨酸亚铁添加促进大鼠的肝脏、脾脏及肾脏发育,其器官指数显著提高(P<0.05);甘氨酸亚铁组大鼠血清、肝脏及脾脏铁含量分别提高了26.76%(P<0.01)、34.58%(P<0.01)、26.72%(P<0.01);甘氨酸亚铁组的大鼠血清SF及CAT分别提高22.72%及81.00%(P<0.01), TIBC及XOD分别降低20.42%和23.05%(P<0.05);甘氨酸组及甘氨酸亚铁组大鼠肝脏Hepcidin相对表达量显著提高,为无机铁组的3.27倍和5.65倍,大鼠十二指肠DMT1相对表达量大幅降低,仅为无机铁组的33%和23%;FP1相对表达量也显著降低,为无机铁组的38%和22%;PepTl相对表达量同时显著提高,为无机铁组的2.55倍和6.27倍。与硫酸亚铁添加相比,甘氨酸亚铁添加能明显快速改善动物机体缺铁状态,同时发现大鼠十二指肠PepTl表达量有了明显提高,可能PepT1在甘氨酸亚铁整体转运中起到了重要作用。
     3、Caco-2细胞转运模型的构建。Caco-2细胞在微孔滤膜上培养21d后,形成致密的单层,跨膜电阻值达到稳定的值,为466.75±50.48Ω·cm2,荧光素钠在150min内总透过率为0.85%,细胞肠腔侧碱性磷酸酶活性显著高于基底侧酶活性。构建的Caco-2细胞模型细胞单层生长形态良好、具有良好致密性、细胞极性分化完全,符合吸收转运模型的标准,可用作小肠吸收的体外细胞模型。
     4、采用Caco-2细胞吸收模型研究甘氨酸亚铁螯合物(Fe-Gly)的吸收机制,分别考察了浓度(0.5-20μmol/L)、转运方向(AP→BL,BL→AP)、时间(0-120min)及温度(37℃,4℃)对转运过程的影响。Fe-Gly和FeSO4从AP→BL方向跨Caco-2细胞单层转运呈浓度和时间依赖型,转运受温度影响明显。Fe-Gly的Papp为0.15-10.40×10-6 cm/s,FeS04的Papp为0.18-4.70×10-6cm/s。37℃孵育条件下,Fe-Gly跨细胞单层的转运率显著高于FeS04(P<0.05),且Fe-Gly的转运率随着浓度的升高而降低,0.5μmol/L时转运率为23.32%,而20μmol/L时则为7.97%。FeSO4及Fe-Gly在Caco-2细胞中可能是经过主动转运吸收,其中FeSO4是通过DMT1介导主动转运吸收,而Fe-Gly可能存在特定或非特定的肠道转运系统,Fe-Gly在Caco-2细胞中的转运率明显高于FeSO4。
     5、研究了不同因素对甘氨酸亚铁螯合物及硫酸亚铁跨Caco-2细胞转运的影响。将含有10μmol/L不同影响因素(铁吸收促进剂—维生素C及铁吸收抑制剂—草酸钠)和10μmol/L铁(以Fe-Gly、FeS04形式)的D'Hanks液加入细胞单层肠腔侧(AP),37℃培养,在不同时间点(30、60、90、120min)从细胞单层基底侧(BL)吸取200μl样进行铁含量分析。Vc对Fe-Gly在Caco-2细胞中的转运量没有产生显著的影响(P>0.05),但显著增加了FeSO4在Caco-2细胞中的转运量(P<0.05);草酸钠对Fe-Gly在Caco-2细胞中的转运量没有产生显著的影响(P>0.05),而显著抑制了FeSO4在Caco-2细胞中的转运(P<0.05)。说明不同来源的铁在吸收时所受的影响存在差异,无机铁FeSO4相对于Fe-Gly来说较易受到各种因素的干扰。
     6、研究了Fe-Gly和FeSO4对断奶仔猪生长性能、免疫机能和肉色的影响。选择180头体重7.81±0.72kg的“杜长大”三元杂交仔猪,按饲养试验要求分为6组,每组设三个重复,每个重复10头(组内公母各半)。对照组饲喂基础日粮,试验1、2、3、4组在基础日粮的基础上分别添加30、60、90、120 mg/kg Fe-Gly(以铁计),试验5组在基础日粮的基础上添加120 mg/kg FeSO4(以铁计)。试验期35天,结果表明,断奶仔猪日粮中添加60、90、120 mg/kg Fe-Gly分别使仔猪日增重提高了9.69%(P<0.05)、11.08%(P<0.05)和9.97 (P<0.05); 60、90、120 mg/kg Fe-Gly和120 mg/kg FeSO4添加明显提高了断奶仔猪胸腺指数(P<0.05); 90、120 mg/kg Fe-Gly添加提高了ConA诱导的B-淋巴细胞刺激指数(P<0.05); 90 mg/kg Fe-Gly添加使全血中血红蛋白、红细胞数及红细胞压积分别提高了13.08%(P<0.05)、14.31%(P<0.05)及20.53%(P<0.05);日粮中添加60、90和120 mg/kg Fe-Gly均提高了断奶仔猪背最长肌肌红蛋白含量(P<0.05),改善了肉色红度值(a*值);添加90 mg/kg Fe-Gly大幅度提高了仔猪肝脏SOD及SDH酶活(P<0.05);90、120mg/kg Fe-Gly及120 mg/kg FeSO4的添加使血清铁、心脏铁、肝脏铁及脾脏铁含量显著提高(P<O.05); 120 mg/kg Fe-Gly或FeSO4添加使仔猪粪便铁残留量明显增加(P<0.05); 60、90、120 mg/kg Fe-Gly添加降低了血尿氮及总胆固醇含量(P<0.05或P<0.01),提高了碱性磷酸酶的活性(P<0.05)。以上结果表明,90 mg/kg Fe-Gly可明显促进断奶仔猪生长;提高断奶仔猪胸腺指数,促进免疫器官发育;提高血红蛋白及血清铁含量,促进B淋巴细胞正常增殖,提高仔猪的免疫力;提高Mb含量,改善肉色;促进机体组织铁沉积。
     7、研究了Fe-Gly及FeSO4对肉仔鸡生产性能、免疫机能及抗氧化指标的影响。360只1日龄AA肉鸡随机分为6组,每组设3个重复,每个重复20只。以饲喂基础日粮组为对照组,试验组在基础日粮基础上分别添加40、80、120、160 mg/kg甘氨酸亚铁及160 mg/kg硫酸亚铁(以铁计)。试验期为42天,研究表明,添加120、160 mg/kg甘氨酸亚铁显著提高了42日龄肉仔鸡体重及22-42日龄日增重(P<0.05)。日粮添加80、120 mg/kg甘氨酸亚铁显著提高了21日龄及42日龄肉仔鸡胸腺指数(P<0.05); 120、160 mg/kg甘氨酸亚铁添加显著增强了脂多糖刺激的21日龄肉仔鸡全血T淋巴细胞增殖(P<.05); 80、120、160 mg/kg甘氨酸亚铁添加提高了21日龄肉仔鸡血清IgG及IgM含量(P<0.05); 120、160 mg/kg甘氨酸亚铁或160 mg/kg硫酸亚铁添加提高了21日龄及42日龄肉仔鸡血清、肝脏、胸肌铁沉积及粪便铁残留量,且80、120、160 mg/kg甘氨酸亚铁或160 mg/kg硫酸亚铁添加提高了21日龄及42日龄肉仔鸡胫骨铁沉积;添加120及160 mg/kg甘氨酸亚铁能显著性的提高21日龄肉仔鸡血清中SOD和CAT酶的活性(P<0.05),降低MDA的酶活性(P<.05); 80、120、160 mg/kg甘氨酸亚铁或160 mg/kg硫酸亚铁添加提高了42日龄肉仔鸡CAT的活性(P<0.05)。以上结果表明,120 mg/kg甘氨酸亚铁可显著改善肉鸡的生长性,提高肉鸡的免疫器官指数,增加血清中免疫球蛋白IgM及IgG的含量,促进T淋巴细胞增殖,增强机体的抗氧化能力。
     综上所述,机体缺铁时,大鼠肝脏铁调素Hepcidin相对表达量大幅下调,十二指肠DMT1及FP1相对表达量显著提高;补饲甘氨酸亚铁后,与添加无机铁相比,机体缺铁状态改善迅速,且十二指肠PepT1相对表达量显著上调,PepT1可能在甘氨酸亚铁的整体吸收转运中发挥了重要作用;甘氨酸亚铁跨Caco-2细胞膜转运量显著高于同浓度硫酸亚铁,且转受温度影响较大,同时受外界(铁吸收促进剂及抑制剂)干扰较小,表明甘氨酸亚铁可能存在一个特定或非特定的肠道主动转运系统;同时,适量添加甘氨酸亚铁可明显改善断奶仔猪生产性能、免疫机能及肉色,也可改善肉仔鸡生产性能、免疫机能及抗氧化指标。
With the benefits on absorption rate, growth, immunity and environment, iron amino acid chelate has been paid more attention in animal nutrition. Studies showed that chelated or proteinated sources of Fe have 125-185% relative availability compared with ferrous sulfate. The better bioavailability of iron amino acid chelate is maybe mainly due to its highly efficient absorption, but its absorption mechanism is still not clear. Iron glycine chelate (Fe-Gly) could be more easily absorbed compared with other Fe sources. In this study, research on manipulation of Fe-Gly uptake in iron-deficiency rat model, absorption mechanism of Fe-Gly in Caco-2 cell model and its application in weanling piglets and broilers were carried out to reveal the possible mechanism of absorption and biological effects of Fe-Gly.
     The main contents and results are as follows:
     1) Iron-deficiency SD rat model was established. The results showed that blood hemoglobin level fell to 107.67 g/L, serum iron and liver iron levels decreased significantly when 3-w old SD rats fed a low iron diet after 2 weeks. This indicated that SD rats with iron-deficiency model had been initially established. Compared with the control group, iron deficiency significantly reduce body weight of rat by18.03% (P<0.01), serum TIBC increased by 29.37% (P<0.01), SF content and CAT level decreased by 27.71% (P<0.01) and 12.40% (P<0.05). Iron deficiency greatly reduced relative expression of Hepcidin to 0.06-fold in liver; and increased duodenal DMT1 and FP1 relative expression level by 2.55-fold and 2.79-fold. There is no significant difference in relative expression of PepTl.
     2) Iron-deficiency rat model was conducted to determine the effects of Fe-Gly on growth, iron metabolism and iron regulation. Ninety iron-deficiency rats (initial weight of 66.43±6.86 g) were allotted to 3 treatments based on live weight and sex. Treatments consisted of:FeSO4 group (35mg Fe/kg diet from FeSO4, control group); glycine group (35 mg Fe/kg diet from FeSO4, and the molar ratio of Fe:glycine= 1:2); Fe-Gly group (35 mg Fe/kg diet from Fe-Gly). After 2-w feeding trial, the results showed that rat liver, spleen and kidney index was significantly increased (P<0.05) when rat was fed Fe-Gly. Supplemental Fe-Gly in diets increased serum, liver and spleen iron content by 26.76%(P<0.01),34.58% (P<0.01) and 26.72% (P<0.01). Addition with Fe-Gly enhanced serum SF and CAT levels by 22.72% and 81.00% (P<0.01), and reduced TIBC, XOD levels by 20.42% and 23.05% (P<0.05) compared with the control. Compared with the control, the relative expression levels of liver Hepcidin in glycine group and Fe-Gly group increased to 3.27-fold and 5.65-fold, duodenum PepTl enhanced to 2.55-fold and 6.27-fold, duodenum DMT1 decreased to 0.33-fold and 0.23-fold, duodenum FP1 reduced to 0.38-fold and 0.22-fold, respectively. The result indicated that Fe-Gly could improve the body iron status quickly and also found PepTl maybe play a key role in intestinel absorption of Fe-Gly.
     3) The Caco-2 cell transport model was established. After 21-days culture, the Caco-2 cell model has formed a tight monolayer, with a steady TEER value 466.75±50.48Ω·cm2 and a transportation percentage of fluorescein sodium at 0.85% in 150 min. The AKP activity in the apical side (AP) is greatly higher than the basolateral side (BL), which means the Caco-2 cell has polarity by 21-days differentiation. Therefore, the Caco-2 cell model established in this study can be used as an in vitro intestinal absorption model with accepted standards.
     4) The transports of Fe-Gly and FeSO4 in Caco-2 cell monolayers were conducted from AP to BL and BL to AP, respectively. The effects of concentration (0.5-20μmol/L of Fe), time (0-120 min) and temperature (37℃and 4℃) on transport Fe-Gly and FeSO4 were investigated. Transports of Fe-Gly and FeSO4 across Caco-2 monolayers both from AP to BL and BL to AP direction were concentration-and time-dependent. There are more amounts of Fe-Gly and FeSO4 transport under 37℃than those under 4℃from AP to BL direction. The apparent permeability coefficient (Papp) of Fe-Gly was between 0.15×10-6 cm/s and 10.40×10-6 cm/s, which decreased with the increased concentration. Papp of FeSO4 was between 0.18×10-6 cm/s and 4.70×10-6 cm/s. Fe-Gly transport across Caco-2 cell monolayers was significantly higher than FeSO4 (P<0.05) when incubation temperature under 37℃. The transport rate of Fe-Gly decreased with increasing supplemental levels. Therefore, it can be deduced that the absorption of FeSO4 and Fe-Gly in Caco-2 cells is mainly through active transport. It is known that the intestinal absorption of FeSO4 is through DMT 1-mediated active transport, while the intestinal absorption of Fe-Gly may be through a specific or non-specific intestinal active transit system. The transport mounts of Fe-Gly accros Caco-2 cell monolayers were significantly higher than FeSO4
     5) The study was carried out to determine the effects of different factors on Fe-Gly and FeSO4 transport across Caco-2 cell monolayers. Transport of 10μmol/L of Fe in the form of Fe-Gly or FeSO4 were conducted with 10μmol/L vitamin C (iron absorption enhancer) or sodium oxalate (iron absorption inhibitor), respectively. The studies shown that vitamin C had no great effect on transport of Fe-Gly (P>0.05). However, FeSO4 transport was significantly enhanced by supplemental vitamin C (P<0.05). Sodium oxalate did not affect the transport of Fe-Gly (P>0.05), but greatly reduced FeSO4 transport (P<0.05). These results indicated that FeSO4 was easily affected by dietary factors compared to Fe-Gly.
     6) The study was conducted to determine the effects of Fe-Gly on growth, immunological characteristics and meat color in weanling pigs. One hundred and eighty pigs (initial weight of 7.81±0.72 kg) were allotted to six treatments based on live weight and litter origin. Treatments consisted of 0,30,60,90, and 120 mg/kg Fe-Gly groups (calculated with Fe) and 120 mg/kg FeSO4 group (calculated with Fe). Compared with the control, ADG was enhanced (P<0.05) when pigs fed diets containing 60,90 or 120 mg/kg Fe-Gly. Supplemental 60,90 or 120 mg/kg Fe-Gly or 120 mg/kg FeSO4 greatly increased thymus gland index (P<0.05) compared with the control. Lymphocytes from whole blood of experimental pigs had a higher proliferative response to ConA (P<0.05) when diet supplemental 90,120 mg/kg Fe as Fe-Gly. The hemoglobin, RBC and PCV were increased by 13.08% (P<0.05),14.31% (P<0.05) and 20.53% (P<0.05) when pigs fed 90 mg/kg Fe-Gly. Myoblobin concentrations of M. longissimus dorsi were enhanced with addition of Fe-Gly from 60 to 120 mg/kg. SOD and CAT activities were increased when pigs fed 90 mg/kg Fe-Gly.90,120 mg/kg Fe-Gly or 120 mg/kg FeSO4 also enhanced serum, heart, liver and spleen Fe concentration (P<0.05 or P<0.01) compared with the control.120 mg/kg Fe as Fe-Gly or FeSO4 enhanced Fe concentration in feces compared with the control. SUN and SUL contents increased and AKP activity decreased when pigs fed 60,90 or 120 mg/kg Fe-Gly. Those results indicated that 90 mg/kg Fe-Gly had benefits on improving growth, immulogical functions and meat color of weanling pigs.
     7) The study was carried out to determine the effects of Fe-Gly on growth performance, immunological characteristics and antioxidant index of broiler chickens. Three hundred and sixty 1-d old commercial broiler chicks (Ross×Ross) were randomly allotted to six dietary treatments. Treatments consisted of 0,40,80,120, and 160 mg/kg Fe-Gly groups (calculated with Fe) and 160 mg/kg FeSO4 group (calculated with Fe). Feeding trial included 0-21d and 22-42d period. The results showed that compared with the control,120 and 160 mg/kg Fe-Gly improved 6-w body weight and 22-42-d ADG of broiler chickens. Thymus gland index was increased (P<0.05) when chicks fed 80,120 mg/kg Fe as Fe-Gly at d 21 and d 42. Lymphocytes from whole blood of experimental chickens had a higher proliferative response to LPS (P<0.05) when diet supplemental 120,160 mg/kg Fe as Fe-Gly at d 21.80,120 mg/kg Fe-Gly enhanced IgM (P<0.05) and IgG (P<0.05) contents at d 21 and d 42. The concentration of Fe was significantly increased (P<0.05) in serum, liver, breast muscle and feces of chicks fed diets supplemented with 120,160 mg/kg Fe as Fe-Gly or 160 mg/kg Fe as FeSO4 at d 21 and d 42. In addition, tibia Fe storage was improved (P<0.05) when chicks were fed 80,120, 160 mg/kg Fe as Fe-Gly or 160 mg/kg Fe as FeSO4 at d 21 and d 42. Feeding 120,160 mg/kg Fe as Fe-Gly greatly enhanced serum SOD and CAT activities (P<0.05), and decreased MDA activity of 21-d chicks. Serum CAT activity was increased when chicks fed 80,120,160 mg/kg Fe as Fe-Gly or 160 mg/kg Fe as FeSO4 at d 42. These results indicated that 120 mg/kg Fe as Fe-Gly has better effects on improving growth, increasing development of immune organs, enhancing serum IgM and IgG levels, promoting T lymphocyte proliferation, and enhancing antioxidant capacity of broiler chickens.
     In summary, the relative expression of liver hepcidin significantly reduced and relative expression of duodenal DMT1 and FP1 greatly improved when SD rat was in iron deficiency. Addition with iron glycine chelate could improve iron status of iron-deficiency rat quickly, and the relative expression of duodenal PepTl was significantly raised compared to FeSO4. PepTl may be played a key role in the intestine absorption of Fe-Gly. The transport mounts of Fe-Gly across Caco-2 cell monolayers were significantly higher than FeSO4, while FeSO4 was easily affected by dietary factors relative to Fe-Gly. Those indicated that there may be a specific or non-specific intestinal active transport system to transport Fe-Gly. In addition, dietary Fe-Gly was beneficial to growth, immune function and meat color of weanling pigs; also improve growth, immune function and antioxidation of broiler chickens.
引文
Abboud S., Haile D.J.2000. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. Journal of Biological Chemistry 275,19906-19912.
    Abdallah A.G., El-Husseiny O.M., Abdel-Latif K.O.2009. Influence of some dietary organic mineral supplementations on broiler performance. International Journal Poultry Science 8 (3),291-298.
    Allen L.H., Bovell-Benjamin A.C., Viteri F.1998. Ferrous bis-and ferric tris-glycinates as iron fortificants for whole maize:bioavailability and regulation by iron status. FASEB Journal 12, A821.
    Allen L.H.2002. Advantages and limitations of iron amino acid chelates as iron fortificants. Nutrition Reviews 60, S18-S21.
    Allinr H., Robert A.C., Phillip S.B.1990. Caco-2 cell rmnolayers as a model for drug transport across the intestinal muoosa. Pharmaceutical Research 7 (9),902-910.
    Alvarez-Hernandez X., Nichols G.M., Glass J.1991. Caco-2 cell line:A system for studying intestinal iron transport across epithelial cell monolayers. Biochimica et Biophysica Acta 1070,205-208.
    Ammerman C.B., Luo X.G.1996. Iron-methionine complex and feed grade ferrous sulfate as sources of dietary iron for chicks. Journal of Animal Science 74(1),8.
    Anderberg E. K., Artursson P.1993. Epithelial transport of drugs in cell culture. VIII:Effects of sodium dodecyl sulphate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. Journal of Pharmaceutical Sciences 82,392-398.
    Anderson G.J., Frazer D.M., Mckie A.T., et al.2005. Mechanisms of haem and non-haem iron absorption:Lessons from inherited disorders of iron metabolism. Biometals 18(4),339-348.
    Annibale B., Capurso G., Martino G., et al.2000. Iron deficiency anaemia and Helicobacter pylori infection. International Journal of Antimicrobial Agents 16(4),515-519.
    Anwar K., Kayden H.J., Hussain M.M.2006. Transport of vitamin E by differentiated Caco-2 cells. Journal of Lipid Research 47(6),1261-1273.
    Artursson P., Palm K., Luthman K.2001. Caco-2 monolayers in experimental and theoretical
    predictions of drug transport. Advanced Drug Delivery Reviews 46(1-3),27-43.
    Ashmead H.D.1993. Comparative intestinal absorption and subsepuent metabolism of metal amino acidchelates and inorganic metal salts. The roles of amino acid chelates in animal nutrition.Noyes Publishers, New Jersey, pp 306-319
    Ashmead H.D.1999. Bioavailability of iron glycine. American society for Clinical Nutrition 69, 737-738.
    Ashmead S.D.2001. The chemistry of ferrous bis-glycinate chelate. Archivos Latinoamericanos de Nutrition 51(1),7-12.
    Aslamkhan A.G., Ahearn G.A.2003. Iron uptake by hepatopancreas brush border membrane vesicles (BBMV) of the lobster (Homarus americanus). Journal of Experimental Zoology Part A 295(2),145-150.
    Atanasiu V., Manolescu B., Stoian I.2007. Hepcidin-central regulator of iron metabolism. European Journal of Haematology 78(1),1-10.
    Bailey J.R., Sephton D.H., Diedizic W.R.1990. Oxygen uptake by isolated perfused fish heart with differing myoglobin concentrations under hepoxic conditions. Journal of Molecular and Cellular Cardiology 22,1125-1134.
    Barclay J.K., Hansel M.1991. Free radicals may contribute to oxidative skeletal muscle fatigue. Canadian Journal of Physiology and Pharmacology 69(2),279-284.
    Beckman J.S., Minor R.L., White O.W., et al.1988. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. Journal of Biological Chemistry 263,6884-6892.
    Berger V., Larondelle Y., Trouet A., et al.2000. Transport mechanisms of the large neutral amino acid L-phenylalanine in the human intestinal epithelial Caco-2 cell line. Journal of Nutrition 130(11),2780-2788.
    Bezwoda W., Charlton R., Bothwell T., et al.1978. Importance of gastric hydrochloric-acid in absorption of non-heme food iron. Journal of Laboratory and Clinical Medicine 92(1), 108-116.
    Biehl R.R., Emmert J.L., Baker D.H.1997. Iron bioavailability in soybean meal as affected by supplemental phytase and lα-Hydroxycholecalciferol. Poultry Science 76,1424-1427.
    Blais A., Pierre A., Bernard L.1997. Paracellular calcium transport across Caco-2 and HT29 cell
    monolayers.PflUgers Archiv European Journal of Physiology 434(3),300-305.
    Blais A., Lecoeur S., Milhaud G., et al.1999. Cadmium uptake and transepithelial transport in control and long-term exposed Caco-2 cell:the role of metallothionein. Toxicology and applied pharmacology 160,76-85.
    Blanca V., Reyes B., Rosaura F.2006. Calcium, iron and zinc uptakes by Caco-2 cells from white beans and effect of cooking. International Journal of Food Sciences and Nutrition 57(3-4), 190-197.
    Blecha F.D., Pollmann S., Nichols D.A.1983. Weaning pigs at an early age decreases cellular immunity. Journal of Animal Science 56,396-405.
    Bowlus C.L.2003. The role in T cell development and autoimmunity. Autoimmunity Reviews 2, 73-78.
    Bovell-Benjamin A.C., Viteri F.E., Allen L.H.2000. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. American Journal of Clinical Nutrition 71,1563-1569.
    Brandsch C., Ringseis R., Eder K.2002. High dietary iron concentrations enhance the formation of cholesterol oxidation products in the liver of adult rats fed salmon oil with minimal effects on antioxidant status. The Journal of Nutrition 132,2263-2269.
    Bray R.W, Rupnow E.H., Hanning F.M., et al.1959. Effect of feeding methods on veal production and carcass quality. II. Carcass grades, liver, hide, specific gravity, yield and chemical analysis of the muscle. Journal of Animal Science 18,732-737.
    Bristow-Craig H.E., Strain J.J., Welch R.W.1994. Iron status, blood lipids and endogenous antioxidants in response to dietary iron levels in male and female rats. International Journal for Vitamin and Nutrition Research 64,324-329.
    Brock J.H., Mainou-Fowler T., Webster L.M.1986. Evidence that transferrin may function exclusively as an iron donor in promoting lymphocyte proliferation. Immunology 57, 105-110.
    Brock J.H.1994. In:J H. Brock, J. W. Halliday, M. J. Pippard, L. and W. Powell (Ed.), Iron in infection, immunity, inflammation and neoplasia, Iron Metabolism in Health and Disease. W. B. Sauuders, London, pp.354-389.
    Brune M., Rossander L., Hallberg L.1989. Iron-absorption and phenolic compounds-Importance
    of different phenolic structures. European Journal of Clinical Nutrition 43(8),547-558.
    Brune M., Rossander L., Hallberg L., et al.1992. Iron absorption from bread in humans: Inhibiting effects of Cereal fiber, Phytate and Inositol phosphates with different numbers of phosphate groups. Journal of Nutrition 122,442-449.
    Buur A., Trier L., Magnusson C, et al.1996. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. International Journal of Pharmaceutics 129,223-231.
    Camara F., Barbera R., Amaro M.A., et al.2007. Calcium, iron, zinc and copper transport and uptake by Caco-2 cells in school meals:Influence of protein and mineral interactions. Journal of Food Chemistry 100(3),1085-1092
    Cao J., Luo X.G.1996. Effect of dietary iron concentration of broiler chicks for use as a bioassary of supplemental iron sources. Poultry Science 75,495-504.
    Cao J., Luo X.G., Henry P.R., et al.1996. Effect of dietary iron concentration, age, and length of iron feeding on feed intake and tissue iron concentration of broiler chicks for use as a bioassay of supplemental iron sources. Poultry Science 75,495-504.
    Campbell E.A.1961. Iron poisoning in young pig. Australian Veterinary Journal 37,78-83.
    Canonne-Hergaux F., Fleming M.D., Levy J.E., et al.2000. The Nramp2/DMT1 iron transporter is induced in the duodenum of microcytic anemia mk mice but is not properly targeted to the intestinal brush border. Blood 96(12),3964-3970.
    Carpenter C.E., Mahoney A.W.1992. Contributions of heme and nonheme iron to human nutrition. Critcal Reviews in Food Science and Nutrition 31(4),333-367.
    Chen H., Pan Y.X, Wong E.A.2005. Webb K.E. Dietary protein level and stage of development affect expression of an intestinal peptide transporter (PepTl) in chickens. Journal of Nutrtion 135(2),193.
    Close W.H.1998. The role of trace mineral proteinates in pig nutrition. In:Biotechnology in the Feed Industry. (Lyons, T. P. and Jacques, K. A. eds.). Nottingham University Press. Nottingham, UK., pp.469-483.
    Close W.H.1999. Organic minerals for pigs:an update. In:Biotechnology in the Feed Industry. (Lyons, T. P. and Jacques, K. A. eds.). Nottingham University Press. Nottingham, UK., pp. 51-60.
    Conrad M.E., Umbreit J.N.2002. Pathways of iron absorption. Blood Cells Molecules and
    Diseases 29(3),336-355.
    Conrad E.,Ahearn G.2007. Transepithelial transport of zinc and 1-histidine across perfused intestine of American lobster, Homarus americanus. Journal of Comparative Physiology B 117(3),297-307.
    Cook J.D., Lipschitz D.A.1974. Serum ferritin as a measure of iron stores in normal subjects. American Journal of Clinical Nutrition 27,681-687.
    Creech B.L Spears J.W., Flowers W.L., et al.2004. Effect of dietary trace mineral concentration and source (inorganic vs. chelated) on performance, mineral status, and fecal mineral excretion in pigs from weaning through finishing. Journal of Animal Science 82,2140-2147.
    Criste R.D.1997. Iron utilization by broilers. Poultry International 9,96-98.
    Daliman P.R., Refino C., Yiand M.J.1982. Sequence of development of iron deficiency in the rat. American Journal of Clinical Nutrition 35,671.
    Darneley A.H.1996. Improving reproductive performance with iron amino acid chelate [A]. The roles of amino acidchelates in animal nutrition [M].251-268.
    David M.F. Gregory J.A.2005. Iron Imports. I. Intestinal iron absorption and its regulation. Americna Journal of Physiology-Gastrointestinal and Liver Physiology 289, G631-G635.
    Davis C.D., Feng Y.1999. Dietary copper, manganese and iron affect the formation of aberrant crypts in colon of rats administered 3,2-dimethyl-4-aminobiphenyl. Journal of Nutrition 129, 1060-1067.
    De Domenico I., D.M. Ward, C. Langelier, et al.2007. The Molecular Mechanism of Hepcidin-mediated Ferroportin Down-Regulation. Molecular Biology of the Cell 18 (7),2569-2578.
    Donovan A., Brownlie A., Zhou Y., et al.2000. Positional cloning of zebrafish ferroportin 1 identifies a conserved vertebrae iron exporter. Nature 403,776-781.
    Donovan A., Lima C.A., Pinkus J.L. et al.2005. The iron exporter ferroportin/Slc40al is essential for iron homeostasis, Cell Metabolims 1(3),191-200.
    Dove C.R., Haydon K.D.1991. The effects of copper addition to diets with various iron levels on the performance and hematology of weaning swine. Journal of Animal Science 69, 2013-2019.
    Ellwood K.C., Chatzidakis C., Failla M.L.1993. Fructose utilization by the human intestinal epithelial cell line, Caco-2. Proceeding Society Experimental Biology and Medicine 202,
    440-446.
    Ettle T., Schlegel P.F., Roth X.2007. Investigations on iron bioavailability of different sources and supply levels in piglets. Journal of Animal Physiology and Animal Nutrition 92(1),35-43.
    Ezquer F., Nunez M.T., Rojas A., et al.2006. Hereditary hemochromatosis:an opportunity for gene therapy. Biological Research 39(1),113-124.
    Faustman C., Yin M.C., Nadeau D.B.1992. Color stability, lipid stability, and nutrient composition of red and white veal. Journal of Food Science 57(2),302-304.
    Feng J., Ma W.Q., Xu Z.R., et al.2007. Effects of iron glycine chelate on growth, haematological and immunological characteristics in weaning pigs. Animal Feed Science and Technology 134, 261-272.
    Fiers W., Beyaert R., Declercq W., et al.1999. More than one way to die:apoptosis, necrosis and reactive oxygen damage. Oncogene 18,7719-7730.
    Fleming M.D., Trenor C.C.Brd, Su M.A., et al.1997. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genetics 16(4),383-386.
    Fleming R.E., Migas M.C., Zhou X., et al.1999. Mechanism of increased iron absorption in murine model of hereditary hemochromatosis:Increased duodenal expression of the iron transporter DMT1. Proceeding of the National Academy of Sciences USA 96,3143-3148.
    Foot N.J., Daltonl H.E., Shearwin-Whyatt L.M., et al.2008. Regulation of the divalent metal ion transporter DMT1 and iron homeostasis by a ubiquitin-dependent mechanism involving Ndfips and WWP2. Blood 112(10),4268-4275.
    Fox T.E., Eagles J., Susan J.F.1998. Bioavailability of iron glycine as a fortificant in infant foods. American Journal of Clinical Nutrition,67,664-668.
    Frazer D.M., Anderson G.J.2003. The orchestration of body iron intake:how and where do enterocytes receive their cues? Blood Cells Molecules and Diseases 30,288.
    Finley J.W., Monroe P.1997. Mn absorption:the use of Caco-2 cells as a model of the intestinal epithelia. Nutritional Biochemistry 8,92-101.
    Galdi M., Bassi A., Barrio R.M.E., et al.1988. Ferric glycinate iron bioavailability determined by hemoglobin regeneration method. Nutrition Reports International 38,729-735.
    Galdi M., Carbone N., Valencia M.E.1989. Comparison of ferric glycinate to ferrous sulphate in model infant formulas:kinetics of vitamin losses. Journal of Food Science 54,1530-1539.
    Galleano M., Puntarulo S.1997. Dietary a-tocopherol supplementation on antioxidant defenses after in vivo iron overload in rats. Toxicology 124,73-81.
    Gan L.S., Thankker D.R.1997. Applications of the Caco-2 model in the design and development of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews 23,77-98.
    Gangloff M.B., Glahn R.P., Miller D.D., et al.1996a. Assessment of iron availability using combined in vitro digestion and Caco-2 cell culture. Nutrition Research 16,479-487.
    Gangloff M.B., Lai C., Van Campen D.R., et al.1996b. Caco-2 cell ferrous iron uptake but not transfer is down-regulated in cells grown in high iron serum-free medium. Journal of Nutrition 126,3118-3127.
    Ganl L., Dhirin R.T.1997. Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium. Advanced Drug Deliverv Reviews 23(1),77-98.
    Garcia M.N., Flowers C., Cook J.D.1996. The Caco-2 cell culture system can be used as a model to study food iron availability. Journal of Nutrition 126,251-258.
    Ganz T., Nemeth E.2006. Regulation of iron acquisition and iron distribution in mammals. Biochimica et Biophysica Acta 1763 (7),690-699.
    Geys J., Nemery B., Hoet P.H.2007. Optimisation of culture conditions to develop an in vitro pulmonary permeability model. Toxicology in Vitro 21(7),1215-1219.
    Giorgini E., Fisberg M., Paula de R.A., et al.2001. The use of sweet rolls fortified with iron bis-glycinate chelate in the prevention of iron deficiency anemia in preschool children. Archivos Latinoamericanos de Nutrition 51,48-53.
    Glahn R.P., Gangloff M.B., Van Campen D.R., et al.1995. Bathophenanthrolene disulfonic acid and sodium dithionite effectively remove surface-bound iron from Caco-2 cell monolayers. Journal of Nutrition 125,1833-1840.
    Glahn R.P., Wien E.M., Van Campen D.R., et al.1996. Caco-2 cell iron uptake from meat and casein digests parallels in vivo studies:use of a novel in vitro method for rapid estimation of iron bioavailability. Journal of Nutrition 126,332-339.
    Glahn R.P., Van Campen D.1997. Iron uptake is enhanced in Caco-2 monolayers by cysteine and reduced cyeteinyl glycine. Journal of Nutrition 127,642-647.
    Glahn, R.P., Lee O.A., Yeung A., et al.1998. Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. Journal of Nutrition 128,1555-1561.
    Glahn R.P., Wortley G.M., South P.K., et al.2002. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2:Studies using an in vitro digestion/Caco-2 cell model. Journal of Agricultural and Food Chemistry 50(2),390-395.
    Gloria P., Felix F.1997. Iron Uptake by Rabbit Intestinal Brush Border Membrane Vesicles Involves Movement Through the Outer Surface, Membrane Interior, Inner Surface and Aqueous Interior. Journal of Nutrition 127 (6),1092-1098.
    Golding S., Young S.P.1995. Iron requirements of human lymphocytes:relative contributions of intra-and extra-cellular iron. Scandinavian Journal of Immunology 41,229-236.
    Gres M. C., Julian B., Bourrie M., et al.1998. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharmaceutical Research 15(15),726-733.
    Griffiths W.J., Sly W., Cox T.2001. Intestinal iron uptake determined by divalent metal transporter is enhanced in HFE-deficient mice with hemochromatosis. Gastroenty 120(6),1420-1429.
    Gruenheid S., Celier M., Videl S., et al.1995. Identification and characterization of a second mouse Nramp gene. Genomics 25(2),514-525.
    Gruenheid S., Canonne-Hergaux F., Gauthier S., et al.1999. The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. Journal of Experimental Medicine 189,831-841.
    Gundel J., Regius A., Herman A.1998. Supply to sows andpiglets by iron chelates [A]. Proc of Intern Conf on Pig Production [C].21-23.
    Gunshin H., Mackenzie B., Berger U.V., et al.1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 338,482-488.
    Gunshin H., Allerson C.R., Polycarpou-Schwarz M., et al.2001. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509,309-316.
    Gunshin H., C.N. Starr, C. Direnzo, et al.2005. Cybrd1 (duodenal cytochrome b) is not necessary for dietary iron absorption in mice. Blood 106 (8),2879-2883.
    Hallberg L.1981. Bioavailability of dietary iron in man. Annual Review Nutrition 1,123-147.
    Hallberg L., Brune M., Rossander L.1989. The role of vitamin C in iron absorption. International Journal for Vitamin and Nutrition Research supplement 30,103-108.
    Hallberg L., Rossander-Hulten L., Brune M., et al.1992. Calcium and iron absorption: Mechanism of action and nutritional importance. European Journal of Clinical Nutrition 46(5),317-327.
    Han O., Failla M.L., Hill A.D., et al.1994. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line. Journal of Nutrition 124,580-587.
    Han O., Failla M.L.1995. Reduction of Fe (Ⅲ) is required for uptake of nonheme iron by Caco-2 cells. Journal of Nutrition 125,1291-1299.
    Han O., Fleet J.C., Wood R.J.1999. Reciprocal regulation of HFE and NNamp2 gene expression by iron in human intestinal cells. Journal of Nutrition 129(1),98-104.
    Helbock H.J., Saltman P.1967. The transport of iron by rat intestine. Biochimica et B iophysica Acta 135,979-990.
    Henry P.R., Miller E.R.1995. Iron availability. In:Bioavailability of Nutrients for Animals (Ammerman C. B., Baker D. H., Lewis, A. S. eds.). Academic Press, San Diego,169-199.
    Hidalgo I.J., Raub T.J.1989. Borchardt RT. Characterization of the colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3), 736.
    Hilgers A.R., Conradi R.A., Burton P.S.1990. Caco-2 cell monolayers as model for drug transport across the intestinal mucosa. Pharmaceutical Research 7(9),902-910.
    Hill D.A., Jr. Peo E.R., Lewis A.J.1987. Effect of zinc source and picolinic acid on 65Zn uptake in an in vitro continued-flow perfusion system for pig and poultry intestinal segments. Journal of Nutrition 117,1704-1707.
    Hill G.M., Link J.E., Meyer L., et al.1999. Effect of vitamin E and selenium on iron utilization in neonatal pigs. Journal of Animal Science 77,1762-1768.
    Hopping J.M., Ruliffson W.S.1963. Effects of chelating agents on radio iron absorption and disreibution in rats in vivo. American Journal of Physiology 205(5),885-889
    Hoover S.L., Ward T.L.,Hill G.M., et al.1997. Effect of dietary zinc and zinc amino acid complexes on growth performance of startre pigs. Journal of Animal Science 75(suppl.1), 188-188.
    Huebers H.A., Csiba E., Josephson B., et al.1990. Iron-absorption in the iron-deficient rat. Blut 60(6),345-351.
    Hurrell R.F.2004. Phytic acid degradation as a means of improving iron absorption. International journal for vitamin and nutrition research 74(6),445-452.
    Hynes M.J., Kelley M.P.1995. Metal ions, chelated and proteinates. In:Proceeding of Alltech's eleventh annual symposium on biotechnology in the feed industry. Nottignham University Press, p233
    Ibrahim W., Lee U.S., Yeh C.C., et al.1997. Oxidative stress and antioxidant status in mouse liver: Effects of dietary lipid, vitamin e and iron. The Journal of Nutrition 127,1401-1406.
    Iolascon A., d'Apolito M., Servedio V., et al.2006. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood 107(1), 349-354.
    lost C., Name J.J., Jeppsen R.B., et al.1998. Repleating hemoglobinin iron deficiency anemiain young children through liquid milk fortification with bioavailable iron amino acid chelate. Journal of American College of Nutrition 17,187-194.
    Ishii T., Yasuda K., Akatsuka A., et al.2005. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Research 65, 203-209.
    Ismail M.1999. The use of Caco-2 cells as an in vitro method to study bioavailability of iron. Malaysian Journal of Nutrition 5,31-45.
    Ji F., Luo X.G., Lu L., et al.2006. Effects of manganese source and calcium on manganese uptake by in vitro everted gut sacs of broilers' intestinal segments. Journal of Poultry Science 85 (7), 1217-1225.
    Johnson M., Murphy C.1988. Adverse effects of high dietary iron and ascorbic acid on copper status in copper deficient and copper adequate rats. American Journal of Clinical Nutrition 47,96-101.
    Jurado R.L.1997. Iron, infections, and anemia of inflammation. Clinical Infectious Diseases 25, 888-895.
    Ke Y, Chen Y.Y., Chang Y.Z., et al.2003. Post-transcriptional expression of DMT1 in the heart of rat. Cell Physiology 196,124-130.
    Kegley E.B., Spears J.W., Flowers W.L., et al.2002. Iron methionine as a source of iron for the neonatal pig. Nutrition Research 22,1209-1217.
    Kim Y.J., Carpenter C.E., Mahoney A.W.1993. Gastric-acid production, iron status and dietary phytate alter enhancement by meat of iron-absorption in rats. Journal of Nutrition 123(5), 940-946.
    Klaus S., Bernd E., Cyrus E., et al.1990. Increased intestinal iron absorption in rats with normal hepatic iron stores. Kinetic aspects of the adaptive response to parenteral iron repletion in dietary iron deficiency. Biochimica et Biophysica Acta 1033,277-281.
    Knutson M.D., Vafa M.R., Haile D.J., et al.2003. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood 102,4191-4197.
    Kohen R., Nyska A.2002. Oxidation of biological systems:oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology 30, 620-650.
    Krause A., Neitz S., Magert H.J., et al.2000. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480,147-150.
    Krishnamurthy P., Xie T., Schuetz J.D.2007. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacology Therapeutics 114(3),345-358.
    Kroe D., Kinney T.D.1963. The influence of amino acids on iron absorption. Blood 21(5), 546-552.
    Kroe D., Kaufman N.1966. Interrelation of amino acids and pH on intestinal iron absorption. American Journal of Physiology 211 (2),414-418.
    Kuzentsov S.G.1987. Biological availability of iron from different chemical compounds for weaning piglets. Soviet Agricultural Sciences 12,32-36.
    Lafuente M.J., Martin P., Garcia-Cao I., et al.2003. Regulation of mature T lymphocyte proliferation and differentiation by Par-4. EMBO Journal 22,4689-4698.
    Lam-Yuk-Tseung S., Govoni G., Forbes J., et al. Iron transport by Nramp2/DMT1:pH regulation of transport by 2 histidines in transmembrane domain 6. Blood 2003,101(9):3699-3707.
    Lanari M.C., Schaefer D.M., Scheller K.K.1995. Dietary vitamin E supplementation and discoloration of pork bone and muscle following modified atmosphere packaging. Meat Science 41(3),237-250.
    Langini S., Carbone N., Galdi M., et al.1988. Ferric glycinate iron bioavailability for rats, as determined by extrinsic radioisotopic labeling of infant formulas. Nutrition Reports International 38,729-735.
    Layrisse M.1984. Effect of histidine, cysteine, glutathione or beef on iron absorption in human. Journal of Nutrition 114,217-223.
    Layrisse M., Garcia-Casal M.N., Solano L., et al.1997. The role of vitamin A on the inhibitions of nonheme iron absorption:preliminary results. Journal of Nutritional Biochemistry 8,61-67.
    Layrisse M., Garcia-Casal M.N., Solano L., et al.2000. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. Journal of Nutrition 130,2195-2199.
    Layrisse M., Garcia-Casal M.N., Solano L., et al.2000. New property of vitamin a and beta-carotene on human iron absorption:Effect on phytate and polyphenols as inhibitors of iron absorption. Archivos Latinoamericanos de Nutricion 50(3),243-248.
    Lena R.1987. Effect of dietary fiber on iron absorption in man. Scandinavian Journal of Gastroenterology 22(S129),68-72.
    Lewis A.J., Miller P.S., Wolverton C.K.1995. Bioavailability of iron in iron methionine for pigs. Journal of Animal Science 73(Suppl.1),172.
    Li S.F., Luo X.G., Lu L., et al.2005. Bioavailability of organic manganese sources in broilers fed high dietary calcium. Animal Feed Science and Technology 123-124,703-715.
    Loh S.P., Hishamuddin O., Abdul S.A., et al.2005. The Effect of Calcium, Ascorbic Acid and Tannic Acid on Iron Availability from Arthrospira Platensis by Caco-2 Cell Model. Malaysian Journal of Nutrition 11 (2),177-188.
    Lowe J.A., Wiseman J., Cole D.J.A.1994. Absorption and retention of zinc when administered as an amino-acid chelate in the dog. Journal of Nutrition 124,2572s-2574s.
    Lowe J.A., Wiseman J.1998. A comparison of the bioavailability of three dietary zinc sources using four different physiologic parameters in dogs. Journal of Nutrition 128,2809s-2811s.
    Lu L., Luo X.G., Ji C., et al.2007. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers. Journal of Animal Science 85,812-822.
    Lu C.D., Schoknecht P.A., Ellis K.J., et al.1996. Differential compensatory organ growth in young pigs after short-term rehabilitation from protein deficiency. Nutrition Research 16, 627-637.
    Luis A.R., Clemente A.2009. In vivo (rat) and in vitro (Caco-2 cells) absorption of amino acids from legume protein isolates as compared to lactalbumin or casein. Archives of Animal Nutrition 63(5),413-426.
    Mailleau C., Capeau J., Brahimi-Horn M.C.1998. Interrelationship between the Na+/glucose cotransporter and CFTR in Caco-2 cells:relevance to cystic fibrosis. Journal of Celluar Physiology 176(3),472-481.
    Maria N.G.C., Miguel L., Liseti S., et al.1998. Vitamin A and (3-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. Journal of Nutrition 128,646-650.
    Martini L.A., Tchack L., Wood R.J.2002. Iron treatment downregulates DMT1 and IREG1 mRNA expression in Caco-2 cells. Journal of Nutrition 132,693-696.
    Markowska M., Oberle R., Juzwin S., et al.2001. Optimizing Caco-2 cell monolayers to increase throughput in drug intestinal absorption analysis. Journal of Pharmacological Toxicological Methods 46(1),51-55.
    Mazariegos D.I., Pizarro F., Olivares M., et al.2004. The mechanisms for regulating absorption of Fe bis-glycine chelate and Fe-ascorbate in Caco-2 cells are similar. Journal of Nutrition 134(2),395-398.
    McCloy L.R.R., Taylor P.M., Thwaites D.T.2001. Neutral amino acid transport via system L at the basolateral membrane of human intestinal Caco-2 cell monolayers. Journal of Physiology-London 535,48-48.
    McKie A.T., Marciani P., Rolfs A., et al.2000. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular Cell 5, 299-309.
    McKie A.T., Barrow D., Latunde-Data G.O., et al.2001. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291,1755-1759.
    Nemeth E., Valore E.V., Territo M., et al.2003. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute phase protein. Blood 101(7):2461.
    Nemeth E., Tuttle M.S., Powelson J., et al.2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306,2090-2093.
    Nicolas G., Bennoun M., Devaux I., et al.2001. Lack of hepcidin gene expression and severe
    tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences USA 98,8780-8785.
    Nielsen P., Kongi R., Buggisch P., et al.2005. Bioavailabilty of oral iron drugs as judged by a 59Fe-whole-body counting technique in patients with iron deficiency anaemia. Therapeutic efficacy of iron (II)-glycine sulfate. Arzneimittel-Forschung 55(7),376-381.
    Nora R. Zerounian, Carmen R., Rashmi M., et al.2003. Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model. American Journal of Physiology-Gastrointestinal and Liver Physiology 284, G739-G747.
    NRC.1994. Nutrientional requirements of poultry.9th Revised Edition. National Academy Press, Washington, DC.
    NRC.1998. Nutrient requirements of swine.10th Revised Edition. National Academy Press, Washington, D.C.
    Olsson V., Pickova J.2005. The influence of production systems on meat quality, with emphasis on pork. A Journal of the Human Environment 34(4),338-343.
    Oppenheimer S.J.2001. Iron and its relation to immunity and infectious disease. Journal of Nutrition 131,616S-636S.
    Oscar P., Ashmead H.D.2001. Effectuveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 17,381-384.
    Paleologos E.K., Giokas D.L., Tzouwara-Karayanni S.M., et al.2002. Micelle mediated methodology for the determination of free and bound iron in wines by flame atomic absorption spectrometry. Analytica Chimica Acta 458(1):241-248.
    Park C.H., Valore E.V., Waring A.J., et al.2001. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. The Journal of Biological Chemistry 276(11),7806-7810.
    Perales S., Barbera R., Lagarda M.J., et al.2006. Fortification of milk with calcium:effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry 54(13),4901-4906.
    Pigeon C., Ilyin G., Courselaud B., et al.2001. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. Journal of Biological Chemistry 276,7811-7819.
    Pilar N., Teresa A., Isabel S.2000. Zinc transport in Caco-2 Cells and zinc balance in rats:
    influence of the heat treatment of a casein-glucose-fructose mixture. Journal of Agricultural and Food Chemistry 48 (8),3589-3596.
    Pineda O., Ashmead H.D., Perez J.M., et al.1994. Effectiveness of iron amino acid chelate on the treatment of iron deficiency anemia in adolescents. Journal of Applied Nutrition 46,2-13.
    Pinto M., Robin-Leon S., Appay M., et al.1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology of the Cell 47,323-330.
    Pizarro F., Olivares M., Hertrampf E., et al.2002. Iron bis-glycine chelate competes for the nonheme-iron absorption pathway.Iron bis-glycine chelate competes for the nonheme-iron absorption pathway. American Journal of Clinical Nutrition 76,577-581.
    Powell W.C., Fingleton B., Wilson C.L., et al.1999. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Current Biology 9,1441-1447.
    Praveen V.B., Karishma P.2004. Utility of 96 well Caco-2 cell system for increased throughput of P-gp screening in drug discovery. European Journal of Pharmaceutics and Biopharmaceutics 58(1),99-105.
    Qandeel H.G., Duenes J.A., Zheng Y., et al.2009. Diurnal expression and function of peptide transporter 1 (PEPT1). Journal Surgical Research 156(1),123-128.
    Raffin S.B., Woo C.H., Roost K.T., et al.1974. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. Journal of Clinical Investigation 54(6),1344-1352.
    Rao J., Jagadeesan V.1996. Lipid peroxidation and activities of antioxidant enzymes in iron deficiency and effect of carcinogen feeding. Free Radical & Medicine 21,103-108.
    Rashmi S.T., Vaishali V. A.2010. Effect of water soluble vitamins on Zn transport of Caco-2 cells and their implications under oxidative stress conditions. European Journal of Nutrition 49(1), 53-61.
    Richards M.P.1997. Trace mineral metabolism in the developing avian embryo. Poultry Science 76,152-164.
    Richard F.H., Manju B.R., Marcel A.J., et al.2003. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. American Journal of Clinical Nutrition 77(5), 1213-1219.
    Rincker M.J., Clarke S.L., Eisenstein R.S., et al.2005. Effects of iron supplementation on binding
    activity of iron regulatory proteins and the subsequent effect on growth performance and indices of hematological and mineral status of young pigs. Journal of Animal Science 83, 2137-2145.
    Rincker M.J., Hill G.M., Link J.E., et al.2004. Effects of dietary iron supplementation on growth performance, hematological status, and whole-body mineral concentrations of nursery pigs. Journal of Animal Science 82,3189-3197.
    Rincker M.J, Hill G.M., Link J.E., et al.2005. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. Journal of Animal Science 83:2762-2774.
    Risvik, E.1994. Sensory properties and preferences. Meat Science 36,67-77.
    Robbins K.R., Hentges D., Pieme L., et al.2003. Effects of supplemental iron source (inorganic iron or Bin-plex) on sow and pig performance [A]. In:Lyons T P, Jacques K A. Proceedings of Alhech S 25th Annual Symposium [C]. Nottingham:Nottingham University Press 60-62.
    Rossi A., Poverini R., Lullo G.D., et al.1996. Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line Caco-2. Toxicology in vitro 10,27-36.
    Salovaara S., Sandberg A.S., Andlid T.2003. Combined impact of pH and organic acids on iron uptake by Caco-2 cells. Journal of Agricultural and Food Chemistry 51(26),7820-7824.
    Seligman P.A., Kovar J., Gelfand E.W.1992. Lymphocyte proliferation is controlled by both iron availability and regulation of iron uptake pathways. Pathobiology 60,19-26.
    Seo S.H., Lee H.K., Ahn H.J., et al.2008a. The effect of dietary supplementation of Fe-methionine chelate and FeSO4 on the iron content of broiler meat. Asian-Australasian Journal of Animal Sciences 21(1),103-106.
    Seo S.H., Lee H.K., Lee W.S., et al.2008b. The effect of level and period of Fe-methionine chelate supplementation on the iron content of boiler meat. Asian-Australasian Journal of Animal Sciences 21(10),1501-1505.
    Shana R.L., Chen Z.S., Steven A.A.2009. Effect of tannic acid on iron absorption in straw-colored fruit bats (Eidolon helvum). Zoo Biology 28,1-9.
    Sha X.Y., Fang X.L.2004. Transport characteristics of 9-nitroc amptothecin in the human intestinal cell line Caco-2 and everted gut sacs. International Journal of Pharmaceutics 272, 161-171.
    Shinohara R., Mano T., Nagasaka A., et al.2000. Lipid peroxidation levels in rat cardiac muscle are affected by age and thyroid status. Journal of Endotoxin Research 164,97-102.
    Shiraga T., Miyamoto K.I., Tanaka H., et al.1999. Cellular andmolecular mechanisms of dietary regulation on rat intestinal H+/peptide transporter PepTl. Journal of Gastroenterology 116, 350-362.
    Smith A., Eskew J.D., Borza C.M., et al.1997. Role of heme-hemopexin in human T-lymphocyte proliferation. Experimental Cell Research 232,246-254.
    Smith G.C., Belk K.E., Sofos J.N., et al.2001. In:E. A. Decker, C. Faustman, C. J. Lopez-Bote (Ed.), Economic implications of improved color stability in beef, Antioxidants in Muscle Foods, New York, pp.397-426.
    Spears J.W., Schoenherr W.D.1992. Efficacy of iron methionine as a source of iron for nursing pigs. Journal of Animal Science 70 (suppl.1),243.
    Stadelman M.J., Pratt D.E.1989. Factors influencing composition of the hen's egg. World's Poultry Science Journal 45,247-266.
    Tandy S., Williams M., Leggett A., et al.2000. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. Journal of Biological Chemistry 275(2),1023-1029.
    Tallkvist J., Bowlus C.L., Loennerdal B. Functional and molecular responses of human intestinal Caco-2 cells to iron treatment. American Journal of Clinical Nutrition 72,770-775.
    Taylor P.1986. The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. American Journal of Clinical Nutrition 43,68-71.
    Teucher B., Olivares M., Cori H.2004. Enhancers of iron absorption:Ascorbic acid and other organic acids. International Journal for Vitamin and Nutrition Research 74(6),403-419.
    Thannoun A.M., Arthur W.M.1988. Heme and nonheme iron absorption from meat loaf by anemic and healthy rats. Nutrition Reports International 37(3),487-495.
    Theurl I., Aigner E., Theurl M., et al.2009. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia:diagnostic and therapeutic implications. Blood 113(21), 5277-5286.
    Toyokuni S.1996. Iron-induced carcinogenesis:the role of redox regulation. Free Radical Biology and Medicine 20,553-566.
    Tsuda M., Terada T., Irie M., et al.2006. Transport characteristics of a novel pep tide transporter 1 substrate, antihypotensive drug midodrine, and its aminoacid derivatives. Journal of Pharmacology and Experimental Therapeutics 318 (1),455-460.
    Tucker S.P., Melsen L.R., Compans R.W.1992. Migration of polarized epithelical cells through permeable membrane substrates of defined pore size. European Journal of Cell Biology 58(2), 280-290.
    Tuntawiroon M., Sritongkul N., Brune M., et al.1991. Dose-dependent inhibitory effect of phenolic-compounds in foods on nonheme-iron absorption in men. American Journal of Clinical Nutrition 53(2),554-557.
    Uehara M., Chiba H., Mogi H., et al.1997. Induction of increased phosphatidylcholine hydroperoxide by an iron-deficient diet in rats. Journal of Nutritional Biochemistry 8, 385-391.
    Van Campen D.1972. Effect of histidine and ascorbic acid on the absorption and retention of 59Fe by iron-depleted rats. Journal of Nutrition 102,165-170.
    Veum T.L., Bollinger D.W., Ellersieck M.1995. Proteinated trace minerals and condensed fish protein digest in weanling pig diets. Animal Science 73 (Suppl.1),308.
    Vulpe C.D., Kuo Y., Murhy T.L., et al.1999. Hephaestin:a ceruloplasmi homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genetics 21,195-199.
    Walter T., Olivares M., Pizarro F., et al.1997. Iron, anemia, and infection. Nutrition Reviews 55, 111-124.
    Wedekind K.J., Hortin A.E., Baker D.H.1992. Methodology for assessing Zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate and zinc oxide. Journal of Animal Science 70,178-187.
    Wien E.M., Glahn R.P., Van Campen D.R.1994. Ferrous iron uptake by rat duodenal brush border membrane vesicles:effects of dietary iron level and competing minerals (Zn+2, Mn+2 and Ca+2). Journal of Nutritional Biochemistry 5(12):571-577.
    Wienk, K.J.H., Marx J.J.M., Beynen A.C.1999. The concept of iron bioavailability and its assessment. European Journal of Nutrition 38,51-75.
    Wilson A.D., Stokes C.R., Bourne F.J.1986. Response of intracpithelial lymphocytes to T-cell mitogens:a comparison between murine and porcine responses. Immunology 58,621-630.
    Worthington M.T., Cohn S.M., Miller S.K., et al.2001. Characterization of a human plasma membrane heme transporter in intestinal and hepatocyte cell lines. American Journal of Physiology-Gastrointestinal and Liver Physiology 280(6), G1172-1177.
    Yamaji S., Tennant J., Tandy S., et al.2001. Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Letters 507,137-141.
    Yee S.1997. In vitro permeability across Caoo-2 cells (oolonic) can predict in vivo (small intestinal) absorption. Pharmaceutical Research 14 (6),763-766.
    Yeung C.K., Glahn R.P., Miller D.D.2005. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells. Journal of Agricultural and Food Chemistry 53(1),132-136.
    Yu H., Cook T.J., Sinko P.J.1997a. Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passahes. Pharmaceutical Research 14(6), 757-762.
    Yu H., Sinko P.J.1997b. Influence of the microporous substratum and hydrodynamics on resistances to drug transport in cell culture systems:calculation of intrinsic transport parameters. Journal of Pharmaceutical Sciences 86(12),1448-1457.
    Yu B., Huang W.J., Chiou P.W.2000. Bioavailability of iron from amino acid complex in weaning pigs. Animal Feed Science and Technology 86,39-52.
    Yu S.W., Reynen A.1994. Increasing intake of iron in reduce status, absorption and biliary excretion of copper in the rats. British Journal of Nutrition 71,887-895.
    Yun S., Habicht J.P., Miller D.D., et al.2004. An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. Journal of Nutrition 134,2717-2721.
    Zhou G.L., Han Y.W., Teng B., et al.2004. Study of iron absorption and transport of iron amino acid chelate by rats. Acta Veterinariaet Zootechnica Sinica 35 (1),15-22.
    Zodl B., Zeiner M., Marktl W., et al.2003a. Pharmacological levels of copper exert toxic effects in Caco-2 cells. Biological Trace Element Research 96,143-152.
    Zodl B., Zeiner M., Sargazi M., et al.2003b. Toxic and biochemical effects of zinc in Caco-2 cells. Journal of Inorganic Biochemistry 97,324-330.
    Zodl B., Zeiner M., Paukovits P. et al.2005. Iron uptake and toxicity in Caco-2 cells. Microchemical Journal 79,393-397.
    Zhu L., Glahn R.P., Yeung C.K., et al.2006. Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4:Effects of ascorbic acid, pH, and a Fe (Ⅱ) chelating agent. Journal of Agricultural and Food Chemistry 54,7924-7928.
    陈婉如,曾丽莉,郭庆,等.氨基酸Fe络合物对妊娠母猪Fe营养状况、繁殖性能及新生仔猪Fe营养状况的影响[J].福建农林大学学报(自然科学版),2003,32(2):230-233.
    冯来坤.红细胞免疫功能及其检测方法[J].中国兽医杂志,1991,1:49.
    郭海涛,王之盛,周安国.复合氨基酸铁对断奶仔猪生产性能的影响[J].养猪,2005,4:6-8.
    郭继英,刘永庆.雏鸡对铁的需求量研究[J].中国饲料,1996,7:17-18.
    郭荣富,陈克嶙,张曦,等.肉鸡蛋氨酸铁生物利用率试验研究[J].中国家禽,2004,8(1):93-95.
    华卫东,徐子伟,刘敏华,等.不同氨基酸螯合铁及补铁方案对仔猪生长发育的调控效应[J].浙江农业学报,2002,14(4):192-196.
    姬静,方晓玲,崔强.萘普生钠在大鼠的肠吸收动力学[J].复旦学报(医学版),2002,29(2):98-100.
    计峰,罗绪刚,刘彬,等.用外翻肠囊法研究有机锰在肉仔鸡小肠中的吸收特点[J].畜牧兽医学报,2004,35(4):262-366.
    计峰,罗绪刚,刘彬,等.用原位结扎肠段灌注法研究有机锰在肉仔鸡小肠中的吸收特点[J].安徽农业大学学报,2005,32(2):132-135.
    姜俊芳,许梓荣,张春善,等.肉仔鸡铁营养状况的标识[J].中国兽医学报,2005,25(1):101-103.
    鞠继光.微量元素有机螯合物对生长肥育猪生长性能的影响[J].饲料博览,2001,1:43.
    李德发.猪营养研究进展[M].北京:中国农业大学出版社,1999,268-274.
    李丽立,张彬,邢廷铣,等.复合氨基酸铁对哺乳仔猪生长发育及部分生理生化指标影响的研究[J].动物营养学报,1995,7(3):32-39.
    李爱杰.水产动物营养与饲料学.北京:中国农业出版社,1996.
    梁远东.肉仔鸡日粮中添加羟基蛋氨酸锌和铁的效果研究[J].饲料博览,2002,6:1-2.
    林映才,胜林,叶太堡,等.有机铁制剂对仔猪生长性能、肤色、血液和组织理化指标的影响[J].科学与动物医学,2002,(9):3.
    刘凌云.乙二胺四乙酸铁钠吸收机理研究[D].硕士学位论文,保定:河北农业大学,2006.
    马恒东,王之盛,周安国,等.翻转肠囊法研究仔猪小肠对纳米氧化锌的吸收[J].中国畜牧杂志,2005,41(9):25-26.
    毛丽梅,朱清华.缺铁性贫血对小儿免疫功能的影响[J].营养学报,1991,13(3):271.
    钱红娟,蒲俊华,王志跃.不同铁源对仔鸡生长的影响[J].饲料工业,2008,29(2):48-50.
    沙先谊.9-硝基喜树碱小肠吸收机理及其自微乳化给药系统的研究[D].博士学位论文,上海:复旦大学,2005.
    邵建华,陆腾甲.复合氨基酸微量元素螯合物饲料添加剂的应用与开发[J].广州化工,2000,28(4):74-78.
    史志诚.动物毒物学[M].北京:中国农业出版社,2001,226-229.
    孙玉增,高继庆,徐英江,等.铁对大菱鲆生长的影响[J].齐鲁渔业,2006,23(5):12.
    孙铁虎,朴香淑,龚利敏,等.氨基酸络合铁对生长猪生长性能及有关指标的影响[J].动物营养学报,2006,18(1):12-18.
    唐胜球,邹晓庭,许梓荣,董小英.不同铁源对鸡蛋铁含量的影响[J].江苏农业学报,2004,20(4):264-267.
    田利群,朱清华.缺铁性贫血对免疫功能的影响[J].营养学报,1987,9(1):20-23.
    童建国,易德玮,唐明红.甘氨酸整合铁对母猪生产性能的影响[J].中国饲料,2002,(19):11-12.
    屠友金,邹晓庭,唐胜球.日粮中不同铁源对罗曼蛋鸡产蛋性能以及蛋品质的影响[J].浙江大学学报(农业与生命科学版),2004,30(5):561-566.
    王宝琴,魏战勇.动物铁中毒[J].广东微量元素科学,2002,9(6):25-28.
    王纪亭,李松健.甘氨酸螯合铁对乳猪生产性能的影响[J].上海畜牧兽医通讯,2000,(5):6-7.
    王纪亭,姜殿文,万文菊.氨基酸螯合铁在母猪生产中的应用研究[J].山东农业科学,2003,3:44-45.
    王明镇,刘孟洲.氨基酸螯合铁对早期断奶仔猪生产性能的影响[J].中国畜牧兽医,2007,34(10): 14-15.
    王自恒,林峰,龚月生.铁元素在动物组织和体液中的营养研究[J].畜牧兽医杂志,2004,23(3):20-23.
    魏华英,马刚,张莉,等.雌性SD大鼠缺铁性贫血模型的建立[J].四川动物,2007,26
    (1):190-191.
    魏万权,李爱杰,李德尚,等.饲料添加铁对牙鲆幼鱼生长的影响[J].水产学报,1999,23(增刊):100-103.
    吴建设,呙于明,周毓平.日粮铁缺乏对肉仔鸡生产性能和免疫功能影响的研究[J].动物营养学报,1999a,11(3):19-24.
    吴建设,呙于明,周毓平.日粮铁缺乏对肉仔鸡机体抗氧化功能影响的研究[J].中国畜牧杂志,1999b,35(4):5-7.
    许丽,张永根,韩友文,等.甘氨酸螯合物预防仔猪贫血的效果[J].饲料博览,1994,(6):3-5.
    许梓荣.畜禽矿物质营养[M].杭州:浙江大学出版社,1991,151-160.
    闫峰,郭小满.肉仔鸡对硫酸亚铁、柠檬酸铁和酵母铁相对生物利用率的研究[J].吉林农业科技学院学报,2007,16(3):5-8.
    杨文正.动物矿物质营养[M].北京:中国农业出版社,1993,1-27.
    杨真,罗海吉,卢晓翠,等.大鼠缺铁性贫血模型建立及各指标观察研究[J].热带医学杂志,2006,6(3):284-286.
    姚金水,陈强,林藩平,等.缺铁性贫血对仔猪免疫功能的影响[J].畜牧兽医学报,1995,25(4):359-362.
    于昱,吕林,罗绪刚,等.有机锌在肉仔鸡小肠不同部位中的吸收特点[J].营养学报,2008,30(2): 148-152.
    张彬.不同铁源对哺乳仔猪生长、代谢和环境的影响[J].应用生态学报,2000,11(1):91-94.
    张兆琴,任文陟,张嘉保,等.添加不同水平铁对吉戎II系獭兔血液酶活力影响的研究[J].吉林农业大学学报,2006,28(4):433-439.
    张照喜,孟庆良,石传林.赖氨酸螯合铁在母猪日粮中的应用[J].粮食与饲料工业,2002,4:32-33.
    周桂莲,韩友文,徐子伟,等.不同铁源生物效价的研究[J].动物营养学报,2002,4(2):47-52.
    周桂莲,韩友文,滕冰,等.氨基酸铁在大鼠小肠中的吸收及组织中沉淀研究[J].动物营养学报,2003,15(3):18-24.
    周顺伍.动物生物化学[M].北京:中国农业出版社,2000,303-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700