用户名: 密码: 验证码:
基于金属橡胶阻尼器耗能减震框架剪力墙体系的抗震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的发展和城市化进程的加快,高层建筑成为城市文化的标志,而我国很多百万人口以上规模的城市都在强地震区,因此,保护城市高层及超高层建筑在地震作用中的安全仍然是今后建筑结构抗震研究领域的重要研究任务。钢筋混凝土框架-剪力墙和框架-筒体结构已经成为高层建筑的首选结构形式,而剪力墙作为框-剪和框-筒结构中主要受力构件,对其抗震性能所进行的研究无疑具有重大的理论意义和重要的实际工程价值。罕遇地震下剪力墙墙肢首先发生破坏,不利于剪力墙结构体系二道抗震防线的实现,也不能保证贯彻结构“大震不倒”的抗震设防原则。为此,剪力墙结构的延性设计要求罕遇地震作用下连梁先于墙肢屈服,通过连梁形成塑性铰耗能。结构耗能减震技术已经被证明是一种有效的结构抗震技术,通过在结构中加入具有较大耗能能力的耗能器,正常使用情况下保证一定侧向刚度,结构处于弹性状态,大震时随着侧向位移的增大,耗能器产生较大阻尼,集中耗能,降低结构振动响应,避免主体结构损伤。
     本文结合国家自然科学基金项目“框架剪力墙结构倒塌破坏机制及两阶段失效模式控制研究”(No.90915003),将研究重点放在基于耗能减震技术的剪力墙结构抗震性能研究,同时研究可安装在剪力墙连梁上的变形自回复耗能减震装置,在减小连梁塑性损伤的同时,充分耗散地震能量,并确保耗能减震装置地震后变形可自回复,不需替换。
     本文首先研究金属橡胶材料(MR)制备工艺,针对不同成型密度的金属橡胶试件,进行了静力、动力荷载作用下的压缩和剪切性能试验,分析滞变性能;研究了MR的阻尼机理、变形自复位滞回能力。其次,建立了MR刚度硬化本构模型,并对MR材料本构进行了二次开发。同时提出了基于MR材料的双推杆套筒型阻尼器的概念,以一榀12层钢筋混凝土联肢剪力墙和18层钢筋混凝土框架剪力墙为实例,应用ABAQUS软件建立了高精度、高计算效率有限元模型;采用不同参数的MR阻尼器,分别对结构进行非线性地震响应仿真分析。最后,研究新型MR耗能连梁-框架剪力墙体系整体结构地震失效模式。利用结构整体损伤指标量化失效模式。
With the acceleration of China's social-economic development and urbanization,high-level and high-rise buildings appear more and more pervasive. Reinforced concrete frame-shear wall and frame-tube structure have become the preferred structure of the high-risebuildings. There is no doubt that the study about the seismic performance of shear wall,whichis the main component of frame-shear wall and frame-tube structure, has great theoreticalsignificance and important practical value. Shear wall structure, with greater overall stiffness,is likely to cause stress gathering and the occurrence of brittle shear failure under theearthquake. So it is profoundly important to improve the structure's seismic performance, toreduce the irreversible cumulative plastic seismic damage of the component for the safety ofstructure, and to reduce the economic losses caused by post-earthquake rehabilitation.According to the concept of ductility seismic design, coupling beams in shear wall structure arerequired to yield prior to the damage of wall limb. However, damage in coupling beams resultsin repair cost post earthquake and even in some cases, it is difficult to repair the couplingbeams if the damage is severe.
     According to above background, this article is based on the studies of Metallic Rubber(MR) damping materials which the deformation of the dampers can recover automaticallyafter earthquakes, the new energy-intensive shear wall coupling beam design and the nonlinearmechanical properties. At the same time, it also concentrates on the nonlinear seismic responseanalysis based on the MR damper energy coupling beams-frame shear wall structure, themechanism of the passive energy dissipation, the structural damage indicators and the failuremode and so on.
     (1) Studying the preparation of the MR. The compression and shear mechanical propertiesof stainless steel MR specimens with various nominal densities were test under the static anddynamic loads. During the tests, the influence of several important factors, such as nominaldensity, strain amplitude, cyclic number and speed of loading and the ambient temperature,onthe mechanical behavior of MR were addressed.In order to establish a material constitutivemodel and to provide the basis for the development about the new energy-consuming devicesof the MR, several researches are conducted such as the hysteretic energy performance and thedamping mechanism.
     (2) Establishing the stiffness hardening constitutive model of MR, developing materialsubroutine. The subroutine which can be used to simulate a variety of stiffness hardening constitutive relations is added to the finite element analysis ABAQUS software materiallibrary.Loading the seismic waves to the single-pole and shearwall model of MR to test theaccuracy of the subroutine.
     (3) Putting forward to the conceptual design and theoretical models based on the new typeof energy-consuming coupling beam of two-way pusher-over bar MR sleeve damper. Thisresearch take12-storey reinforced concrete coupled shear wall and18-storey reinforcedconcrete frame shear walls for example, the coupling beams connecting wall limbs are split inthe middle, and the dampers are installed between the ends of the two cantilevers. Then therelative flexural deformation of the wall limbs is transferred to the ends of coupling beams andthen to the MR dampers. Establishing a high precision and high computational efficiency finiteelement model based on ABAQUS software. It conducts intensive research for the differentparameters of the MR damper coupling beam-shear wall's nonlinear seismic responsesimulation analysis. Analytical results indicate that the displacement and acceleration responsesof the shear wall structure with MR dampers are reduced remarkably.
     (4) Researching on the seismic failure mode of the new type of energy-consumingcoupling beam-frame shear wall of MR damper. Quantify the failure mode with damage indexof whole structure, studying the influences on the structure's failure mode and theenergy-consuming distribution under different parameters of MR damper. Analytical resultsindicate that the appropriate parameters of MR damper can make the failure mode of structuremore reasonable.
     This paper which comes up with a new way of seismic resistance to the shear wallstructure has great theoretical significance.
引文
[1] T. Paulay and J. R. Binney, Diagonally reinforced coupling beams of shear walls, Shear in Reinforced Concrete, SP42, American Concrete Institute, Farmington Hilla,579~598(1974)
    [2]韦爱凤,艾岚.抗震剪力墙延性连梁的设计研究[J].建筑技术,37,140~141(2006)
    [3]戴瑞同,孙占国.菱形配筋剪力墙连梁的承载能力[J].工业建筑,10,33~38(1993)
    [4]王祖华,桑文胜.劲性钢筋混凝土连梁的性能与计算方法[J],华南理工大学学报,23,34~43(1995)
    [5]曹征良.双功能钢筋混凝土连梁的试验研究[M].南京,南京工学院,1987
    [6] S. B. Yuksel, Slit-connected coupling beams for tunnel-form building structures, The StructuralDesign of Tall and Special Buildings, in press
    [7] B. Gong and B. M. Shahrooz, Steel-concrete composite coupling beams-behavior and design, Engineering Structures,23,1480~1490(2001)
    [8] W. S. Park and H. D. Yun, Seismic behaviour and design of steel coupling beams in a hybridcoupled shear wall systems, Nuclear Engineering and Design,236,2472~2484(2006)
    [9] J. Marko, D. Thambiratnam and N. Perera, Influence of damping systems on building structuressubject to seismic effects, Engineering Structures,26,1939~1956(2004)
    [10] J. Yang, L. Li and A. W. Fan, Seismic analysis of shear-wall structures with vertically installeddampers, Journal of China University of Geosciences,16(4):349~353(2005)
    [11] L. P. B. Madsen, D. P. Thambiratnam and N. J. Perera, Seismic response of building structureswith dampers in shear walls, Computers and Structures,81,239~253(2003)
    [12]刘岩,邓志恒,谭宇胜.几种连梁结构体系的比较研究[J].混凝土与水泥制品,1,57~60(2007)
    [13]腾军,马伯涛,周正根,鲁志雄.提高连肢墙抗震性能的连梁耗能构件关键技术[J].工程抗震与改造加固,29,1~6(2007)
    [14]周福霖.工程结构减震控制[M].北京:地震出版社,1997
    [15] M. Dolce,D. Cardone and R. Marnetto. SMA Re-centering Devices for Seismic Isolaiton of Civil Structures. Proceedings of SPIE2001,4330:37~49
    [16]阎兴华.可控消能减震原理及结构分析.地震工程与工程振[J].1997.17(3)66~71
    [17]唐家祥.隔震与消能减震结构的设计规定[J].工程抗震.1999.3:13~18
    [18]李勇军,王英红.工程结构减震控制技术的发展[J].辽宁工学院学报.2001.21(6):49~50.
    [19]周云,徐彤,俞公弊,李希平.耗能减震技术研究及应用的新进展[J].地震工程与工程振动.1999.19(2):122~131
    [20] OuJinping,WuBo.Recent Advances in Research and Applications of Passive Energy Disspation Systems.Earthquake Engineering and Vibration.1996.16(3):72~96.
    [21] S. Zhu and Y. Zhang, Seismic behaviour of self-centring braced frame buildings with reusablehysteretic damping brace, Earthquake Engineering and Structural Dynamics,36,1329~1346(2007)
    [22] P. Fajfar and M. Fischinger, Mathematical modeling of reinforced concrete structure walls for nonlinear seismic analysis, Structural Dynamics,12(11):471~478(1990)
    [23]周云,邓雪松等.中国(大陆)耗能减震技术理论研究、应用的回顾与前瞻闭[J].框支剪力墙耗能减展结构的地展反应分析和实验研究工程抗震与加固改造.2006,28(6):1~15
    [24] Kelly J M,Skinner R I, Heine AJ.Mechanisms of Energy Absorption in Special Devices forUse in Earthquake Resistant Structures. Bulletin of New Zealand National Society forEarthquake Engineering,1972,5(3):63~88
    [25] Skinner R I, Kelly J M, Heine A J. Hysteretic Dampers for Earthquake-Resistant Structures [J].Earthquake Engineering and Structural Dynamics,1975,3:287~296
    [26] Aiken L.D, Kelly J.M. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures. Report No. UCB/EERC-90/03, University of California, Berkeley,1990
    [27] Whittaker, A.S. and Bertero, V.V. etal. Seismic Testing of Steel Plate Energy Dissipation Devices, Earthquake Spectra, Vol.7, No.4,1991,563~604
    [28] Tyler R G. Tapered Steel Energy Dissipators for Earthquake Resistant Structures. Bulletin of New Zealand National Society for Earthquake Engineering,1978,11(4):282~294
    [29]叶正强.粘滞流体阻尼器消能减震技术的理论、试验与应用研究[D].东南大学博士学位论文,2003
    [30] Whittaker A Aiken, I BergmanD, Clark P, etal. Code Requirements for the Design and Implementation of Passive Energy Dissipation Systems//Proceedings of ATC-17-1on Seismic Isolation, Passive Energy Dissipation and Active Control.1993:497~50
    [31] T. Paulay, J. R. Binney. Diagonally reinforced coupling beams of shear walls. Shear in reinforced concrete, SP-42, American Concrete Institute, Farmington Hilla,1974,579~598
    [32]李爱群.工程结构减振控制[M].北京:机械工业出版社,2007.
    [33] P. Fajfar and M. Fischinger, Mathematical modeling of reinforced concrete structure walls for nonlinear seismic analysis, Structural Dynamics,12(11):471~478(1990)
    [34]王新,朱梓根.环形金属橡胶减振器[J].航空动力学报,1997;12(2):143~145
    [35]杜金名,耿锋.金属橡胶材料在导弹武器系统中的应用研究[J].飞航导弹,2004,8(8):56~59.
    [36] Jiang Hongyuan, Yan Hui, Ao Hongrui. Calculation of Elastic Damping Characteristics of RotorSupport Made of Metal Rubber Material Under Variable Loads. The7thInternational Symposium on Test and Measurement, Beijing.2007,20(6):33~36
    [37]戈达耶夫,穆柳金,科尔特平编著,李中郢译.金属橡胶构件的设计[M].北京:国防工业出版社,2000.
    [38]马艳红,郭宝亭,朱梓根.金属橡胶材料静态特性的研究[J].航空动力学报,2004,19(3):326331
    [39]辛士勇,朱石坚,曾懿.金属橡胶隔振器隔振性能的实验研究[J].中国舰船研究,2008,3(6):13~16.
    [40]姜洪源,敖宏瑞,夏宇宏.金属橡胶隔振器干摩擦阻尼特性的研究[J].机械设计,2002,11:11~14.
    [41]徐庆善.隔振技术的进展与动态[J].机械强度,1994,16(1):37-39.
    [42]熊世树,李黎,唐家祥.叠层橡胶隔震器力学性能试验研究[J].工程抗震.1998(2):20~23
    [43] TINKER M L,CUTHINS M A.Damping phenomenon in a wire rope vibration isolator[J].Journal of Sound and Vibration,1992,157(1):7~18.
    [44]刘桥.金属橡胶材料的非线性特性及其在航天减振器中的应用[M].西安:西安交通大学,1997
    [45]李宇燕.金属橡胶材料的非线性本构关系及系统振动响应的研究[M].西安:西安交通大学机械工程院,2006
    [46]陈艳秋,朱梓根.金属橡胶减振垫刚度特性及本构关系研究[J].航空动力学报,2002,17(4):416~420
    [47] YAR M, HAMMOND J K. Parameter estimation for hystereticsystems[J]. Journal of Sound andVibration,1987,117(1):161~172.
    [48] Bahram M Shahrooz, Mark E Remmetter, Fei Qin. Seismic Design andPerformance ofComposite Coupled Walls [J]. Journal of Structural engineering,ASCE,1993,119(11):3291-3309
    [49] Chung HS, Moon B W, Lee SK, Park JH, Min KW.2009. Seismic Performance of Friction Dampers Using Flexure of RC Shear Wall System. The Structural Design of Tall and Special Buildings Volume18:807~822.
    [50] Sheu Maw-shyong,Lo Pi-ta,Chen Yi-shina.Comparision of Slitted and Non-Slitted R.C.Shear Walls with Boundary Elements under Horizontal Forces.Seismic Engineering:Research and Practice,Proceedings of the Sessions Related to Seismic Engineering at Structures Congress’89,San Francisco,CA,MAY1-5,1989,566~575
    [51] Muto K.Shear Walls with Openings.Aseismic Design of Buildings. Tokyo,1974,175~183
    [52]李少云.带竖缝剪力墙—一种新型的抗震结构.华南理工大学建筑设计研究院,1989
    [53]李少云.带竖缝剪力墙的结构控制性能的研究.华南理工大学建筑设计院,1989
    [54]李少云.带竖缝剪力墙的设计建议.华南理工大学建筑设计研究院,1989
    [55]吴富强,方鄂华.高层钢结构预制钢筋混凝土剪力墙板抗震性能[C].第三届高层建筑技术交流会论文集,158~161
    [56]方鄂华,吴富强.钢筋混凝土竖缝剪力墙板的抗震设计方法[C].第三届高层建筑技术交流会论文集,154~157
    [57]戴航,丁大钧,陆勤.带水平短缝剪力墙与普通剪力墙模型的对比振动台试验研究[J].工程力学,1992,9(2):76~85
    [58]李爱群,丁大钧等.带摩擦阻尼控制装置钢筋混凝土低剪力墙实验研究[J].工程力学增刊,1994,546~550
    [59]李爱群,曹征良,带摩擦阻尼装置钢筋混凝土低剪力墙极限承载力分析[J].东南大学学报,1994,24(3):70~74
    [60]吕西林,Cheung Y.K.,Kwan A.K.H.高层剪力墙结构抗震控制研究[J].同济大学学报,1994年增刊,Vol.22,41~48
    [61] Kwan A.K.H.,Lu X.L.,Cheung Y.K.Elastic Analysis of Slitted Shear Walls.International Journal of Structures,1993,Vol.13,No.2,75~92
    [62] Cheung Y.K., Kwan A.K.H,Lu X.L.Shear Test on Simulated Connecting Beams in Reinforced ConcreteSlit Shear Walls.Proc.Instn.Civ.Shear Walls. Proc.Instn.Civ.1993,Vol.99,481~488
    [63]康胜,曾勇,叶列平.双功能带缝剪力墙的刚度和承载力研究[J].工程力学.2001,18(2):27~34
    [64]孙颖.夹层橡胶垫耗能低剪力墙非线性性能的理论分析.硕士学位论文,2002
    [65]李惠,徐强,吴波.钢管混凝土耗能低剪力墙.哈尔滨建筑大学学报[J].2000,33(2):18~23
    [66]滕军,马伯涛,周正根,闫维明,王卓.连肢剪力墙结构耗能连梁软钢阻尼构件研究[J].2006,597~602
    [67]白鸿柏,黄协清.三次非线性粘性阻尼双线性滞迟振动系统IHB分析方法[J].西安交通大学学报,1998,32(10):35~37
    [68] Chegodayev D E, Yo Bo, Miliukin O P etc. The Construction and Designing of Components and Equipment of Space Vehicle Pneumatic Hydrosustems made of MR Materials [M]. Russian-sino Symposium on Astronautical Science and Technique. Samara Russia.-June,30,1992
    [69]郭宝亭,朱梓根,崔荣繁.金属橡胶材料的理论模型研究[J].航空动力学报,2004,19(3):314~319.
    [70]彭威,白鸿柏,郑坚,唐西南,李国章,何忠波.金属橡胶材料基于微弹簧组合变形的细观本构模型[J].实验力学2005.Vol.20.No.3:455~462
    [71]夏天昌.系统辨识-最小二乘法[M].国防工业出版社.1984:73~92
    [72]白鸿柏,黄协清.三次非线性粘性阻尼双线性滞迟振动系统IHB分析方法[J].西安交通大学学报,1998,32(10):35~37
    [73]姜洪源,敖宏瑞,夏宇洪.实验建模方法在金属橡胶隔振系统分析中的应用[J].实验力学,2002,17(3):366~368
    [74]庄茁,由小川,廖剑晖,岑松,沈新浦,梁明刚.基于ABAQUS的有限元分析和应用[M].清华大学出版社.2009
    [75] ABAQUS/Standard Theory Manual, Hibbitt, Karlsson,Sorensen, Inc.2002
    [76]李青.浅谈.ABAQUS用户子程序[C].ABAQUS软件2002年度用户年会论文集
    [77]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [78] Gulkan. P and M. A. Sozen. Inelastic response of reinforced concrete structures to earthquake motions.ACI Journal,1974(71):6042610.
    [79] ATC. ATC240. Seismic evaluation and retrofit of concrete buildings [S].Red Wood City, Califonia:Applied Technology Council,1996
    [80] FEMA273, FEMA274, FEMA356, NEHRP guidelines forthe seismic rehabilitation of buildings [S].Washington D.C.: Federal Emergency Management Agency,1996
    [81]中华人民共和国国家标准.建筑抗震设计规范, GB50011-2001[S]北京:中国建筑工业出版社,2002.
    [82]杨溥,李英明,王亚勇,赖明.结构静力弹塑性分析方法的改进[J].建筑结构学报,2000,21(1):44~51.
    [83]叶燎原,潘文.结构静力弹塑性分析(Pushover)的原理和计算实例[J].建筑结构学报,2000,21(1):37~51.
    [84]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响[J].地震工程与工程振动,2004,24(3):89~97
    [85] Krawinkler H, Senerviratna G D P K. Pros and cons of a push–over analysis of seismic performance evaluation [J]. Engineering Structures,1998,20(4-6):452~464
    [86] S. A. Freeman, J. P.Nicoletti and Tyrell. Evaluation of Existing Buildings forSeismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton.Procceedings of1stU.S. National Conference on Earthquake Engineering,Washington, Earthquake Engineering Research Institution,1975:113~122
    [87] N.M. Newmark, W.J. Hall. Earthquake Spectra and Design.EERI Monograph Series. EarthquakeEngineering Research Institute. Okakland. California. USA.1982
    [88] Anil K. Chopra,Rakesh K. Goel. Capacity-Demand-Diagram Methods for Estimating SeismicDeformation of Inelastic Structures: SDF System[R]. Report No.PEER-1999/02,Pacific Earthquake Engineering Research Center.
    [89] Sasaki et al. Multi-mode pushover procedure (MMP)—A method to identify the effects of higher modes in a pushover analysis, Proc. of the Sixth US National Conference on Earthquake Engineering, Earthquake Engineering Research Inst, Oakland, California,1996.12.
    [90]卢文生.高层建筑结构非线性地震反应分析的实用方法研究[D].上海:同济大学,2004.
    [91]钟光忠.罕遇地震作用下多层钢框架结构的弹塑性分析[M].西南交通大学硕士论文,2008
    [92]杨伟.钢筋混凝土结构损伤性能设计及整体抗震能力分析[D].哈尔滨工业大学,2010.
    [93] Berry,M·P,Eberhard,M.O.Performance Models for Flexural Damage in Reinforced Conerete Columns [R].University of California Berkeley,California,PEER Report2003
    [94]史庆轩.钢筋混凝土结构基于性能的抗震研究及破坏评估[D].西安建筑科技大学,2002.
    [95]雷鸿君,缪升,王爱文.钢筋混凝土结构构件的震害损伤失效分析[J].昆明理工大学学报.2001,26(2):43-46
    [96]欧进萍,何政,吴斌,邱法维.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,(1)67-71
    [97]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型[J].地震工程与工程振动,1996,(4).89-94
    [98]肖益.损伤钢筋混凝土构件滞回性能与恢复力模型研究[M].中南大学硕士论文.2010
    [99]邓志恒,胡强,潘志明,徐冬晓.钢桁架连梁耗能性能试验研究及损伤分析[J].自然灾害学报,2009,(6).49~52
    [100]张盛东,樊承谋.混凝土正交各向异性损伤模型的研究.哈尔滨建筑大学学报[J].1998,31(2):38~40
    [101]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法[J].土木工程学报,2001,34(1):44~49
    [102]梁兴文,田野,瞿岳前.基于能量分析法的地震损伤性能智能优化设计[J].工业建筑,2005,35(6):5~10
    [103]蒋建,丁建.框架结构直接基于损伤性能的抗震设计方法研究[J].结构工程师.2006,22(1):6~10
    [104]李宏男,何浩祥.利用能力谱法对结构地震损伤评估简化方法[J].大连理工大学学报.2004,44(2):267~271
    [105]何浩祥,闫维明,周锡元.基于性能的钢混框架结构多元模糊地震损伤评估[J].工程抗震与加固改造.2006,28(1):100~106
    [106]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模型动力可靠性分析与设计[J].地震工程与工程振动.1990,10(4):27~37
    [107] H. Krawinkler, A.A.Nassar. Seismic Design Based on Ductility and Cumulative Damage Demands and Capacities. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings.Fajfar and Krawinkler, ed. Elsevier Applied Science. New York.USA.1992:23~40
    [108] D.Vamvatsikos, C.A.Comell. Incremental Dynamic Analysis. Earthquake Engineering and Structural Dynamics.2002,31(3):491~514
    [109]董毓利.关于混凝土的本构模型[J].青岛建筑工程学院学报,1993,14(4):11~19
    [110]许有邻.钢筋混凝土粘结滑移本构关系的简化模型[J].工程力学增刊,1997,20(2):34~38
    [111] Park Y J,Ang A H S.Mechanistic seismic damage model for reinforced concrete[J].Journal ofStructural Engineering,1985,111(4):722~739
    [112] Park R.Ductile design approach for reinforced concrete frames [J].Earthquake Spectra,1986,2(3):565~619
    [113] A.A. Chaker, A.Cherifati. Influence of Masonry Infill Panels on the Vibration and Stiffness Characteristics of RC Frame Buildings [J].Earthquake Engineering and Structural Dynamics.1999,12(3):1061~1065
    [114] J.J. Bommer, A.Martinez-Pereira. The Effective Duration of Earthquake Strong Motion[J].Earthquake Engineering.2006,26(1):1~13
    [115] R.D. Flanagan, R.M. Bennett. In-plane Behavior of Structural Vlay Tile Infilled Frames. Journal of structural Engineering.1999,125(6):590~599
    [116] Bertero R D, Bertero V V. Performance-based Seismic Engineering: the Need for Reliable Conceptual Comprehensive Approach[J]. Earthquake Eng. Stru. Dyn.2002,31:627~652.
    [117]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型[J].土木工程学报,2004,37(11):41~49.
    [118]欧进萍,何政,吴斌.钢筋混凝土结构的地震损伤控制设计[J].建筑结构学报,2000,21(1):63~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700