用户名: 密码: 验证码:
自主式水下机器人的分布式运动控制系统算法与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着自主式水下机器人(AUV, Autonomous Underwater Vehicle)在海洋科学考察和军事领域得到越来越广泛的应用。其运动控制算法及运动控制系统越来越受到人们的重视。各种各样的运动控制理论、结构、方法出现并运用到自主式水下机器人当中,取得了很多宝贵的数据和经验。
     运动控制是水下机器人完成任务的关键技术之一,近年来引起了许多控制领域专家、学者的注意。目前水下潜器大多采用集中式或分布式两种控制结构,控制方法有PID控制、神经网络控制、模糊控制、滑模变结构控制、自适应控制等,还有上述方法相互结合诸如模糊PID,模糊神经网络,自适应PID等等多种方法。很多方法只停留在理论研究或是仿真阶段,也有的已应用于实体潜器,但存在一些问题。
     本文旨在提出一种适用于多推进器AUV的分布式运动控制算法,并对该算法进行基于仿真和现场实验的验证研究。在结构体系上本方法采用分布式结构,控制方法上采用分布式的PID控制算法,将分布式的思想同时应用于控制体系结构和控制算法中。
     本文在课题原型样机C-RANGER的基础上,建立起运动模型和运动控制仿真平台,对分布式运动控制算法在MATLAB环境下进行了仿真研究,仿真结果表明该算法能够有效、稳定的实现对系统的运动控制。
     在此基础上,设计建立了C-RANGER运动控制的软、硬件系统,并给出了关键模块的设计和组建方法。同时,在实际海洋环境下进行了直线往返和螺旋线航行实验,实验结果表明,本文所提出的分布式运动控制算法和系统能够比较理想的完成预期规划的航线,各个控制量的跟踪也基本符合要求。
     该分布式运动控制算法有一定的通用性,适用于带有多个推进器的多自由度开架式AUV系统。
With the fact that Autonomous Underwater Vehicle (AUV) are more and more widely used in the field of marine scientific research and military, its motion control algorithm and motion control system have been paid significant attention to. As a result, a variety of theories, structures and methods about motion control appear and are applied to AUV which obtain a lot of valuable datum and experience.
     When AUV performs a task, motion control is one of the key technologies, and it has won attention from specialists and scholars in the field of motion control. At present, most underwater vehicle adopt centralized or distributed control structure, and control method includes PID, neutral network, fuzzy control, sliding mode control, self-adaptive control and the combination of the above methods, such as fuzzy PID, fuzzy neutral network, self-adaptive PID and so on. However, many methods are still in the stage of theory research or simulation, and some have been applied to underwater vehicle though there are some problems.
     This paper presents a distributed motion control algorithm which is applied to multi thruster AUV, and carries out confirmatory research based on simulation and field trial.
     With regard to the structure system, it adopts distributed structure, and with regard to the control algorithm, it adopts distributed PID control algorithm, as a result, the distributed idea can be applied to both control system structure and control algorithm. This paper, based on the prototype of C-RANGER, establishes motion modal and motion control simulation platform, and carries out simulation research in the MATLAB environment for the distributed motion control algorithm. The result shows that the algorithm can effectively and stably control the whole system.
     On this basis, this paper designs and establishes hardware system of C-RANGER motion control system, and gives critical modules'design and formulation methods. At the meanwhile, we carried out straight line and helical curve experiment in the real marine environment, the result shows that distributed motion control algorithm and the motion control system can complete the expectant routine ideally, also each control parameter's tracking meets the requirement.
     The distributed motion control algorithm is universal to some extent, and is applied to open shelves AUV with multi thrusters and multi degrees of freedom.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000:17-31,38-39,244-246,270-275
    [2]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势.高技术通讯,1999,13(9):55-59
    [3]http://auvac.org
    [4]http://www.nps.edu/Academics/Centers/CAVR/index.html
    [5]Marco, D.B. Healey, A.J. Dept. Command, control, and navigation experimental results with the NPS ARIES AUV. IEEE Journal of Oceanic Engineering,2001, Volume:26 Issue: 4:466-476
    [6]Marco, D. B. Healey, A. J.; McGhee, R. B.; Brutzman, D. P.; Cristi, R. "Control Systems Architecture, Navigation, and Communication Research Using the NPS Phoenix Underwater Vehicle". Autonomous Underwater Vehicles Laboratory Naval Postgraduate School Monterey, CA.93943.
    [7]Forrest C. Young. Phoenix Autonomous Underwater Vehicle (AUV):Networked Control of Multiple Analog and Digital Devices Using LonTalk. NAVAL POSTGRADUATE SCHOOL MONTEREY CA. DEC 97. A803243.
    [8]http://auvlab.mit.edu/
    [9]http://www.hydroidinc.com/
    [10]http://www.imtp.febras.ru/
    [11]http://www.noc.soton.ac.uk
    [12]Perrett, J.R.Pebody, M. "Autosub-1. Implications of using distributed system architectures in AUV development". Electronic Engineering in Oceanography,1997.
    [13]http://underwater.iis.u-tokyo.ac.jp/
    [14]J.Yuh, Jing Nie; Application of non-repressor-based adaptive control to underwater robots. Computer and Electrical Engineering,26,2000:169-179P
    [15]C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and R. McEwen, 'T-REX:A deliberative system for AUV control', in ICAPS WS on Planning and Plan Execution for Real-World Systems, Providence, RI, USA, (2007).
    [16]彭慧,封锡盛.“探索者”号自治式无缆水下机器人控制软件体系结构.机器人,1995,17(3):177-183
    [17]Sarkar, N. Podder, T.K. Antonelli, G. Mech. Eng. Dept., Vanderbilt Univ., Nashville, TN. "Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation". IEEE Transactions on Robotics and Automation, Apr 2002, Volume:18 Issue:2, on page(s):223-233.
    [18]李哗,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望.机器人技术与应用.2007(1)
    [19]陈建平.我国潜水器发展状况及存在的问题.中国船舶,1999(2):12-15
    [20]陶永华等.新型PID控制及其应用.工业仪表与自动化装置,1997年第4期
    [21]吴小平,冯正平,朱继懋.模糊PID策略在AUV控制中的应用.舰船科学技术,2007,第29卷第1期:95-98
    [22]张子迎,刘心,杨霁.基于神经网络PID的AUV控制方法研究.应用科技,2007,第34卷第8期:25-28
    [23]顾憋祥.人工神经网络在船舶科学方面的应用.‘92全国水动力学研讨会论文集,1992
    [24]PortoVW, FogelDB. Neural network techniques for navigation of AUVs. Proe. Symposium on Autonomous Underwater Vehicle Technique, Washington D.C.,1990
    [25]张铭钧,祝海涛,苗青.水下机器人运动控制神经网络的结构与学习方法.哈尔滨工程大学学报.2000,第21卷第1期:67-70
    [26]吴小平,冯正平,朱继懋.模糊PID策略在AUV控制中的应用.舰船科学技术.2007,第29卷第1期:95-98
    [27]李晔,庞永杰,万磊,唐旭东.水下机器人的仿人智能模糊运动控制方法.2009中国控制与决策会议
    [28]林孝工,付明玉,基于模糊神经网络的水下潜器多变量解耦控制研究,哈尔滨工程大学学报.2003,第24卷第5期:526-529
    [29]HE Bo, RAN Hongge, YANG Ke, HUANG Luyue, REN Chunyun. Path Planning and Tracking for Autonomous Underwater Vehicles. ICIA2009.
    [30]Bo He, Xiang Zhou, Path Planning and Tracking for AUV in Large-scale Environment, 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010);Wuhan, China, March 6-7,2010
    [31]Bo He, Hongen Ren, Wei Kan; Design and Simulation of Behavior-Based Reactive Decision-making Control System for Autonomous Underwater Vehicle; The 2nd IEEE International Conference on Advanced Computer Control(ICACC 2010); Shenyang, China 27th-29th March 2010
    [32]Bo He, Bingsen Li, Design of Behavior-Based Modular Decision-making Control System for Autonomous Underwater Vehicle, proceedings of the 6th international conference on Fuzzy systems and knowledge discovery (FSKD'09) PP.4845-4850, Changchun, China. Aug.,2009
    [33]Bo He, Ke Yang, Shuai Zhao, Yitong Wang. Underwater Simultaneous Localization and Mapping Based on EKF and Point Features. ICMA(IEEE),2009, Changchun, Jilin, China
    [34]Bo He, Nini Yu. Robot-centered Localization and Map Building for Autonomous Underwater Vehicle. International Conference on Computational Intelligence and Natural Computing (CINC 2009),2009, Wuhan, Hubei, China
    [35]Chanop Silpa-Anan. Autonomous Underwater Robot:Vision and Control. The Australian national university, February 2001,9-34
    [36]Stefan B. Williams, Paul Newman, et al. A decoupled, distributed AUV control architecture. Australian Centre for Field Robotics University of Sydney NSW 2006, Australia.
    [37]J Balderud, L Giovanini, and M R Katebi. Distributed control of underwater vehicles. Proceedings of the Institution of Mechanical Engineers.2008 vol.222(no.M2)
    [38]HHAI TY. "A self-turning decoupling controller for a class of multivariable systems and global convergence analysis [M]". IEEE trans on Automation Control,1988,33(8):767-771.
    [39]吕舒平.六自由度潜器控制系统的研究.哈尔滨工程大学,2000
    [40]张汝波,彭良,顾国昌,张国印.水下智能潜器分布式控制系统设计与实现.中国造船,1998,第3期:66-75
    [41]Ke YANG, Bo HE. Simulink&Adams Co-simulation of autonomous underwater vehicle, Marine cutting-edge technology forum, Guangzhou China, July 2008
    [42]Guije Liu, Meng Wang, Bo He. "Dynamics modeling and Control simulation of Autonomous underwater vehicle". UT2009-6th International Symposium on Underwater Technology
    [43]Thor I. Fossen, Underwater Vehicle Dynamics, chapter 1, underwater robotic vehicles: Design and Control, TSI press, Auuauerque,1995
    [44]刘卫东,高立娥,徐建宁,姬岩鹏,丁艺林.基于CAN总线的自主水下航行器内部通信与仿真.系统仿真学报,2007,第19卷第6期:1320-1322
    [45]张宏伟,王树新,杨晓华,侯巍,梁捷.基于总线的自治水下机器人控制系统.机器人,2006,第28卷第4期:448-452
    [46]路小俊,曹海欧,郑建勇.基于CAN总线的通信可靠性验证.电子产品世界,2012,11-B:58-60
    [47]罗杰斯EM著.物质、运动和力.北京:科学出版社,1984
    [48]Sergio Franco. Design with Operational Amplifiers and Analog Integrated Circuits,3rd Edition. USA:The McGraw-Hill Companies, Inc.,2001:106-210,416-422
    [49]Robert F. Coughlin, Frederick F. Driscoll. Operational Amplifiers and Linear Integrated Circuits (sixth edition). USA:Prentice-Hall,Inc.,2001:294-327
    [50]童诗白,华成英.模拟电子技术基础,第三版.北京:高等教育出版社.2001:309-363,414-413
    [51]邓旭升.使用单片机测频的四种方法分析一兼谈等精度测频法的实现.测试技术学报,1996,第10卷第2、3期:390-396
    [52]陈晓荣,蔡萍,周红全.基于单片机的频率测量的几种实用方法.工业仪表与自动化装置,2003,第1期:40-42
    [53]J. Rosenblatt. DAMN:A distributed architecture for mobile navigation. Ph.D. Thesis. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (1997) (Technical Report CMU-RI-TR-97-01).
    [54]Stefan B. Williams, Paul Newman, Gamini Dissanayake, Julio Rosenblatt, Hugh Durrant-Whyte. A decoupled, distributed AUV control architecture. Australian Centre for Field Robotics University of Sydney NSW 2006, Australia
    [55]王晓明.电动机的单片机控制.北京:北京航空航天大学出版社.2002:73-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700