用户名: 密码: 验证码:
基于神经网络的多水下机器人协调控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是海洋的世纪。海洋对于人类的发展和社会进步将起到至关重要的作用。自主式水下机器人(AUV)系统是未来海洋探测和开发,以及完成各种水下智能作业任务的重要工具。作为水下机器人技术中的关键技术,研究如何实现水下机器人运动的精确控制以及多机器人系统控制具有重要意义。
     本文首先研究了神经网络技术在水下机器人运动控制中的应用,为多机器人的协调控制提供基本技术保障。研究的重点在于通过优化神经网络算法以提高网络学习的收敛速度和提高网络学习的稳定性。实验证明,设计的神经网络控制器具有良好的控制效果,为水下机器人的运动控制开辟了一种新的思路和设计方案,这对研究自主式水下机器人的智能控制起到积极的推动作用。
     其次我们对多水下机器人系统的分布式控制进行了探索性的研究,多水下机器人系统的群体组织方式与机器人混合控制结构,机器人之间的行为协调是本文的研究重点。试验的结果表明基于混合结构的行为协调可以构建一个有效的多机器人分布式控制系统,强化学习的引入使得系统可以得到较好的优化结果。绝大部分的工作都是建立在新的多水下机器人仿真器之上的,新的6自由度数学模型、限制水域及海流修正、声与非声传感器的模拟以及基于MAS的软件框架使得该仿真系统大大加速地逼近真实条件下的多机器人控制研究。
In twenty-one century, resources in oceans will play a very important role in the development of human society. Autonomous Underwater Vehicle (AUV) is a very useful tool in exploring and utilizing resources in oceans. As the key technology, the research on how to control and coordinate multiple AUVs has important significance in theory and practice.
    Firstly, the application of neural network in the AUV's motion control is presented and discussed. The focus of research is on the optimization of neural network learning algorithm to increase the convergence velocity and the stability of learning. The experiment has verified that the neural network controller designed had good performance. The successful application of neural network controller in AUV's motion control has given a new way of controller design and will have positive effect in the research of intelligent control of AUV.
    Then the exploration of the distributed control of the multi-AUV system is made, in which we focused on the structure of multi-AUV team, the hybrid AUV control architecture and the behavior coordination between AUVs. The experiments have proved that a valid team control system can be achieved based on the hybrid architecture and well-defined behaviors, and better results by introducing Reinforcement Learning theory. New 6 DOF simulation model, restrictive condition modification, acoustic and non-acoustic sensor simulation and the MAS based framework make the new multi-AUV simulator more close to the real arena for the controller, which is a great promotion to the development of
    AUV team.
引文
[1] Yongjie Pang, You Shang, Yuru Xu. Software Design Technique for the Man-Machine Interface to Autonomous Underwater Vehicles. Proceedings of the 1998 International Symposium on Underwater Technology. Japan. 1998:P370-374
    [2] D. Richard Blidberg, Roy M. Turner, Steven G. Chappe11. Autonomous Underwater Vehicles: Current activities and research opportunities. Robotics and Autonomous Systems. 1991, 7(2):P139-150
    [3] You Shang, Shuang Zhang, Xuemin Liu, Wanchun Zhang. Research on the planning strategies of multiple AUVs motion coordination. Proceedings of the 11th international symposium on unmanned untethered submersible technology. USA. 1999:P592-599
    [4] A.J. Healey, F. Bahrke, J. Navarrete. Failure Diagnostics for Underwater Vehicles: A Neural Network Approach. Manoeuvring and Control of Marine Craft. 1990:P294-305
    [5] Healey, A. "Application of Formation Control for Multiple Vehicle Robotic Minesweeping", Proceedings of the IEEE CDC-2001, Orlando, FL, December 2001
    [6] Healey, A. J., Kim, Y., "Control And Random Searching With Multiple Robots", Proceedings IEEE CDC Conference 2000, Sydney Australia, Nov. 2000
    [7] D. K. Atwood, J. J. Leonard, J. G. Bellingham and B. A. Moran. "An Acoustic Navigation System for Multiple Vehicles," Proceedings, International Symposium on Unmanned Untethered Submersible Technology, pages 202-208, New Hampshire, September, 1995.
    [8] Bellingham, James G. New Oceanographic Uses of Autonomous
    
    Underwater Vehicles. Marine Technology Society Journal, 31(3):34-47. Fall 1997.
    [9] R.M. Turner and E.H. Turner. A two-level, protocol-based approach to controlling autonomous oceanographic sampling networks . In the IEEE Journal of Oceanic Engineering special issue on autonomous oceanographic sampling networks, vol. 26, no. 4, pp. 654-666, October, 2001
    [10] Yoji Kuroda, Tamaki Ura: "Vehicle Control Architecture for Operating Multiple Vehicles", Proc. AUV94, July 1994, pp. 323-329
    [11] Brumitt, B. L., Stentz, A., "Dynamic Mission Planning for Multiple Mobile Robots", Proceedings of the IEEE International Conference on Robotics and Automation, No. 3, pp. 2396-2401, 1996.
    [12] Caloud, P., Choi, W., Latombe, J-C., Le Pape, C., and Yim, M., "Indoor Automation with Many Mobile Robots", IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 67-72, 1990.
    [13] Chaimowicz, L., Sugar, T., Kumar, V., and Campos, M. F. M., "An Architecture for Tightly Coupled Multi-Robot Cooperation", IEEE International Conference on Robotics and Automation, 2001.
    [14] Arkin, R. C., "Cooperation without Communication: Multiagent Schema-Based Robot Navigation", Journal of Robotic Systems, Vol. 9, No. 3, pp. 351-364, 1992.
    [15] Brauer, W., and Wei., G., "Multi-Machine Scheduling - A Multi-Agent Learning Approach", Proceedings of the 3rd International Conference on Multi-Agent Systems, pp. 42-48, 1998. 10.
    [16] Cicirello, V., and Smith, S., "Insect Societies and Manufacturing", The IJCAI-01 Workshop on Artificial Intelligence and Manufacturing: New AI Paradigms for
    
    Manufacturing, 2001
    [17] B(?)hringer, K., Brown, R., Donald, B., Jennings, J., and Rus, D., "Distributed Robotic Manipulation: Experiments in Minimalism", Proceedings of the International Symposium on Experimental Robotics (ISER), 1995
    [18] Chevallier, D., and Payandeh, S., "On Kinematic Geometry of Multi-Agent Manipulating System Based on the Contact Force Information", The 6th International Conference on Intelligent Autonomous Systems (IAS-6), pp. 188-195, 2000.
    [19] Desai, J. P., Ostrowski, J., and Kumar, V., "Controlling formations of multiple mobile robots", Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2864-2869, 1998.
    [20] Decker, K. S., and Lesser, V. R., Designing i Family Of Coordination Algorithms, Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95), pp. 73-80, 1995.
    [21] Goldman, C. V., and Rosenschein, J. S., "Emergent Coordination through the Use of Cooperative State-Changing Rules", Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 408-413, 1994.
    [22] Golfarelli, M., Maio, D., Rizzi, S., "A Task-Swap Negotiation Protocol Based on the Contract Net Paradigm", Technical Report CSITE, No. 005-97, 1997.
    [23] Sandholm, T., "An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations", Proceedings, Eleventh National Conference on Artificial Intelligence (AAAI-93), pp. 256-262, 1993.
    [24] Smith, R., "The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver", IEEE Transactions on Computers, Vol. C-29, No. 12, 1980.
    
    
    [25] Stentz, A., and Dias, M. B., "A Free Market Architecture for Coordinating Multiple Robots", Technical report, CMU-RI-TR-99-42, Robotics Institute, Carnegie Mellon University, 1999.
    [26] Laengle, r., Lueth, T. C., Rembold, U., and Woern, H., "A distributed control architecture for autonomous mobile robots-implementation of the Karlsruhe Multi-Agent Robot Architecture (KAMARA)", Advanced Robotics, Volume 12, No. 4, pp. 411-431, 1998.
    [27] Simmons, R., Singh, S., Hershberger, D., Ramos, J., and Smith, T., "First Results in the Coordination of Heterogeneous Robots for Large-Scale Assembly", Proceedings of the International Symposium on Experimental Robotics (ISER), 2000.
    [28] Dias, M. B., Stentz, A., "A Free Market Architecture for Distributed Control of a Multirobot System", The 6th International Conference on Intelligent Autonomous Systems (IAS-6), pp. 115-122, 2000.
    [29] 戴学丰,边信黔.6自由度水下机器人轨迹控制仿真研究。系统仿真学报.2001,13(3):368-370
    [30] 施生达.潜艇操纵性.国防工业出版社.1995:159-161
    [31] Sarkar, Nilanjan Podder, Tarun Kanti. Motion coordination of underwater vehicle-manipulator systems subject to drag. Proceedings - IEEE International Conference on Robotics and Automation. 1999,1:387-392
    [32] Cristi, Roberto Caccia, Massimo Veruggio, Giamma. Motion estimation and modeling of the environment for underwater vehicles International Journal of Systems Science. 1998,29(10).:1135-1143
    [33] McMillan, Scott Orin, David E. McGhee, Robert B. Computational framework for simulation of underwater robotic vehicle
    
    systems. Autonomous Robots. 1996,3(2-3).:253-268
    [34] 和应军,徐玉如,黄锡荣.海底对潜器水平面操纵性能的影响.船工科技.1986年增刊:18-25页
    [35] 黄锡荣,徐玉如.近海底深潜器垂直面操纵性能的实验研究.船工科技.1986年增刊:26-30页
    [36] Brutzman, Donald P., Kanayama, Yutaka, and Zyda, Michael J.,"Integrated Simulation for Rapid Development of Autonomous Underwater Vehicles,"Proceedings of the IEEE Oceanic Engineering Society Conference AUV 92, Washington DC, June 2-3 1992, pp. 3-10.
    [37] Yoji Kuroda, Koji iramaki, Teruo Fujii, Tamaki Ura: "A Hybrid Environment for the Development of Underwater Mechatronic Systems", IECON '95, Orlando, F1, Nov. 1995,
    [38] 常文君,刘建成,于华南等。水下机器人运动控制与仿真的数学模型船舶工程 2002 No.3
    [39] C. R. Perrault. An application of default logic to speech act theory. In P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Intentions in Communication. M.I.T. Press, Cambridge, Massachusetts, in press.
    [40] Rosenschein, Jeffrey S.; Ginsberg, Matthew L.; and Genesereth, Michael R. 1986. Cooperation without communication
    [41] M. R. Genesereth, M. L. Ginsberg, and J. S. Rosenschein. Cooperation without communication. In Proc. AAAI, pages 51—57
    [42] N.J. Nilsson, "Shakey the robot," Technical Report 223, SRI International, 1984.
    [43] de Saint Vincent, A. Robert, 3D PERCEPTION SYSTEM FOR THE MOBILE ROBOT HILARE. Proceedings - 1986 IEEE International Conference on Robotics and Automation., p 1105-1111 San Francisco, CA, USA Sponsor: IEEE, Council on Robotics & Automation, New York, NY, USA
    
    
    [44] J. Albus, H. McCain, and R. Lumia. NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM). NBS Technical Note 1235, National Bureau of Standards, Gaithersburg, MD, July 1987
    [45] Brooks, Rodney A. ROBUST LAYERED CONTROL SYSTEM FOR A MOBILE ROBOT. IEEE Journal of Robotics and Automation, v RA-2, n 1, Mar, 1986, p 14-23
    [46] Thorpe, Charles Toward autonomous driving: The CMU Navlab—Ⅱ: Architecture and systems IEEE Expert, v 6, n 4, Aug, 1991, p 44-52
    [47] Arkin, R. C. (1989). Motor schema-based mobile robot navigation. International Journal of Robotics Research, 8(4):92-112.
    [48] Malcolm, Chris Symbol grounding via a hybrid architecture in an autonomous assembly system Robotics, v 6, n 1-2, Jun, 1990, p 123-144。
    [49] Arkin, R. C., "Cooperation without Communication: Multiagent Schema-Based Robot Navigation", Journal of Robotic Systems, Vol. 9, No. 3, pp. 351-364, 1992
    [50] Parker, L. E., "ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation", IEEE Transactions on Robotics and Automation, Vol. 14, No. 2, pp. 220-240, 1998.
    [51] Chaimowicz, L., Sugar, T., Kumar, V., and Campos, M. F. M., "An Architecture for Tightly Coupled Multi-Robot Cooperation", IEEE International Conference on Robotics and Automation, 2001.
    [52] Caloud, P., Choi, W., hatombe, J-C., Le Pape, C., and Yim, M., "Indoor Automation with Many Mobile Robots", IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.67-72, 1990.
    [53] 王洪燕,基于神经网络的进化机器人行为集成方法的研究。合肥工业大学博士学位论文。
    
    
    [54] Hornik K., Stinchcombe M., and White H. (1989), Multilayer Feedforword Networks Are Univer Approximators, Neual Networks, 2, pp359-366。
    [55] Mort N., Tiano A. (1990), Learning Control Strategies Based on Neural Network for an Under Water Vehicle, Modelling Control of Marine Craft, Elsevier Publications, 1990, pp325-334。
    [56] 彭良,卢迎春,万磊,孙俊岭,“水下智能潜器的神经网络运动控制”,13(2),海洋工程(1995),pp38-46。
    [57] J.A. Adam, "Probing beneath the sea", IEEE Spectrum, April 1985, pp. 55-64。
    [58] J.G. Bellingham and C. Chryssostomidis, "Economic ocean survey capability with AUVs", Sea Technology, April 1993, pp. 12-18。
    [59] P. Britton, "Undersea explorers", Popular Science, May 1995, pp. 39-42。
    [60] J. Yuh, "A learning Control system for unmanned underwater vehicles", Proc. Int. Conf. On Neural information Processing, Oct. 30 - Nov. 3 1995, Beijing, China, pp. 1029-1032。
    [61] T.I. Fossen, "Underwater vehicle dynamics", Underwater Robotic Vehicles: Design and Control, 1995, pp. 15-40。
    [62] Kazuo Ishii, Teruo Fujii and Tamaki Ura, "A quick adaptation method inaneural network based control system for AUVs" , Proc. Symp. on AUVT '94, Cambridge, MA. Pp. 269-274。
    [63] 彭良,徐玉如,“人工神经网络在水下机器人运动控制中的应用”,中国有色金属学报,1995,v.5,Suppl.4,中国智能机器人’95研讨会论文专辑。
    [64] Healey, A.J., Marco, D. B., "Slow Speed Flight Control of Autonomous Underwater Vehicles: Experimental Results with NPS AUV Ⅱ" Proceedings of the 2nd International Offshore and Polar Engineering Conference, San Francisco, July 14-19 1992.
    [65] Smith, S. M. and Dunn, S. E., "The Ocean Voyager Ⅱ: An AUV
    
    Designed for Coastal Oceanography," Proceedings of the 1994 Symposiumon Autonomous Underwater Vehicle Technology, pp. 139-147, Cambridge Massachusetts, July 1994.
    [66] Bellingham J. G., Goudey, C. A., Consi, T. R., Bales, J. W., Atwood, D. K., Leonard, J. J. and Chryssostomidis, C., "A Second Generation Survey AUV," Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, pp. 148-156, Cambridge Massachusetts, July 1994.
    [67] Tamaki Ura: "Autonomous Underwater Vehicles of University of Tokyo", Proc. IARP Workshop on Mobile Robots for Subsea Environment Monterey, May 1994, pp. 227-232.
    [68] Byrnes, R., "The Rational Behavior Model: A Multi-Paradigm, Tri-Level Software Architecture for the Control of Autonomous Vehicles", Ph.D. Dissertation, Naval Postgraduate School, Monterey California, March 1993.
    [69] Gu Guochang, Du Mei et al. Area-Based 3D Global Path Planning for AUV. Proceedings of the 2nd Asian Conference on Robotics, 1994.
    [70] Tabaii, S.S., El-Hawary, F., and El-Hawary, M. Hybrid adaptive control of autonomous underwater vehicle. Proceedings of Symposium of Autonomous Underwater Vehicle Technology. 1994:P275-282
    [71] Yuh, J. A neural net controller for underwater robotic vehicles. IEEE J. Oceanic Engineering. 1990, 15(3):P161-166
    [72] Yuh, J. Learning control for underwater robotic vehicles. IEEE Control System Magazine. 1994, 14(2):P39-46
    [73] Ishii, K., Fujii, T., and Ura, T. Neural network system for online controller adaptation and its application to underwater robot. Proceedings of IEEE International Conference on Robotics & Automation, 1998:P756-761
    
    
    [74] DeBitetto, P. A. Fuzzy logic for depth control of unmanned undersea vehicles. Proceedings of Symposium of Autonomous Underwater Vehicle Technology, 1994:P 233-241.
    [75] Kato, N. Applications of fuzzy algorithm to guidance and control of underwater vehicles. Underwater Robotic Vehicles: Design and Control, J. Yuh (Bd.), 1995. TSI:Albuquerque
    [76] 刘学敏.水下机器人运动控制系统的信息融合技术研究.哈尔滨工程大学博士学位论文,2001,7
    [77] T. I. Fossen and S. I. Sagatun. Adaptive control of nonlinear underwater robotic systems In IEEE Int. Conf. on Robotics and Automation, ICRA' 91, Sacramento, CA, USA, April 1991.
    [78] T. I. Fossen and O. Fjellstad. Robust adaptive control of underwater vehicles: A comparative study. In 3rd IFAC Workshop on Control Applications in Marine Systems, CAMS' 95, pages 66-74, Trondheim, Norway, May 1995.
    [79] A. K. Ramadorai and T. J. Tarn. On modeling and adaptive control of underwater robots. In 4th International Advanced Robotics Program, IARP' 92, Genoa, Italy, November
    [80] S. I. Sagatun and R. Johansson. Optimal and adaptive control of underwater vehicles. In 4th IFAC Symposium on Robot Control, Sy. Ro. Co.' 94, Capri, Italy, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700