用户名: 密码: 验证码:
超小型水下机器人关键性能提升技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超小型水下机器人常被用在江河湖海的浅水水域中,广泛应用于水库堤坝检查、核电站检查、海上钻井平台与桥墩水下部分的监测与修复,沉船考古、海底光缆检测、海带收割、绿藻探查以及水雷布放、水下侦察等民用和军事领域。
     本文研究了超小型水下机器人关键性能提升技术,包括位姿检测系统、扫描声纳图像校正系统和基于包容结构的开放式控制系统。水下机器人本体的位姿检测是其控制、扫描声纳图像几何校正等任务的基础;声图像校正处理是水下机器人正确感知水下环境的重要手段,是水下作业、检测等的基础;控制系统是水下机器人的核心部分,它对水下机器人的操纵性、可靠性等起决定作用。本论文的主要工作包括:
     (1)超小型水下机器人智能快速定位。
     超小型水下机器人位置测量的常用设备是短基线定位声纳系统,它的定位速率较低且连接不够可靠,很难与姿态测量传感器同步。本论文在对比分析常用的机器人概率定位算法基础上,使用群集智能的种群粒子优化定位算法推算短基线定位声纳实测信号间隙水下机器人的位置,提高定位速度;使用模块化的方案融合短基线定位声纳、电子罗盘、X/Y倾角传感器和深度传感器组成超小型水下机器人定位的硬件系统,增强定位系统的可扩展性,部分模块出现异常时不影响其它模块的正常工作;基于构件的软件设计方法使系统具有良好的伸缩性、协作性和重用性。在船模实验池中进行了定位效果测试实验,结果表明采用该方法能有效提高水下机器人的定位速度,使得位置测量与姿态测量同步,为后续的控制及图像采集处理系统提供及时的反馈和参考信号。
     (2)基于位姿检测与形态学操作的声纳图像校正。
     首先使用递归最小二乘滤波器对单一扫描角度上的声纳信号进行预处理;对于ROV位姿变化引起的扫描声纳图像的几何畸变,先根据本论文提出的位姿检测系统得到的ROV位姿信号进行几何校正,在此基础上使用了变结构元的数学形态学操作方法对校正后的扫描声纳图像做进一步处理,得到较为理想的结果。由结果图像可以看出,经过校正处理后,声纳图像的畸变现象得到改善且可以方便后续的障碍物识别。
     (3)一种基于包容结构的开放式水下机器人控制系统。
     水下机器人具有工作环境的复杂性和水下作业的任务多变性等特点,使得传统的层级式的机器人控制系统结构难以满足需求;而简单的开放式系统又容易引起整体性能变差、效率低下等缺点。本论文提出了一种基于包容结构的开放式控制系统,使用开放式的系统集成方式,而在水下机器人的运动控制中使用包容式结构。根据水下机器人的工作特点分析了水下机器人控制的主要内容;在此基础上使用Q-学习算法控制水下机器人运动,在学习过程的动作选择阶段采用基于径向基函数的神经网络。以艏向角锁定为例的仿真实验表明,相对于单纯的基于径向基函数的神经网络,本论文所使用的方法使得水下机器人艏向角锁定的均方误差有明显下降;而在经过初始阶段的学习后最大、最小误差也都有较大的下降。
Super-miniUnderwater Vehicles(SUV) are widely used in the shallow waters of rivers and lakes, they have now been widely used in civil and military fields such as hidden defectsdetection of dam and dyke,underwaterstructure repair and examination of offshore drilling platforms,repairing of submarine optical cable,kelp reaping,green algaeexploration,laying and sweeping of mines,underwater reconnaissance and so on.
     The paper aims to study the SUV designment and its key technology, including pose detection, control system and image acquisition/processing system. Pose detection of the underwater vehicle plays a decisive role in its controlling and navigation. The control system, the foundational core of SUV,it decides the maneuverability and reliability of the underwater vehicle. The image acquisition/processing system are methods for sense underwater environment.
     The main work of this paper includes:
     (1) A fast intelligent positioning method for underwater vehicle. Common tool of underwater vehicle positioning system is Short BaseLine positioning sonar (SBL), which is low speed and unreliable. Based on the comparative analysis of usual probabilistic location algorithm of robots, the particle swarm optimization method is used to calculate the position of vehicle between measured SBL signals to speed up the positioning system.It fuses the SBL, X/Y angle sensor and depth sensor effectually to make up the hardware architecture of SUV positioning system, and develop the software of positioning system adopting component-based method. Positioning effect test experiment is carried out in a ship model tank, the results show that this method can improve the speed of underwater vehicle positioning system, and make SBL synchronized with pose sensors.
     (2) Scanning sonar image correction based on positioning system and morphology. The sonar data in single scan angle is processed by Recursive Least Squares (RLS) filter. The distortion of scanning sonar image brought in by posture change of ROV is corrected by the results detected by pose detection system proposed in the paper. Then the variable structure element of mathematical morphology operation method is used for the corrected scan sonar images for further processing.It can be seen from the results, binary side scanning sonar image can provide facilitate for the identification of obstacles
     (3) An open SUV controlling system based on subsumption architecture. The traditional hierarchical structure of the robot control system can not satisfy the demands of underwater vehicles because of complexity work environment and variability of underwater tasks, as to a simple open system, itmay cause deterioration or low efficiency. In result, this paper proposes a subsumption structure based open control system, which is roughly divided into several modules, integrate the modules based on subsumption structure while the subsystems’integration of each module based on open architecture. Analyse the main contents of underwater vechile controlling according to its working characteristics. A control scheme is applied in motion control,which is based on Q-Learning (QL) agent combined with Radial Basis Function (RBF) neural network control algorithm. The mean square error of the method used in this paper is smaller than pure RBF neural networkcontrol method in the heading angle lock simulation experiment.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社, 2000.
    [2]张铭钧.水下机器人[M].北京:海洋出版社, 2000.
    [3]徐玉如,庞永杰,甘永, et al.智能水下机器人技术展望[J].智能系统学报, 2006, 1(01): 9-16.
    [4]封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势[J].高技术通讯, 1999, (9): 55-59.
    [5]李一平.水下机器人过去、现在和未来[J].自动化博览, 2003, 19(3): 56-58.
    [6] Kohnen W. 2007 Mts Overview of Manned Underwater Vehicle Activity[J]. Marine Technology Society Journal, 2008, 42(1): 26-37.
    [7] Wei L, Peng G, Anxi C, et al. Application of Hierarchical Bilevel Framework of Mdo Methodology to Auv Design Optimization[J]. Journal of Ship Mechanics, 2006, 10(6): 122-130.
    [8] Anxi C, Min Z, Wei L, et al. Application of Multidisciplinary Design Optimization in the Conceptual Design of a Submarine[J]. Journal of Ship Mechanics, 2007, 11(3): 373-382.
    [9] Thatcher H V. Rcv-225g - Design and Production of a 1st Unit Wellhead Work System[J]. Ieee Journal of Oceanic Engineering, 1986, 11(3): 349-357.
    [10] Zhu K-Q, Zhu H-Y, Zhang Y-S, et al. A Multi-Body Space-Coupled Motion Simulation for a Deep-Sea Tethered Remotely Operated Vehicle[J]. Journal of Hydrodynamics, Ser. B, 2008, 20(2): 210-215.
    [11]晏勇,马培荪,王道炎, et al.深海rov及其作业系统综述[J].机器人, 2005, 27(01): 82-89.
    [12]翟宇毅,刘亮,龚振邦.超小型水下机器人的发展现状及若干问题探讨[J].机床与液压, 2005, (02): 1-4.
    [13] Von Alt C. Remus 100 Transportable Mine Countermeasure Package[C]. WASHINGTON: MARINE TECHNOLOGY SOC, 2003.
    [14] Tamura K, Ando H, Maeda K, et al. Development of Compact Deep-Sea Monitoring Robot System "Tam-Egg 1"[C]. 14th International Offshore and Polar EngineeringConference(ISOPE 2004), Toulon, France: International Society Offshore&Polar Engineers, 2004.
    [15]科信.堤坝安全检测水下机器人问世[J].水利天地, 2003, (02): 39.
    [16]彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用, 2004, (04): 43-47.
    [17]唐旭东,朱炜,庞永杰, et al.水下机器人光视觉目标识别系统[J].机器人, 2009, 31(2): 171-178.
    [18]胡震.基于自主作业的auv视觉系统[J].机器人, 2001, 23(06): 535-540.
    [19] Toal D J F, Flanagan C, Lyons W B, et al. Proximal Object and Hazard Detection for Autonomous Underwater Vehicle with Optical Fibre Sensors[J]. Robotics and Autonomous Systems, 2005, 53(3-4): 214-229.
    [20]卢迎春,桑恩方.基于主动声纳的水下目标特征提取技术综述[J].哈尔滨工程大学学报, 1997, 18(06): 45-56.
    [21] Mignotte M, Collet C, Perez P, et al. Markov Random Field and Fuzzy Logic Modeling in Sonar Imagery: Application to the Classification of Underwater Floor[J]. Computer Vision and Image Understanding, 2000, 79(1): 4-24.
    [22] Yu S C. Development of Real-Time Acoustic Image Recognition System Using by Autonomous Marine Vehicle[J]. Ocean Engineering, 2008, 35(1): 90-105.
    [23]甘永.水下机器人运动控制系统体系结构的研究[D].哈尔滨:哈尔滨工程大学, M1 -博士, 2007.
    [24] Valavanis K P, Gracanin D, Matijasevic M, et al. Control Architectures for Autonomous Underwater Vehicles[J]. Control Systems Magazine, Ieee, 1997, 17(6): 48-64.
    [25] De Sousa J B, Johansson K H, Silva J, et al. A Verified Hierarchical Control Architecture for Co-Ordinated Multi-Vehicle Operations[J]. International Journal of Adaptive Control and Signal Processing, 2007, 21(2-3): 159-188.
    [26] Li J H, Jun B H, Lee P M, et al. A Hierarchical Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle[J]. Ocean Engineering, 2005, 32(13): 1631-1641.
    [27] Tangirala S, Kumar R, Bhattacharyya S, et al. Hybrid-Model Based HierarchicalMission Control Architecture for Autonomous Underwater Vehicles[J]. 2005.
    [28]高剑,严卫生.水下机器人递阶控制系统结构设计[J].舰船科学技术, 2005, 27(04): 35-38.
    [29]张汝波,彭良,顾国昌, et al.水下智能潜器分布式控制系统设计与实现[J].中国造船, 1998, (03): 66-75.
    [30]许真珍,李一平,封锡盛.一个面向异构多uuv协作任务的分层式控制系统[J].机器人, 2008, 30(02): 155-159.
    [31]丁福光,付明玉,夏国清, et al.自主式水下潜器分层递阶控制系统[J].船舶工程, 1996, (02): 51-53.
    [32] Juan L, Xinqian B, Zheng Q, et al. Research on Hierarchical Control Architecture for Autonomous Underwater Vehicle[C]. IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan: IEEE, Piscataway, NJ, USA, 2008.
    [33] Yu Z, Jiaping T, Donghai S, et al. Research on the Hierarchical Supervisory Control of Underwater Glider[C]. Beijing, China: IEEE, Piscataway, NJ, USA, 2006.
    [34] Byrnes R B, Macpherson D L, Kwak S H, et al. An Experimental Comparison of Hierarchical and Subsumption Software Architectures for Control of an Autonomous Underwater Vehicle[C]. Autonomous Underwater Vehicle Technology, 1992. AUV '92., Proceedings of the 1992 Symposium on, 1992:135-141.
    [35] Lei Z, Yong-Jie P, Yu-Min S, et al. Expert S-Surface Control for Autonomous Underwater Vehicles[J]. Journal of Marine Science and Application, 2008: 236-42.
    [36]张铭钧,高萍,徐建安.基于神经网络的自治水下机器人广义预测控制[J].机器人, 2008, 30(01): 91-96.
    [37]王晓鸣,张宏伟,王树新.基于模糊控制的水下自航行器着陆策略分析[J].机械工程学报, 2009, 45(03): 84-88.
    [38]胡维莉,王翠翠,刘静.基于遗传算法的卡尔曼滤波器水下机器人信号处理方法[J].电脑知识与技术:学术交流, 2009, 5(7): 5222-5224.
    [39] Yoerger D R, Newman J B, Slotine J J E. Supervisory Control-System for the Jason Rov[J]. Ieee Journal of Oceanic Engineering, 1986, 11(3): 392-400.
    [40]邹海,边信黔,常宗虎.基于多波束前视声纳的auv实时避障方法研究[J].机器人, 2007, 29(01): 82-87.
    [41] Yuh J. A Neural Net Controller for Underwater Robotic Vehicles[J]. Ieee Journal of Oceanic Engineering, 1990, 15(3): 161-166.
    [42] Goheen K R, Jefferys E R. Multivariable Self-Tuning Autopilots for Autonomous and Remotely Operated Underwater Vehicles[J]. Ieee Journal of Oceanic Engineering, 1990, 15(3): 144-151.
    [43] Smith S M, Rae G J S, Anderson D T, et al. Fuzzy-Logic Control of an Autonomous Underwater Vehicle[J]. Control Engineering Practice, 1994, 2(2): 321-331.
    [44] Debitetto P A. Fuzzy-Logic for Depth Control of Unmanned Undersea Vehicles[J]. Ieee Journal of Oceanic Engineering, 1995, 20(3): 242-248.
    [45]俞建成,张艾群,王晓辉, et al.基于模糊神经网络水下机器人直接自适应控制[J].自动化学报, 2007, 33(08): 840-846.
    [46]俞建成,李强,张艾群, et al.水下机器人的神经网络自适应控制[J].控制理论与应用, 2008, 25(01): 9-13.
    [47]邢志伟,封锡盛.水下机器人神经网络自适应逆控制[J].控制工程, 2003, 10(03): 235-238, 258.
    [48]高建树,邢志伟,张宏波.基于观测器的水下机器人神经网络自适应控制[J].机器人, 2004, 26(06): 515-518.
    [49] Ullman D G. The Mechanical Design Process[M]. New York: McGraw-Hill Science, 2002.
    [50] Potter J. A Systematic Experimental and Analytical Investigation of the Autonomous Underwater Vehicle Design Process with Particular Regard to Power System Integration[D]. Calgary: The university of calgary, Department of mechnical engineering, 1997.
    [51] Tang S, Ura T, Nakatani T, et al. Estimation of the Hydrodynamic Coefficients of the Complex-Shaped Autonomous Underwater Vehicle Tuna-Sand[J]. Journal of Marine Science and Technology, 2009, 14(3): 373-386.
    [52]徐建安,王玉甲,张铭钧.自主式水下机器人试验平台研制与实验研究[J].哈尔滨工程大学学报, 2007, 28(02): 212-217.
    [53] Alvarez A, Bertram V, Gualdesi L. Hull Hydrodynamic Optimization of Autonomous Underwater Vehicles Operating at Snorkeling Depth[J]. Ocean Engineering, 2009,36(1): 105-112.
    [54] Cheng Y-L, Lai J-H. Fabrication of Meso-Scale Underwater Vehicle Components by Rapid Prototyping Process[J]. Journal of Materials Processing Technology, 2008, 201(1-3): 640-644.
    [55] Suleman A, Crawford C. Design and Testing of a Biomimetic Tuna Using Shape Memory Alloy Induced Propulsion[J]. Computers & Structures, 2008, 86(3-5): 491-499.
    [56] Marani G, Choi S K, Yuh J. Underwater Autonomous Manipulation for Intervention Missions Auvs[J]. Ocean Engineering, 2009, 36(1): 15-23.
    [57]蒋磊,郝静如.超小型水下机器人本体的研究[J].机械设计与制造, 2009, (12): 176-178.
    [58]杨正忠.潜艇耐压壳体考虑肋骨支承影响的理论临界压力的计算[J].舰船科学技术, 1987, (02): 1-11.
    [59]施生达.潜艇操纵性[M].北京:国防工业出版社, 1995.
    [60]边宇枢,高志慧,贠超. 6自由度水下机器人动力学分析与运动控制[J].机械工程学报, 2007, 43(07): 87-92.
    [61]宋鑫.基于dt-Mri模型的水下机器人路径重构及其他若干问题研究[D].广州:华南理工大学,土木与交通学院, 2009.
    [62]党建军,谭伟,罗凯.基于实测频响函数水下航行器附加质量识别方法研究[J].水动力学研究与进展(a辑), 2005, 20(02): 180-184.
    [63]武二永,项志宇,刘济林.鲁棒的机器人蒙特卡洛定位算法[J].自动化学报, 2008, 34(08): 907-911.
    [64] Austin T C, Stokey R P, Sharp K M. Paradigm: A Buoy-Based System for Auv Navigation and Tracking[J]. Oceans 2000 Mts/Ieee - Where Marine Science and Technology Meet, Vols 1-3, Conference Proceedings, 2000: 935-938.
    [65]张汝波,吴俊伟,顾国昌, et al.智能水下机器人多传感器信息融合的一种方法[J].哈尔滨工程大学学报, 1997, 18(02): 72-76.
    [66] Pan-Mook L, Bong-Huan J, Hyun Taek C, et al. An Integrated Navigation Systems for Underwater Vehicles Based on Inertial Sensors and Pseudo Lbl Acoustic Transponders[C]. OCEANS 2005 (IEEE Cat. No. 05CH37711), Washington, DC,USA: IEEE, Piscataway, NJ, USA, 2005.
    [67] Li X R, Zhu Y M, Wang J, et al. Optimal Linear Estimation Fusion - Part I: Unified Fusion Rules[J]. Ieee Transactions On Information Theory, 2003, 49(9): 2192-2208.
    [68] Zhu Y M, Li X R, Zhao J. Linear Minimum Variance Estimation Fusion[J]. Science in China Series F-Information Sciences, 2004, 47(6): 728-740.
    [69]周军,王志胜,周凤岐.基于线性均方估计的数据融合理论[J].宇航学报, 2003, 24(04): 364-367.
    [70] Wang Z S, Zhen Z Y, Hu Y. Information Fusion Based Filtering for Multi-Sensor System[J]. 2008 Chinese Control and Decision Conference, Vols 1-11, 2008: 427-430.
    [71]陈航,殷国富,赵伟, et al.工业机器人模块化设计研究[J].机械, 2009, 36(03): 56-58.
    [72]王庆天,邢志刚,刘伯胜.智能水下机器人水声精确定位技术的研究[J].海洋工程, 1999, (04): 95-100.
    [73]马斌良,黄玉美,史恩秀, et al.基于神经网络代数算法的电子罗盘的标定[J].仪器仪表学报, 2008, 29(11): 2304-2309.
    [74]张爱军,王昌明,何云峰.水下运载器导航系统航向误差角补偿研究[J].弹道学报, 2008, 20(03): 68-70.
    [75]曾瑜,付敬奇,朱晓锦.双轴倾角传感器耦合干扰的补偿[J].仪器仪表学报, 2004, (S2): 175-178.
    [76]万麟瑞,胡宏,孙红星.面向构件的软件开发方法学研究[J].小型微型计算机系统, 2003, 24(03): 365-370.
    [77] Gan Q, Harris C J. Comparison of Two Measurement Fusion Methods for Kalman-Filter-Based Multisensor Data Fusion[J]. Ieee Transactions On Aerospace and Electronic Systems, 2001, 37(1): 273-280.
    [78]周红阳,白晶,李芳.基于kalman滤波的两种多传感器观测融合方法[J].火力与指挥控制, 2005, 30(7): 18-20、24.
    [79] Salahshoor K, Mosallaei M, Bayat M. Centralized and Decentralized Process and Sensor Fault Monitoring Using Data Fusion Based on Adaptive Extended Kalman Filter Algorithm[J]. Measurement, 2008, 41(10): 1059-1076.
    [80]闫莉萍,邓志红,付梦印.非线性系统的异步多速率数据融合估计算法研究[J].电子学报, 2009, 37(12): 2735-2740.
    [81] Doucet A, Gordon D. Sequential Monte Carlo Methods in Practice [M]. New York; Springer-Verlag. 2001.
    [82]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策, 2005, 20(04): 361-365.
    [83] Crisan D, Doucet A. A Survey of Convergence Results on Particle Filtering Methods for Practitioners[J]. Ieee Transactions On Signal Processing, 2002, 50(3): 736-746.
    [84]王鲁平,李飚,胡敏露.一种基于多传感器数据融合的目标跟踪算法[J].红外与激光工程, 2004, 33(2): 194-197.
    [85]厉茂海,洪炳熔.移动机器人的概率定位方法研究进展[J].机器人, 2005, 27(04): 380-384.
    [86] Haghi P, Naraghi M, Vanini S a S. Adaptive Position and Attitude Tracking of an Auv in the Presence of Ocean Current Disturbances[C]. 16th IEEE International Conference on Control Applications, Singapore: IEEE, Piscataway, NJ, USA, 2007:741-746.
    [87] An S Y, Kang J G, Oh S Y, et al. Global Localization for the Mobile Robot Based on Natural Number Recognition in Corridor Environment[J]. Neural Information Processing, Part I, 2008, 4984: 1110-1119.
    [88]郝凯,孟正大.基于卡尔曼滤波的室内服务机器人定位[J].华中科技大学学报(自然科学版), 2008, 36(S1): 193-195.
    [89]吴庆祥, David B.可移动机器人的马尔可夫自定位算法研究[J].自动化学报, 2003, 29(01): 154-160.
    [90]毛慧珍,陈西平,浮红霞, et al.中型组足球机器人全向视觉定位技术[J].信息技术, 2009, 33(1): 5-9.
    [91] Moreno L, Munoz M L, Garrido S, et al. Evolutionary Filter for Mobile Robot Global Localization[J]. 2007 Ieee International Symposium On Intelligent Signal Processing, Conference Proceedings Book, 2007: 891-896.
    [92] Kennedy J, Eberhart R. Particle Swarm Optimization[C]. Proceedings of ICNN'95 - International Conference on Neural Networks, Perth, WA, Australia: IEEE, New York, NY, USA 1995:1942-1948.
    [93]陈白帆,蔡自兴,袁成.基于粒子群优化的移动机器人slam方法[J].机器人, 2009, 31(06): 513-517.
    [94] Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]. IEEE World Congress on Computational Intelligence Anchorage, AK, USA: IEEE, New York, NY, USA, 1998.
    [95] Catania A C. Thorndike's Legacy: Learning, Selection, and the Law of Effect[J]. Journal of the Experimental Analysis of Behavior, 1999, 72(3): 425-428.
    [96] Masia C L, Chase P N. Vicarious Learning Revisited: A Contemporary Behavior Analytic Interpretation[J]. J Behav Ther Exp Psychiatry, 1997, 28(1).
    [97]吕干云,方奇品,蔡秀珊.一种基于粒子群优化算法的间谐波分析方法[J].电工技术学报, 2009, 24(12): 156-161.
    [98] Hoang N Q, Kreuzer E. Adaptive Pd-Controller for Positioning of a Remotely Operated Vehicle Close to an Underwater Structure: Theory and Experiments[J]. Control Engineering Practice, 2007, 15(4): 411-419.
    [99]朱海梅,吴永萍.一种高速收敛粒子群优化算法[J].控制与决策, 2010, 25(01): 20-24+30.
    [100] Zerr B, Mailfert G, Bertholom A, et al. Sidescan Sonar Image Processing for Auv Navigation[J]. 2005.
    [101]李晔,常文田,张铁栋, et al.基于声学图像处理的水下机器人局部路径规划[J].哈尔滨工程大学学报, 2006, 27(03): 357-361.
    [102] Petillot Y, Ruiz I T, Lane D M. Underwater Vehicle Obstacle Avoidance and Path Planning Using a Multi-Beam Forward Looking Sonar[J]. Ieee Journal of Oceanic Engineering, 2001, 26(2): 240-251.
    [103] Ribas D, Ridao P, Tardos J D, et al. Underwater Slam in Man-Made Structured Environments[J]. Journal of Field Robotics, 2008, 25(11-12): 898-921.
    [104]李涛,李晔.一种有效的水下机器人并行定位标图方法[J].哈尔滨工业大学学报, 2008, 40(05): 818-822.
    [105] Cervenka P, Demoustier C. Sidescan Sonar Image-Processing Techniques[J]. Ieee Journal of Oceanic Engineering, 1993, 18(2): 108-122.
    [106] Center C J. Sonar Imagery Data Processing Techniques[J]. 1993.
    [107] Wettergren T A, Traweek C M. Optimization of Conventional Beamformer ShadingWeights for Conformal Velocity Sonar[J]. Ieee Journal of Oceanic Engineering, 2005, 30(1): 213-220.
    [108] Yao K C, Mignotte M, Collet C, et al. Unsupervised Segmentation Using a Self-Organizing Map and a Noise Model Estimation in Sonar Imagery[J]. Pattern Recognition, 2000, 33(9): 1575-1584.
    [109]郑宝玉.自适应滤波器原理[M].北京;电子工业出版社. 2003.
    [110]陈东升,殷海庭,刘纪元, et al.基于改进dpc方法的合成孔径声纳运动补偿研究[J].信号处理, 2007, (06): 907-909.
    [111]曹宗杰,潘希德,薛锦, et al.基于数学形态学的超声c扫描图像校正方法[J].仪器仪表学报, 2005, 26(S1): 681-683.
    [112] Haralick R M, Sternberg S R, Zhuang X H. Image-Analysis Using Mathematical Morphology[J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4): 532-550.
    [113] Carsten S, Markus U, Christian W. Machine Vision Algorithms and Application[M]. Berlin: Wiley-VCH, 2008.
    [114] Iastrebov V, Seet G, Asokan T, et al. Vision Enhancement Using Stereoscopic Telepresence for Remotely Operated Underwater Robotic Vehicles[J]. Journal of Intelligent & Robotic Systems, 2008, 52(1): 139-154.
    [115] Gracias N, Van Der Zwaan S, Bernardino A, et al. Results on Underwater Mosaic-Based Navigation[J]. Oceans 2002 Mts/Ieee Conference & Exhibition, Vols 1-4, Conference Proceedings, 2002: 1588-1594.
    [116] Gracias N R, Van Der Zwaan S, Bernardino A, et al. Mosaic-Based Navigation for Autonomous, Underwater Vehicles[J]. Ieee Journal of Oceanic Engineering, 2003, 28(4): 609-624.
    [117] Negahdaripour S, Xu X, Khamene A, et al. 3-D Motion and Depth Estimation from Sea-Floor Images for Mosaic-Based Station-Keeping and Navigation of Rovs/Auvs and High-Resolution Sea-Floor Mapping[J]. Proceedings of the 1998 Workshop On Autonomous Underwater Vehicles, (Auv '98), 1998: 191-200.
    [118] Rife J H, Rock S M. Design and Validation of a Robotic Control Law for Observation of Deep-Ocean Jellyfish[J]. Ieee Transactions On Robotics, 2006, 22(2): 282-291.
    [119] Robbins I C, Kirkpatrick G J, Blackwell S M, et al. Improved Monitoring of Habs Using Autonomous Underwater Vehicles (Auv)[J]. Harmful Algae, 2006, 5(6): 749-761.
    [120]严奉霞.复数小波理论及其在图像去噪与增强中的应用研究[D].长沙:国防科技大学, M1 -博士, 2007.
    [121] Vishwanath M. The Recursive Pyramid Algorithm for the Discrete Wavelet Transform[J]. Ieee Transactions On Signal Processing, 1994, 42(3): 673-676.
    [122] Vishwanath M, Owens R M, Irwin M J. Vlsi Architectures for the Discrete Wavelet Transform[J]. Ieee Transactions On Circuits and Systems Ii-Analog and Digital Signal Processing, 1995, 42(5): 305-316.
    [123]王红霞,成礼智,吴翊.基于复数小波变换增强带噪图像的空间自适应方法[J].计算机辅助设计与图形学学报, 2005, 17(9): 1911-1916.
    [124]杨福增,王峥,杨青.基于小波变换的农业图像增强方法研究[J].农业工程学报, 2004, 20(03): 124-129.
    [125] Shensa M J. The Discrete Wavelet Transform - Wedding the a Trous and Mallat Algorithms[J]. Ieee Transactions On Signal Processing, 1992, 40(10): 2464-2482.
    [126] Guofan J, Yinbai Y, Wenlu W, et al. Optical Harr Wavelet Transform for Image Features Extraction[C]. Mathematical Imaging: Wavelet Applications in Signal and Image Processing, San Diego, CA, USA, 1993:371-380.
    [127] Xu Y, Weaver J B, Healy Jr D M, et al. Wavelet Transform Domain Filters: A Spatially Selective Noise Filtration Technique[J]. IEEE Transactions on Image Processing, 1994, 3(6): 747-758.
    [128]曾鹏鑫,么健石,陈鹏, et al.基于小波变换的图像增强算法[J].东北大学学报:自然科学版, 2005, 26(6): 527-530.
    [129]温秉权.小型浅水域水下自航行器系统设计与试验研究[D].天津:天津大学, 2005.
    [130] Demetriou G A. A Hybrid Control Architecture for an Autonomous Underwater Vehicle[D]. University of Southwestern Louisiana, M1 - Ph.D., 1998.
    [131] Murphy R R. An Introduction to Ai Robotics[M]. London: MIT Press, 2000.
    [132] Janabi-Sharifi F, Wilson W J. An Intelligent Assembly Robotic System Based onRelative Pose Measurements[J]. Journal of Intelligent and Robotic Systems, 1995, 12(1): 49-86.
    [133] Brooks R A. A Robust Layered Control System for a Mobile Robot[J]. Ieee Journal of Robotics and Automation, 1986, RA-2(1): 14-23.
    [134]朱齐丹,严勇杰.基于包容结构的移动机器人混合控制结构研究[J].哈尔滨工程大学学报, 2006, 27(06): 848-853.
    [135] Stoney G, Drane C R, Leaney J, et al. An Autonomous Mobile Robot Control System Using Subsumption Architecture[J]. Icarcv '92. Second International Conference On Automation, Robotics and Computer Vision|Icarcv '92. Second International Conference On Automation, Robotics and Computer Vision, 1992: R0-6.5/1-5 vol.3|3 vol. (viii+934+viii+861+vii+908).
    [136] Wang Y, Lin L-M, Yan G-Z. Hybrid Architecture of Robot Based on Subsumption Architecture[J]. Robot, 2002, vol.24, no.2: 171-6.
    [137] Yan Y, Zhu Q, Cai C. Hybrid Control Architecture of Mobile Robot Based on Subsumption Architecture[C]. 2006 Ieee International Conference On Mechatronics and Automation (Ieee Cat. No. 06Ex1416C), Luoyang, Henan, China: IEEE, Piscataway, NJ, USA 2006:2168-2172.
    [138] Butler G, Gantchev A, Grogono P. Object-Oriented Design of the Subsumption Architecture[J]. Software-Practice & Experience, 2001, 31(9): 911-923.
    [139] Amir E, Maynard-Zhang P. Logic-Based Subsumption Architecture[J]. Artificial Intelligence, 2004, 153(1-2): 167-237.
    [140]王于,林良明,颜国正.基于包容结构的移动机器人混合式控制结构[J].机器人, 2002, 24(02): 171-176.
    [141] Ford W E. What Is an Open Architecture Robot Controller?[C]. 9. Institute of Electrical and Electronics Engineers (IEEE) international symposium on intelligent control Columbus, OH, 1994:Medium: ED; Size: 7 p.
    [142]宋鑫,叶家玮,梁富林, et al.超小型水下机器人改进设计及其智能控制系统[J].机器人, 2007, (06): 596-600.
    [143] Conte G, Serrani A. Robust Control of a Remotely Operated Underwater Vehicle[J]. Automatica, 1998, 34(2): 193-198.
    [144] White B A. Robust Control of an Unmanned Underwater Vehicle[C]. 37th IEEE Conference on Decision and Control, Tampa, FL, USA: IEEE, Piscataway, NJ, USA, 1998.
    [145] Cristi R, Papoulias F A, Healey A J. Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane[J]. Ieee Journal of Oceanic Engineering, 1990, 15(3): 152-160.
    [146] Van De Ven P W J, Flanagan C, Toal D. Neural Network Control of Underwater Vehicles[J]. Engineering Applications of Artificial Intelligence, 2005, 18(5): 533-547.
    [147]宋伟刚,张国伟.基于径向基函数神经网络的并联机器人运动学正问题[J].东北大学学报, 2004, 25(04): 386-389.
    [148] Sutton R S, Barto A G. Reinforcement Learning[M]. USA: MIT Press, 1998.
    [149]王华,崔晓婷,刘向东, et al.基于q-学习的卫星姿态在线模糊神经网络控制[J].北京理工大学学报, 2006, 26(3): 226-229.
    [150]李彩虹.移动机器人智能体混合式体系结构研究[D].济南:山东大学,检测技术与自动化装置, 2007.
    [151]赵晓华,李振龙,于泉, et al.基于切换模型的两交叉口信号灯q学习协调控制[J].北京工业大学学报, 2007, 33(11): 1148-1152.
    [152] Watkins C J C H, Dayan P. Q-Learning[J]. Machine Learning, 1992, 8(3): 279-292.
    [153] Carreras M, Yuh J, Batlle J, et al. A Behavior-Based Scheme Using Reinforcement Learning for Autonomous Underwater Vehicles[J]. Ieee Journal of Oceanic Engineering, 2005, 30(2): 416-427.
    [154] El-Fakdi A, Carreras M, Palomeras N, et al. Autonomous Underwater Vehicle Control Using Reinforcement Learning Policy Search Methods[C]. Oceans 2005 - Europe, June 20, 2005 - June 23, 2005, Brest, France: Institute of Electrical and Electronics Engineers Computer Society, 2005:793-798.
    [155] Kawano H, Ura T. Dynamics Control Algorithm of Autonomous Underwater Vehicle by Reinforcement Learning and Teaching Method Considering Thruster Failure under Severe Disturbance[C]. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29, 2001 - November 3, 2001, Maui, HI, United states: Institute of Electrical and Electronics Engineers Inc., 2001:974-979.
    [156] Sakaguchi Y, Takano M. Reliability of Internal Prediction/Estimation and Its Application. I. Adaptive Action Selection Reflecting Reliability of Value Function[J]. Neural Networks, 2004, 17(7): 935-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700