用户名: 密码: 验证码:
伪码测距算法研究与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天测控技术是航天技术的重要组成部分,测控系统为航天飞行器正常飞行提供必不可少的技术保障。随着航天技术的发展,航天测控技术也在不断向前推进,各种新的测控技术和测控系统不断涌现,旧的测控系统逐渐被淘汰。
     随着扩频通信技术的成熟,其应用也越来越广泛,凭借扩频本身所具有的优点,如信号功率谱密度低、对邻近信道干扰小、保密性强难以被截获、可以实现码分多址等,扩频通信在卫星测控领域扮演愈来愈重要的角色。扩频测控通信系统是未来航天测控通信系统的发展方向。在卫星测距定位方面,扩频伪码测距的优势也很突出,可以弥补传统侧音测距的不足。由于伪随机码固有的测距能力——其长周期和互相关特性,使得在测距距离和精度方面可以同时提高,采用码分多址技术可以实现对多个目标同时进行测控。基于伪随机码存测距方面的这些优点,本文研究了伪随机码测距在卫星测控系统中的理论基础和具体应用。
     本文讨论了四种测距方法,包括侧音测距、伪码测距、载波相位测距和混合测距法,讨论了其测距原理,分析其误差来源,以及各种测距方法的性能优劣。重点研究了伪码测距的距离模糊问题和测距精度的提高。给出了一种混合测距方案,分析了其测距所能达到的长度和精度。分析了伪码测距不同方案间的性能差异和实现难度。研究了伪码测距的关键技术:长周期码的设计,伪码快速捕获及其实现结构。针对伪码精确跟踪的数字延迟锁定环,进行了仿真,结果表明环路滤波器的设计对伪码跟踪精度有重要影响。最后介绍了伪随机码测距在时间统一系统中的应用。
TT&C (telemetry telecontrol & communication) used in spacecraft is the most important part of the spacecraft technology. Normal space navigation relies on the TT&C system. With the development of spacecraft technology, the technology of telemetry and telecontrol has being promoted. The new and advanced technology comes forth and the old telemetry and telecontrol system is replaced or eliminated.
     With the spread—spectrum technology development, spread—spectrum technology is broadly used. On account of its advantage, such as low interrupt on the other channel, its hard captured for the enemy and its CDMA, and so on , it is becoming more and more important in the telemetry and telecontrol system. The spread—spectrum TT&C (telemetry telecontrol & communication) is the future spacecraft TT&C's orientation. Compared with the deficiency of tone-ranging,the spread-spectrum PN is good at space ranging. As the PN-code high performance of long period and the coherence, the very long distance and high precision ranging can be reached at the same time. Multi-target TT&C can be reached by CDMA of PN. As the advanced of PN ranging, this paper presents the PN-code's application in space TT&C.
     This paper presents four kinds of ranging method, including tone-ranging, PN-code ranging, carrier phase ranging and mixed ranging. The principle of ranging, source of ranging error and the comparison between them are discussed. The ranging ambiguity and the precision are studied as key points. A mixed ranging scheme is put forward, the distance and precision it can be reached are analyzed. The different performance and difficulty among these methods are analyzed. The key technology of PN-code ranging is studied, such as long periodic PN-code's design, PN-code rapid acquisition and its implement. The DLL used for the PN-code precision is simulated. The result shows that the loop filter has important influence on the tracking precision. Finally, we introduce the PN-code ranging applications in time unified system.
引文
[1]Davide Dardari.Pseudorandom Active UWB Reflectors for Accurate Ranging.IEEE Communications Letters,Vol.8,No.10,Oct.2004.
    [2]Jin Sam Kwak,Jae Hong Lee.Infrared Transmission for Intervehicle Ranging and Vehicle-To-Roadside Communication Systems Using Spread-Spectrum Technique.IEEE Transactions on intelligent Transportation systems,Vol.5,No.1,Mar.2004.
    [3]M.Zamazal,M.Kasal.Slow Data Rate Sequence Satellite Ranging.2005Asia-Pacific Conference on Communications,Perth,Western Australia,3-5 October 2005.
    [4]ETSI TR I01 956 V1.1.1(2001-09).
    [5]Michael S.Braasch.Spread-Spectrum Ranging Multipath Model Validation.IEEE Trans.On Aerospace and electronic systems Vol.37,No.1 2001.
    [6]Gary Mitchell.High-Accuracy Ranging Using Spread-Spectrum Technology.15~(th)Annual AIAA/USU Conference on Small Satellites.2001.
    [7]Katsuya Mizutani,Ryuji Kohno.Design of Pseudo-Noise Sequences for a Spread Spectrum Communication and Ranging system.IEEE Intelligent Vehicles Symposium.Oct.2000.
    [8]Kamran Kiasaleh,PN Code-Aided Ranging for Optical Satellite Communi-cation Systems.IEEE Trans.On communication,vol.39,No.12,1991.
    [9]G.Lachapelle,Congyu Liu,Gang Lu.Precise Marine DGPS Positioning Using P Code and High Performance C/A Code Technologies.National Technical Meeting,ION,San Francisco,Jan 1993.
    [10]Rossen Miletiev and Rumen Amaudov.Adaptive Algorithm for Doppler Ambiguity Resolution in Multiple Target Situations.Second IEEE International conference on intelligent systems,JUNE 2004.
    [11]Mohamed Abdel-tawwab Abdel-salam.Precise Point Positioning Using Un -Differenced Code and Carrier Phase Observations.UCGE Reports.2005.
    [12]Spilker J J,D T Magill.the Delay-Lock Discriminator-An Optimum Tracking Device.Proc.IRE,1961.49(9).
    [13]Jack K.Holmes.Coherent spread spectrum systems.A wiley-Interscience Publication.1982.
    [14]沈允春.扩谱技术.北京:国防工业出版社。1995年7月第一版.
    [15]孙宏伟,李志刚,李焕信,梁双友.卫星双向时间比对原理及比对误差估算.宇航计测技术.2001.4.
    [16]王炯琦,吴翊.编队飞行的小卫星精确定轨方法的研究.中国空间科学技术.2005年6月.
    [17]罗兴宇,张其,善常青.高动态GPS信号C/A码捕获方案及实现.北京航空航天大学学报.2002年7月.Vol.28 No.3.
    [18]张艳,张育林.Walker星座自主定轨误差分析.国防科技大学学报.Vol.26No.6 2004.
    [19]王威,都晓宁.GPS用于编队星座的姿态与相对位置确定.空间科学学报.2002年4月.
    [20]阂紫辰,高西全,韩学义.双向时间传输数字中频接收系统的实现.空间电子技术.2005年第1期.
    [21]刘立龙,刘基余,韦其宁.一种GPS快速定位技术研究.宇航学报.2005年1月.
    [22]张文明,姜文利,周一宇.GPS接收机中DLL分析与仿真.计算机仿真.2002年3月.
    [23]马宏,王元钦.基于扩频技术的相对距离自主测量方法研究.宇航学报.2005年1月.
    [24]赵丽,刘建业,林雪原,熊智.双星定位系统改进方案与仿真研究.中国空间科学技术.2004年8月.
    [25]王淑芳,王礼亮.卫星导航定位系统时间同步技术.GNSS World of China.2005年2月.
    [26]帅平.导航星座的自主导航技术——卫星自主时间同步.飞行器测控学报.2004年12月.
    [27]杨永安,冯祖仁.陆基S频段测控网卫星仿真现状与发展研究.系统仿真学报2004年12月.
    [28]赵琳.卫星导航系统.哈尔滨:哈尔滨工程大学出版社.2001年4月.
    [29]陈慧,孙枫,袁瑞铭,霍家道.基于多载波的定位系统的研究.哈尔滨工程大学学报.2003年4月.
    [30]张欣.扩频通信数字基带信号处理算法及其VLSI实现.北京:科学出版社.2004年8月.
    [31]陈仕进.高精度测距方法研究.测控技术.2003年.
    [32]周智敏,李企舜.现代航天测控原理.长沙:国防科技大学出版社.1998年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700