用户名: 密码: 验证码:
小天体撞击探测导航与制导方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小天体撞击探测任务具有很大的科学意义和价值。在撞击器接近目标天体过程中,自主导航精度与撞击制导律的选取将直接决定撞击探测任务的成功与否以及最终的撞击性能。本课题进行了高精度小天体撞击探测自主导航与制导方法研究。
     首先,为避免星历误差的影响,采用对目标天体的直接观测方案,建立了简化的相对轨道动力学模型和以目标天体图像信息为观测量的观测模型。根据小天体撞击任务的特殊条件,采用B平面参数描述撞击器导航系统的方法,避免了撞击器与目标天体径向距离不可观测带来的问题。在对导航系统可观测性分析的基础上,设计了基于扩展卡尔曼滤波的自主导航算法。
     其次,在自主导航基础上,基于预测制导思想,进行了小天体撞击探测的精确制导律设计。引入动力学模型预测末端状态,通过优化机动脉冲使预测与期望的撞击点偏差最小。结合任务周期设计了时刻固定的三次点火机动方案,并给出了小推力发动机点火控制的修正方法。
     最后,设计了小天体撞击探测导航制导数学仿真平台,对影响导航与制导系统精度的各误差源进行分析,并建立了其数学模型,在此基础上进行蒙特卡罗仿真。仿真结果验证了所提出的导航制导方法是可行的,撞击精度达到了148.8m。
The deep impact mission has great scientific values and implications. The autonomous navigation accuracies and the guidance laws of the impactor during the approach phase are key elements for the impact mission. This dissertation studied a high precision autonomous navigation and guidance strategy for small body impact missions.
     Firstly, in order to overcome ephemeris uncertainty effects, a reduced orbit dynamics model and an observation model using the target image information as navigation measurement are constructed. Considering the special conditions of small body impact missions, the B-plane reference frame is imported to solve unobservable problems of a radial position between an impactor and the target. Afterwards, basing on the observability analysis of the navigation system, an autonomous navigation method based on extended Kalman filtering is presented in this paper.
     Secondly, a predictive guidance and control law is presented based on the autonomous navigation system proposed. The algorithm uses dynamic model to predict the terminal states, and minimize maneuver computation errors by optimizing the impulsive maneuvers. The paper also presents a conceptual design of the impactor targeting maneuver method which consists of three discrete magnitude burns for small-body-impact missions, and describes the fine trajectory correction methods in the case of low thrust engine
     Finally, a mathematical simulation platform for the guidance and navigation system for small body impact missions is built. Monte Carlo simulations are provided to validate the feasibility of the algorithms, and effects of the major errors sources on navigation and guidance accuracies are presented. The simulation results show that the guidance and navigation methods presented in this paper are effective with final impact site error is about 148.8m.
引文
1 D. J. Scheeres. Interactions Between Ground-Based and Autonomous Navigation for Precision Landing at Small Solar-System Bodies. Telecommunications and Data Acquisition Progress Report 42-132, FeBruary 15,1998
    2 D. G. KuBitschek. Impactor Spacecraft Targeting for the Deep ImpactMission to Comet Tempel . AAS03 -615
    3 D.G. KuBitschek, N. Mastrodemos, S. P. Synnott. Deep Impact FlyBy Spacecraft Instrument Pointing in the Pres2 ence of an Inactive Impactor Spacecraft . AAS03 -026
    4 W. H. Blume. Deep Impact Mission Design. Space Science Reviews (2005) 117: 23~42
    5 J. R. Yim, J. L. Crassidis and J. L. Junkins. Autonomous OrBit Navigation of Interplanetary Spacecraft. AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, Aug. 14-17, 2000, AIAA-2000-3936:53~61
    6 S. Bhaskaran, D. Desai and P. J. Dumont et al. OrBit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System. Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Monterrey, CA, FeB. 9-12, 1998, AAS 98-193:1295~1314
    7 T. Misu, T. Hashimto and K. Ninomiya. Optical Guidance for Autonomous Landing of Spacecraft. IEEE Transaction on Aerospace and Electronic Systems. 1999, 35(2):459~473
    8 C. Champetier, P. Régnier and J. D. Lafontaine. Advanced GNC Concepts and Techniques for an Interplanetary Mission. Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, FeB. 2-6, 1991. San Diego, CA:433~452
    9 T. KuBota, T. Hashimoto, J. Kawaguchi and S. Sawai et al. Navigation, Guidance and Control of Asteroid Sample Return Spacecraft: MUSES-C. Proceedings 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems, ESTEC, Noordwijk, Netherlands, OctoBer 18-21, 1999. ESA SP-425 2000:511~516
    10 S. Bhaskaran, J. E. Riedel and S. P. Synnott. Autonomous Optical Navigation forInterplanetary Missions. Proceedings of the Conference on Society of Photo- Optical Instrumentation Engineers (SPIE Proceedings), Denver, CO, 1996:32~43
    11 S. Desai, D. Han and S. Bhaskaran et al. Autonomous Optical Navigation (AutoNav) Technology Validation Report. Deep Space 1 Technology Validation Report—Autonomous Optical Navigation (AutoNav):2002:1~39
    12 S. S. Lisman, D. H. Chang and G. Singh, et al. Autonomous Guidance and Control of a Solar Electric Propulsion Spacecraft. AIAA Guidance, Navigation and Control Conference, New Orleans, LA, Aug. 11-13, 1997:628~638
    13 S Bhaskaran, J. E. Ftiedel, and S. P. Synnott. Autonomous Nucleus Tracking for Comet/Asteroid Encounters: The STARDUST Example.IEEE 1998:353~365
    14 A. E. Marini, G. D. Racca and B. H. Foing. SMART-1 Technology Preparation for Future Planetary Missions. Advaces in Space Research. 2002,30(8):1895~ 1900
    15 T. KuBota, T. Hashimoto and J. Kawaguchi, et al. An Autonomous Navigation and Guidance System for MUSES-C Asteroid Landing. Acta Astronautica. 2003,52:125~131
    16 J. D. Lafontaine. Autonomous Spacecraft Navigation and Control for Comet Landing. Journal of Guidance, Control and Dynamics. 1992, 15(3): 567~576
    17 A. E. Johnson, Y. Cheng and L. H. Matthies. Machine Vision for Autonomous Small Body Navigation. IEEE Aerospace Conference Proceedings. 2000,7:661~671
    18 A. E. Johnson, L. H. Matthies. Precise image-Based motion estimation for autonomous small Body exploration. Proceedings of the Fifth International Symposium on Artificial Intelligence, RoBotics and Automation in Space, Noordwijk, Netherlands, June 1-3, 1999. European Space Agency, 627~634
    19 Massashi Uo, Ken’ichi Shirakawa, Tatsuaki Hashimoto, Takashi KuBota, Jun’ichiro Kawaguchi. HayaBusa's Touching-down to Itokawa- Autonomous Guidance and Navigation. 2006 AAS Space Flight Mechanics Meeting Conference, Tampa, FL, January 22-26, 2006
    20 Jun’ichiro Kawaguchi and Tatsuaki Hashimoto An Autonomous Optical Guidance and Navigation Around Asteroids. Acta Astronautica. 1999, 44(5): 267~280,
    21 Jun’ichiro Kawaguchi and Tatsuaki Hashimoto Autonomous Optical Guidance and Navigation Strategy Around a Small Body. J. Guidance and Control. 1997, 20(5)
    22董云峰,章仁为.利用星敏感器的卫星自主导航.宇航学报. 1995, 16(4):37~103
    23韩潮,章仁为.利用雷达测高仪的卫星自主定轨.宇航学报. 1999, 20(3):13~20
    24魏春玲,李勇,陈义庆.基于紫外敏感器的航天器自主导航.航天控制. 2004, 22(3):35~39
    25郭建新,解永春.基于姿态敏感器的地球同步轨道卫星自主导航研究.航天控制. 2003,21(4):1~6
    26王淑一,杨旭等.近地卫星磁测自主导航算法研究.宇航学报. 2003, 24(6):634~637
    27黄翔宇,荆武兴.基于"日-地-月"信息的卫星自主导航技术研究.哈尔滨工业大学学报. 2002,34(5) :643~646
    28胡小平.自主导航理论与应用.国防科技大学出版社, 2002:25~50
    29宁小琳,房建成.一种深空探测器自主导航新方法及其可观性分析.中国空间科学学报. 2005,25(4):286~292
    30赵旭,李铁寿.月球卫星的自主轨道确定.航天控制. 2000,(1):31~35
    31黄翔宇,崔祜涛,崔平远.探测器着陆小天体的自主光学导航研究.电子学报. 2003,31(5):659~661
    32崔平远,朱圣英,崔祜涛.小天体软着陆机动控制方法研究.宇航学报. 2008, 29(2): 511~516
    33李鹏,崔祜涛,崔平远.探测器交会小天体的UPF自主导航方案.吉林大学学报. 2007,37(3):691~695
    34 R B.Frauenholz, An Overview of Deep Impact Navigation with Lessons Learned. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting: Tampa,Florida, January 22-26 2006. 1151~1179.
    35 W.M.Owen, Jr., N.Mastrodemos, B.P.Rush, etc. Optical Navigation for Deep Impact. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting: Tampa,Florida, January 22-26 2006. 1231~1251
    36 R. S. Bhat, P. W. Stumpf, R. B. Frauenholz. Deep Impact Ground Navigation Maneuver Design And Performance. AAS06-175
    37魏克让,江聪世.空间数据的误差处理.科学出版社,2003,121-140
    38 J. P. Gauthier, H. Hammouri and S. Othman. A Simple OBserver for Nonlinear Systems Applications to Bioreactors. IEEE Transactions on Automatic Control, 1992, 37(6):875~878
    39 D. G. Tuckness, S. Y. Young. Investigating Stochastic OBservaBility of an Angle-Only Tracking Filter. The Journal of the Astronautical Sciences, 1996, 44(3):389~408
    40 R. Hermann, J. K. Arthur. Nonlinear ControllaBility and OBservaBility. IEEE Transactions on Automatic Control, 1977, 22(5):728~740
    41付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用.科学出版社, 2003,53~57
    42 J. R. Raol, N. K. Sinha. On the OrBit Determination ProBlem. IEEE Transactions on Aerospace and Electronic Systems. 1985, 21(3):274~291
    43 S. H. Truong. A RoBust and Self-tuning Kalman Filter for Autonomous Spacecraft Navigation. PhD Dissertation of the School of Engineering and Applied Science of the George Washington University. 2001:1~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700