用户名: 密码: 验证码:
基于星载敏感器的卫星自主导航及姿态确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国神舟系列飞船的成功发射、探月计划和深空探测计划的实施,航天器自主生存能力成为新世纪备受关注的关键技术之一。航天器自主导航及姿态确定技术是卫星自主性的一个重要方面,是当今航天器控制技术的发展趋势,它在减轻地面测控系统负担、降低航天器运行费用、提高航天器生存能力以及扩展卫星的应用潜力等方面都具有重要意义。因此利用多种星载敏感器采用信息融合的方法提高卫星自主导航及姿态确定的精度和可靠性是目前航天器设计的关键内容与热点问题。本论文结合国家安全重大基础研究项目(973)“微型航天器新概念、新机理研究(51312)”这一任务,研究了基于各种星载敏感器相结合的卫星自主导航及姿态确定方法,具体工作如下:
     与传统方法利用磁强计测量地磁场信息仅单一确定行航天器导航参数或姿态信息相比,提出一种将陀螺与磁强计相结合利用地磁场测量信息同时确定低地球轨道卫星导航参数与姿态信息的方法。首先详细分析了地磁场数学模型及磁强计观测模型;然后推导了轨道六要素轨道动力学模型及姿态四元数运动学模型,建立组合系统状态方程;其次提出将磁强计测量值与国际地磁参考场(IGRF)模型估计值作差,建立组合系统观测方程,通过对两者观测差值的微分分析得到:只用一个观测表达式即能够同时包含航天器的导航参数及姿态信息,最后设计了先进的连续-离散扩展卡尔曼滤波器对组合系统进行了数值仿真,并对仿真结果及系统性能进行分析和讨论。
     针对目前利用单一天体敏感器自主导航的缺点和不足,提出三种基于信息融合的自主天文导航方法:(1)根据星敏感器与地球敏感器相结合敏感地平方式的不同可以分为直接敏感地平与间接敏感地平。当间接敏感地平观测不到折射星时,引入由地球敏感器测量得到的卫星距离及方向矢量作为新的观测信息。(2)太阳敏感器与磁强计相结合,当卫星运行在不同区域时,根据太阳敏感器的工作原理,可以分为太阳光照区和太阳阴影区两种工作模式。当卫星运行在太阳阴影区时,引入国际地磁参考场(IGRF)模型,以磁强计测量值与IGRF模型夹角余弦作为新的观测信息。(3)针对上述所提出两种基于信息融合的自主导航方法的缺点和不足,提出将上述卫星上常用的天体敏感器相结合进行自主导航。根据上述三种自主导航系统各自的特点,分别设计了基于信息融合的自适应EKF算法对上述系统进行数值仿真,并对仿真结果及系统性能进行分析和讨论。
     捷联惯性导航系统(SINS)是一种常用的自主导航系统,具有自主性、隐蔽性、宽频带和信息全面等优点,但是其惯性测量元件误差随着时间累积、难以长时间连续工作的缺点和不足同样是非常明显的。星敏感器是目前应用最广泛的星载姿态敏感器,具有指向精度高、无姿态积累误差等特性。因此提出将捷联惯性导航系统与星敏感器相结合,目前最常用的SINS系统误差数学模型是在地球固联坐标系或地理坐标系中的,而星敏感器观测恒星是在地心惯性坐标系中,所以推导了在地心惯性坐标系下的SINS误差数学模型及其传播特性。选取40维状态变量建立组合导航系统状态方程;由SINS和星敏感器输出的姿态四元数得到姿态四元数误差,建立组合导航系统观测方程,最后采用先进的连续-离散扩展卡尔曼滤波器进行数值仿真,并对仿真结果进行分析。
     系统状态的可观测性和可观测度是检验所设计滤波器收敛精度和速度的重要指标。针对前述所提出的典型自主导航系统,提出三种分析系统可观测性和可观测度的方法:(1)根据系统可观测性定义及分析方法,对直接敏感地平天文导航系统可观测性及影响其的主要因素进行了数值分析;(2)对分段线性定常系统(PWCS)可观测性进行了分析;(3)对PWCS可观测性矩阵进行奇异值分解,分析了系统状态的可观测度。对SINS/CNS组合导航系统进行了基于奇异值分解的可观测性和可观测度分析,对降维前后组合导航系统进行数值仿真,并对仿真结果和系统性能进行了分析和讨论。
Along with the Shenzhou series spacecraft, the lunar exploration project and the deep space exploration Project, the self-surviving performance of the spacecraft is regarded as one of the key technologies in 21st century. The autonomous navigaition and attitude determination technology is not only important aspect of spacecraft autonomy but also development trend of spacecraft control technology. It is important meaning for the modern satellite to reduce burden of ground-assisted system, decrease the cost of performance missions, greatly strengthen the probe’s survival ability and extend the potential space application of the spacecraft. One of the new and widely researched problems in the subject of spacecraft design is to autonomously determinate orbit parameters by using measurement information of multi-spaceborne sensors and to improve system precision and reliability based on using information fusion method. With the support of the Nation Security Magnitude Foundation Research Foundation–Research on the new concept and new mechanism of minisize spacecraft, this dissertation deals with automous navigation and attitude determination based on multi-spaceborne sensors. The main contributions are as follows:
     The tradition methods using measurement of geomagnetic field based on magnetometer only determinate navigation or attitude parameter in singles. The method of determinating navigation and attitude parameter of LEO satellite simultaneitily using geomagnetic field information is presented based on integrated system of magnetometer and gyro. Firstly, the geomagnetic mathematic model and magnetometer measurement model are analyzed in detail. Secondly, the state equation of integrated system is established on deducing the model of the oribt dynamic model based on the orbit six elements and attitude kinematic model based on attitude quaternion. Thirdly, the observed equation of integrated system is established by using the difference of the measurement value of magnetometer and the estimated value of IGRF model. The observed equation includes spacecraft navigation and attitude parameter by analyzing the difference value synchronously. Compared with traditional method, the new method can estimate the spacecraft navigation and attitude parameter synchronously. Finally, the continuous-discrete extend kalman filter(CDEKF) algorithm is designed based on integrated system. The simulation result and system performance are analyzed and discussed after numerical simulation.
     Contraposing disadvantage and deficiency only using single spaceborne celestial sensor, the three methods of autonomous celestial navigation are presented based on information fusion. Firstly, the sensing earth modes include directly sensing horizon and indirect sensing horizon. When the refraction stars can't be observed, the distance and direction vector from satellite to earth is imported as the new observation information. Secondly, autonomous navigation method is presented based on sun sensor and magnetometer. According to the operational principle of sun sensor, the operational mode can be divided into two parts: sun shining area form and sun shadow area form. The estimated value of IGRF model is imported as the new observation information. The new observation value is got by the angle cosine based on the measurement value of magnetometer and the estimated value of IGRF model. Finally, Contraposing disadvantage and deficiency of the above-mentioned methods, a new autonomous navigation method is presented based on multi-celestial sensors. The Federal Extended Kalman Filter algorithm based on information fusion method is designed by analyzing the characteristic of aforementioned antonomous navigation methohds. The simulation result and system performance is analyzed and discussed after numerical simulation.
     The strapdown inertial navigation system(SINS) is a autonomous navigation system including the advantage of independence, concealment,wide frequency band and all-around information. As the drift errors of the inertial measurement component increase with time, the disadvantage and deficiency of SINS is obvious, which is unsuitable for long-time operating continuously. As a kind of used widely spaceborne sensor, the star sensor gains popularity for its high accuracy, without accumulative and intelligence. A new integrated navigation mode of SINS and star sensor is presented to correct the navigation parameter. The SINS error mathematic model is in the earth fixed coordinate or the geography coordinate usually, then the star sensor observes navigation stars in earth-centered inertia coordinate. The error mathematic model and diffusion characteristic of SINS are deduced in earth-centered inertia coordinate. The state equtation of integrated navigation system is established by 40 dimension state variables. The observation equtation of integrated navigation system is established by attitude quaternion error defined by attitude quaternion of SINS and star sensor. The integrated navigation system of SINS/CNS simulates by aforementioned CDEKF and the simulation results are analyzed.
     The observability and observable degree of the system state variables are the key indicators to check the convergence accuracy and velocity of designed filter. The three analysis methods of the system observability and observable degrees are presented contraposing aforementioned typical autonomous navigation systems. Firstly, the observability and influence factor of the directly sensing horizon celestial navigation system is analyzed based on the observability and observability degree. Secondly, the observability of piece-wise constant system(PWCS) is analyzed. Finally, the observability and observable degree of integrated navigation system of SINS/CNS is analyzed by the singular value decomposition and descend the integrated navigation system dimensions. The simulation result and system performance is analyzed and compared with undescended system and descended system after numerical simulation.
引文
1潘科炎.航天器自主导航技术.航天控制.1994,(2):18-27
    2 A.J.Treder. Autonomous Navigation– When Will We Have it? Navigation Journal of the Insitute of Navigation.1987,34(2):83~114
    3 M.A.Chory, D.P.Hoffman, LeMay JL. Satellite Autonomous Navigaiton Status and History. IEEE Position Location and Navigation Symposium, Las Vegas, NV, Nov.4~7,1986,110~121
    4 M.A.Chory, D.P.Hoffman, Major C S,. Autonomous Navigation– Where We Are in 1984.AIAA 84-1826:27~37
    5李勇,魏春岭.卫星自主导航技术发展综述.航天控制.2002,20(2):70~74
    6 J.W.Lowrie. Autonomous Navigation System Technology Assessment. AIAA 17th Aerospace Science Meeting. AIAA 1979:1~12
    7房建成,宁晓琳,田玉龙.航天器自主天文导航原理与方法.2006:1~15
    8 Frank Tai, Peter D. Noerdlinger. A Low Cost Autonomous Navigation System(AAS 89-001). Volume 68, Advances in the Astronautical Science, Guidance, Keystem, Colorado, February 1995:36~46
    9吴开林.航天器基本特点与设计要求概述(3)-航天器总体特征及组成.航天标准化.2002,(3):43~47
    10小卫星设计特点之一提高卫星的自主能力.国际太空.1997,(6):22~25
    11施少范.国外对地观测卫星高精度姿态控制系统研究.上海航天.2000, (6):49~53
    12潘科炎.GPS作为航天器的全能敏感器I-GPS导航与定姿.航天控制,1995,13(4):22-32
    13梅喻.空军研究卫星自主空间系统.国际太空.1994,(6):10
    14 M.A.Chory, D.P.Hoffman, J.L.Lemay. Satellite Autonomous Navigation Status and History. PLAN’86-Position Locaiton and Navigaiton Symposium.Las Vegas, NV,1986,110~121
    15 J.R. Guinn, B.G.. Williams, et al. TAOS Orbit Determination Results. Advances in the Astronautical Sciences.1995,89(1):185~195
    16李捷,陈义庆.航天器自主导航技术的新进展.航天控制.1997,(2):76~82
    17 J.P.Berthias, S.Houry. Next Day Precise Orbits for Topex/Poseidon Using DORIS Proc. of the AAS/GSFC International Symposium of Space Filght Dynamics, Greenbelt, Maryland, May 11-15,1998,AAS98-313:173~183
    18 R.L.White, R.B.Gounley. Satellite Autonomous Navigaiton with SHAD. The Charles Stark Draper Laboratory, Inc, Cambridge, Massachusetts,1987
    19 J.Meyer-Hilberg, T.Jacon. High Accuracy Navigation and Landing System Using GPS/IMU System Intergration. IEEE Proceeding of Position Location and Navigation Symposium.1994:298~305
    20 M.A.G.. Peters. Development of a TRN/INS/GPS Intergrated Navigation System. Position Location and Navigation Symposium.1992:202~208
    21 H.Miller, D.A.Hilts. Fault Tolerant Integrated Inertial Navigation/Global Position System for Next Generation Spacecraft. Proceedings of Digital Avionics Systems Conference.1991:207~212
    22 J.E.Potter, W.E.Vander Velde. Optimum Mixing of Gyroscope and Star Tracker Data. Journal of Spacecraft.1967,5(5):536~540
    23 Weibo Zou, Jianxin Ren, Sicong Ren. Improved Independence and Fault-tolerance of INS/GNSS Integrated Navigation System by SAR. Proceedings of the 3th World Congress on Intelligent Control and Autonomous.2002:3713~3716
    24 Zhangjinwei, Songming, Rensicong. A New Method to Abstract the Noise Model in INS/GNS Intergrated Navigation System Proceeding of 2001 CIE International Conference.2001:1169~1172.
    25 M.C.Algrain, D.Ehlers. Novel Kalman Filtering Method for Suppression of Gyroscope Noise Effects in Pointing and Tracking Systems. Optical Engineering.1995,34(10):3016~3030
    26 N.Lovren, J.K.Pieper. Error Analysis of Direction Cosines and Quaternion Parameters Techniques for Aircraft Attitude Determination. IEEE Transactions on Aerospace and Electronic Systems.1998,34(3):983~989
    27 Mark L. Psiaki. Autonomous Magnetic Navigation for Earth Orbiting Spacecraft. Proc of 3rd.AIAA/USU Conference on Small Satellite.1989:1~8
    28 J.Deutschnann, I.Bar Itzhack. Comprehensive Evaluation of Attitude and Oribt Estimation Using Real Earth Magnetic Field Data. Proc 3rd Int Conf on Spacecraft Guidance. The Nethelands 1996:37~41
    29 Wiegand. Matthias. Autonomous Satellite Navigation Via Kalman Filtering of Magnetometer Data. Acta Astronautica.1996,38(1):395~403.
    30 Soohong Kim, Joohwan Chun. Satellite Orbit Determination Using a Magnetometer-based Bootstrap Filter. Proceeding of the American Control Conference,2000,Chicago:792~793
    31 Sonhong Kim, Joohwan Chun. Bayesian Bootstrap Filtering for the LEO Satellite Orbit Determination. Proceedings of IEE 51st Vehicular Technology Conference.2000:1611~1615
    32 Mark L. Psiaki, H.Lejin, S.F.Fox. Ground Test of Magnetometer-based Autonomous Navigation for Low-Earth-Orbit Spacecraft. Journal of Guidance, Control and Dynamics.1993,16(1):206~214
    33 Mark L. Psiaki. Autonomous Orbit and Magnetic Field Determination Using Magnetometer and Star Sensor Data. Journal of Guidance, Control and Dynamics.1995,18(3):584~592.
    34 Mark L. Psiaki. Autonomous Low-Earth-Orbit Determinatin from Magnetometer and Sun Sensor Data. Journal of Guidance, Control and Dynamics.1999,22(2):296~304
    35 Mark L. Psiaki. Test of Magnetometer/Sun-sensor Orbit Determinatin Using Flight Data. Journal of Guidance, Control and Dynamics.2002, 25(3):582~590.
    36 I.Y.Bar-Itzhak, G. Shorshi. Satellite Autonomous Navigation and Orbit Determination Using Magnetometers. Decision and Control,1992,Proceeding of the 31st IEEE Conference.1992:542~548
    37 Gil Shorshi, Irzhack Y. Bar-Itzhack. Satellite Autonomous Navigation Based on Magnetic Field Measurements. Journal of Guidance, Control and Dynamics.1995,18(4):843~850
    38 Julie K. Deutschmann, Itzhack Y.Bar-Itzhack. Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data. Journal of Guidance, Control, and Dynamics,2001,24(3):616~623
    39王建琦,曹喜滨,孙兆伟.基于UKF算法的航天器自主导航研究.飞行力学.2004,22(2):41~44
    40 Wang Jiangqi, Cao Xibin, Sun Zhaowei. Attitude and Orbit Determination for small Satellite Using Magnetometer Measurement. Aircraft Engineeringand Aerospace Technology.2003,75(2):241~246
    41荣思远,穆荣军,崔乃刚.非线性容错滤波在基于磁强计自主导航中的应用.北京理工大学学报.2006.26(4):334~337
    42荣思远,常亚武,崔乃刚. UKF容错滤波方法在自主导航中的应用研究.宇航学报2006.27(4):605~608
    43左文辑,宋福香.微小卫星磁测自主导航方法.宇航学报.2000, 21(2):100 ~104
    44何炬.国外天文导航技术发展综述.舰船科学技术2005.27(5):91~96
    45 K.D. Hicks, J.Wiesel. Autonomous Orbit Determination System for Earth Satellites. Journal of Guidance, Control and Dynamics.1992,15(3):562~566
    46 J.L. Lair, P. Duchon. Satellite Navigation by Stellar Refraction. Acta Astronautica,1998,17(10):1069~1079
    47 Robert Gounley, Robert White, Eliezer Gai. Autonomous Satellite Navigation by Stellar Refraction.A84-24978,AIAA Library:534~585
    48 R.L. White, S.W. Thunman, F.A.Bames. Autonomous Satellite Navigation Using Observation of Starlight Atmospheric Refraction. Proceedings of the 41th Annual Meeting, the Institute of Navigation,1995:83~89
    49 P. Riant. Analysis of Satellite Navigation System by Stellar Refraction.36th Congress of the International Astronautical Federation Stockholm Sweden, October 7-12,1985:1~8、
    50王广君.星敏感器及其星图处理技术研究.北京航空航天大学博士后出站报告.2005
    51杨博,房建成,伍小洁.一种航天器天文自主定轨方法.中国惯性技术学报.2002:8(3):33~36
    52杨博.航天器星敏感器自主定位方法及精度分析.宇航学报.2002,23(3):81~84
    53张瑜,房建成.基于Unsented卡尔曼滤波器的卫星自主天文导航研究.宇航学报.2003,24(6):646~650
    54李琳琳,孙先辉.基于星敏感器的星光折射卫星自主导航方法研究.系统工程与电子技术.2004,26(3):353~357
    55李琳琳.卫星自主轨道确定与姿态确定技术研究.中国科学院空间科学与应用研究中心.博士后研究报告.2003:26~108
    56宁晓琳,房建成.一种基于信息融合的卫星自主天文导航新方法.宇航学报2003.24(6):579~583
    57 Xiaolin Ning, Jiancheng Fang. An autonomous celestial navigation method for LEO satellite based on unscented Kalman filter and information fusion. Aerospace science and Technology.2007,11(2~3):222~228
    58 R.W. Hosken, J.R. Wertz. Microcosm Autonomous Navigation System On-Orbit Operation.AAS95-074, 18th Annual AAS Guidance and Control Conference, Keystem, Colorado, February 1995.
    59 J.R.Guinn, B.G.Willliams, et al. TAOS Orbit Determinationf Results. Advance in the Astronautiacal Sciences.1995, 89(1):185~195
    60黄翔宇,荆武兴.基于“日-地-月”信息的卫星自主导航技术研究.哈尔滨工业大学学报.2002,34(5):643~646
    61张燕,荆武兴.基于日地月方位信息的月球卫星自主导航.宇航学报.2005, 26(4):495~498
    62孙军伟,崔平远,黄翔宇.基于地月信息的奔月探测器自主光学导航.宇航学报.2006,27(3):354~258
    63张燕,荆武兴.一种利用DSP实现卫星SEMOI自主导航的方法.哈尔滨工业大学学报.2006,38(3):367~369
    64 N.Nagarajan. M.Seetharama Bhat, K.Kasturirangan. A Novel Autonomous Orbit Determination System Using Earth Sensors.Acta Astronautic. 1991,25: 77~84
    65 N.Nagarajan. M.Seetharama Bhat, K.Kasturirangan. Modified Kanlman Filter Based Autonomous Orbit Determination Using Horizon Scanner Measurements. Acta Astronautic.1996,38(10):769~782
    66 P.H.Andersen, K.Aksnes, H. Skonnord. Precise ER-2 Orbit Determinatin Using SLR, Prare and RA Observations.Journal of Geodery,1998:421~429
    67吴宏秋,郑大伟.TPPEX/POSEIDON卫星海洋测高资料的预处理.中国科学院上海天文台年刊.1997,18(6):12
    68刘军,韩潮.基于UKF的雷达高度计自主定轨.北京航空航天大学学报. 2006,32(8):889~893
    69黄琳,荆武兴,李应波,景前锋.利用雷达高度计的卫星自主导航.上海航天.2005(3):42~46
    70 Son H. Truong, Roder C. Hart, Wendy C. Shoan and Terri Wood. High Accuracy Autonomous Navigation of using The Global PositionSystem(GPS). Proceeding of the 12th International Symposium on Space Flight Dynamics’, ESOC, Darmstadt, Germany,1997,2~6 June:73~78
    71 N.A.Carlson. Federated Filter for Computer-efficient, Near-optimal GPS Intergration. IEEE Proceedings of Position Location and Navigation Symposium.1996:306~314
    72 R.Conley. GPS Perfoemance:What is normal? Navigation.1993, 30(3):261~281
    73袁建平,罗建军.卫星导航原理与应用.中国宇航出版社.2003:1~46
    74 W.Gurtner. Organizational Aspects of the International GLONASS Serives. Phys. Chem. Earth(A).2001,26(6-8):569~572
    75 P. Daly. Navstar GPS and GLONASS:Global Satellite Navigation Systems.IEEE Electronics and Communication Engineering Journal, December 1993:349~357
    76 R.A. Eastwood. An Integrated GPS/GLONASS Receiver, Navigation. Journal of the Institute of Navigation, Summer 1990,37(2):328~334
    77申功勋,孙建峰.信息融合理论在惯性/天文/GPS组合导航系统种的应用.国防工业出版社.1998:1~16
    78 M.G. Alvaro, H.M.Esperanza, B.M. Ana, et al. Galileo Constellation Design. GPS Solutions,2001,4(4):9~15
    79 R. Dellago, E. Detoma, F. Luongo. Galileo-GPS Interoperability and Compability: Synergetic Point. ION GPS/GNSS, Sydney, Australia.2003 Erodibility and Properties. Transactions of the 13th Congress of the International Society of Soil Science, Hamburg,1986:26~84
    80干国强.导航与定位-现代战争的北斗星.国防工业出版社,2000: 37~96
    81袁信.导航系统.航空工业出版社,1993: 31~75
    82赖际舟,刘建业,林雪原.基于北斗双星定位系统的组合导航滤波算法实现研究.宇航学报.2005,26(1):107~111
    83 M.P.Ananda, H.Bemstein, R.W.Bruce, K.E.Cunningham, W.A.Feess, P.S.Jorgensen, M.Menn and C.M.Price, Autonomous Navigation of the Global Position System Satellite, AIAA Paper Aug.1984:84~186
    84 Menn,M. Autonomous Navigation for GPS via Crosslink Ranging.Proceeding of the IEEE Position, Location, and Navigation Symposium, Las Vegas,NV, NOV.4-7,1996:143~146
    85 Herklotz,R.L. Incorporation of Cross-Link Range Measurements in the Orbit Determination Process to Increase Satellite Constellation Autonomy. Ph.D.Thesis, M.I.T.,Cambridge, Mass, Dec,1987
    86 M.P.Anada, H.Bernstein, K.E.Cunningham, W.A.Feess, E.G.Stroud, Global Position System(GPS) Autonomous Navigation. Inst. of Electrical and Electronics Engineer Position Location and Navigation Symposium, Inst. Of Electrical and Electronics Engineer, New York, 1990
    87 Filegel,H.F., W.A.Feess, W.C.Layton and N.W.Rhodus, The GPS Radiation Force Model. First International Symposium on Precise Position System, VoL.1.,April,1985:15~19
    88 Mark L.Psiaki, Steven P. Powell, and Paul M. Kintner, Jr. The Accuacy of the GPS-Derived Acceleration Vector. A Novel Attitude Reference, AIAA-99~4079
    89马静远,掌静,陆本魁.小卫星星座自主定轨的论证与仿真.2003年航天测控技术研讨会.2003.8:170~178
    90刘林,刘迎春.关于星-星跟踪测量自主定轨中的亏秩问题.飞行器测学报.19(3):13~16
    91郗晓宁,张雅声,任萱等.利用星载GPS伪码测距进行小卫星星座的整网定位.国防科技大学学报.1998,20(6):12~16
    92阎野.提高卫星星座定位自主性和精度的研究.博士学位论文.国防科技大学.2000
    93王世练,路军,张尔扬.基于星间无线电测距的卫星自主定轨与导航[J].宇航学报. 2002,23(1):69~72
    94张艳.基于星间观测的星座自主导航方法研究.国防科学技术大学博士论文.2005
    95 P.S.Maybeck. Stochastic Models, Estimation and Control. Academic Press,Vol.1,1979.Vol.2,1982
    96 K.N. Satyendra, et al. Self-contained Navigation System for Determination of Orbit Elements of Satellite. Journal American Rocket Society.1961, 31(7):2310~2316
    97 S. Bhaskaran, D.Desai, P.J.Dumont et al. Orbit Determination Performance Evaluation of the Deep Space 1 Autonomous Navigation System. Proceedings of the AAS/AIAA Spacelight Mechanics Meeting, Monterrey,CA.Feb.9-12,1998,AAS 98-193:1295~1314
    98 T.L.Song, J.L.Speyer. The Modified Extended Kalman Filter and Parameter Identification in Linear System. Automatica. 1986,22(1):59~75
    99 J.Sasindek, Q.Wang, R.Johnson, J.Zalewski. UAV Navigation Based on Parallel Extended Kalman Filter. AIAA Guidance, Navigation and Control Conference Denver, Colorado, 2000, August:14~17
    100 Chun-Tang, Chao and Ching-Cheng Teng. A Fuzzy Neural Network Based Extended Kalman Filter. International Journal of System Science. 1996,27(3):333~339
    101 M.C.Algrain, J.Saniie. Interlaced Kalman Filtering of 3-D Angular Motion Based on Euler’s Nonlinear Equations. IEEE Trans. On AES.1994,30(1):175~185
    102 M.K.El-Machy, Efficient Satellite Orbit Determination Algorithm Proceedings of the Eighteenth National Radio Science Conference 2001:225~232
    103 W.S.Chare, R.H.Bishop, J.Ghosh. Hierachical Adaptive Kalman Filtering for Interplanetary Orbit Determination. IEEE Transactions on Aerospace and Electronic Systems. 1998,34(3):883~896
    104 S.J.Julier, J.K.Uhlmann. A New Approach for Filtering Nonlinear Systems. Proceedings of the American Control Conference, 1995:1628~1632.
    105 S.J.Julier, J.K.Uhlmann, F.Durrant Whyte. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Transactions on Automatic Control. 2000,45(3):477~482
    106 S.J.Julier, J.K.Uhlmann, H.F.Durrant Whyte. A New Approach for Filtering Nonlinear Systems. Proceedings of the American Control Conference.1995:1628~1632
    107 S.J.Julier. The Scaled Unscented Transformation. Proceeding of the American Control Conference, Anchorage, Ak.2002:4555~4559
    108 M.S.Hodgart, N.Morrison, P.Tortora. A Gaussian Deterministic Approach to Smoothing and Prediction for Application to Spacecraft Attitude and Orbit Determination Proceedings of the IEEE National Aerospace and Electronics Conference.2002:687~695
    109 Y.Asai. Nishimura. Orbit Determination by Means of Kalman Filter UsingDelta VLBI Data. Proceeding of the 1999 IEEE International Conference on Control Applications.1999,2:968~972
    110 Soohong Kim, Joohwan Chun. Bayesian Bootstrap Filtering for the LEO Satellite Orbit Determination. Proceedings of IEEE 51st Vehicular Technology Conference.2000:1611~1615
    111 M.S.Arulampalam, S.Maskell, N.Gordon, and T.Clapp. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Sinal Proceeding.2002,50(2):174~185
    112 M.S.Arulampalam, S.Maskell, N.Gordon, and T.Clapp. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transaction on Signal Processing. 2002, 50(2):174~185
    113 N.Gordon, D,Salmond, A.M.Smith. A Novel Approach to Nonlinear/NonGaussian Bayesian Sate Estimation. IEEE Proc.F. 1993, 140(2):493~500
    114 R.Van der Merwe, J.F.G..de Freitas, A.Doucet, and E.A..Wan. The unscented Kalman Filter for State and Parameter-Estimation. International Conference on Acoustics, Speech and Singal Processing, Salt Lake City, UT.2001:3461~3464
    115 E.A.Wan, R.Van Der Merwe. The Unscented Kalman Filter for Nonlinear Estimation Adaptive System for signal Proceeding, Communication, and Control Symposium,2000:153~158
    116 E.A.Wan, R.Van Der Merwe, and A.T.Nelson. Dual Estimation and the Unscented Transformation Advance in Neural Information Proceeding System.2000,12:666~672
    117章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社,1998:39~222
    118胡恒章.航天器控制.宇航出版社.1997:159~171
    119 H.L.Fisher, M.D.Shuter, T.E.Striwerda. Attitude Determination for the Star Tracking Mission.AAS-89-365.1989:139~150
    120赵黎平.近地卫星自主轨道确定和控制系统研究.西北工业大学博士论文.2002
    121 J.Deutschmann, I.Y.Bar-Itzhack, K.Galal. Quaternion Normalization in Spacecraft Attitude Determination.AIAA-92-4366-CP
    122 F.Landis Markley. Attitude Error Representations for Kalman Filtering.Journal of Guidance, Control and Dynamics.2003,26(2):311~317
    123 S.M. Fox, P.K. Pal, M.L. Psiaki. Magnetometer-Based Autonomous Satellite Navigation (MAGNAV).Guidance and Control 1990; Proceedings of the Annual Rocky Mountain Guidance and Control Conf., Feb. 1990, Keystone, Colorado:369-382
    124 M.L. Psiaki and F. Martel. Autonomous Magnetic Navigation for Earth Orbiting Spacecraft. Proceedings of the 3rd Annual AIAA/USU Conf. on Small Satellites, Sept. 1989, Logan, Utah:154~163
    125 Mark L.Psiaki. Gobal Magnetometer-Based Spacecraft Attitude and Rate Estimation. Journal of Guidance, Control and Dynamics.2004,27(2):240~250
    126 Mark L.Psiaki, Yoakov Oshman. Spacecraft Attitude Rate Estimation from Geomagnetic Field Measurements. Journal of Guidance, Control and Dynamics.2003,26(2):244~252
    127王建琦.基于姿态敏感器的卫星自主导航与融合定姿方法研究.哈尔滨工业大学博士论文.2004
    128何炬.国外天文导航技术发展综述.舰船科学技术.2005,27(5):91~96
    129黄圳圭.航天器姿态动力学.国防科技大学出版社.1997:1~90
    130 A.S. Malak. Toward Faster and More Accurate Star Sensor Using Recusive Centroiding and Star Identification. Texas A&M University. Ph.D.Thesis.2003
    131中国人民解放军总装备部军事训练教材编辑工作委员会.航天器飞行控制与仿真.北京:国防工业出版社.2004:121~125
    132屠善澄.卫星姿态动力学与控制.宇航出版社.2003:316~330
    133 S.J.Janz, et al. Rayleigh Scattering Attitude Sensor in Ultraviolet Atmospheric and Space Remote Sensing: Methods and Instrumentation. Proceeding SPIE.1996,2831:146~153
    134 C.C.Liebe, S.Mobasser, Bae Youngsam, C.J.Wrigley, et al. Mico Sun Sensor. Proceeding of IEEE Aerospace Congerence.2002:2263~2273
    135 C.C.Liebe. Active Pixel Sensor(APS) Based Star Tracker. Proceedings of IEEE Aerospace Conference.1998:119~127
    136邓正隆.惯性导航原理.哈尔滨工业大学出版社.1994:21~51
    137陈永冰.惯性导航原理.国防工业出版社.2007: 33~67
    138张天光.捷联惯性导航技术(第2版).国防工业出版社.2007: 28~69
    139 L. Qin, L. Li. Error Analysis and Compensation of Strapdown Inertial Navigation System. Journal of Beijing Institute of Technology. 2002, 11(2):117~120
    140 B. Friedland. Analysis Strapdown Navigation Using Quaternions. IEEE Transactions on Aerospace and electronic system. 1978, (14)5:764~768
    141秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理.1998:238~336
    142付梦印,邓志红,张继伟. Kalman滤波理论及其在导航系统中的应用.科学出版社. 2003:79~84
    143 A.L. Jamshaid, Fang Jiancheng. In-Flight Al Ignment of Inertial Navigation System by Celestial Observation Technioue. Transactions of Nanjing University of Aeronautics.2005,22(2):132~138
    144 T. Zhang, B. Wang. Observability of Inertial Navigation System. Journal of Beijing Institute of Technology. 2005, 14 (3):269~272
    145 D. G. Meskin, B. Itzhack, Observability analysis of piece-wise constant systems. Application to inertial navigation in-flight alignment IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(4):1068-1075
    146 H. Rotstein, J. Reiner, A. Ben-Ishai. Kalman Filter Mechanization in INS/Seeker Fusion and Observability Analysis. AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada, AIAA 2001-4402. 2001:1~14
    147段广仁.线性系统理论.哈尔滨工业大学出版社.1998:50~136
    148万德钧,房建成.惯性导航初始对准.东南大学出版社1998:16~66
    149杨克劭,包学游.矩阵分析.哈尔滨工业大学出版社.1988:113~120
    150程云鹏.矩阵论.西北工业大学出版社(第2版).2003:225~233
    151帅平,陈定昌,江涌.GPS/SINS组合导航系统状态的可观测度分析方法.宇航学报.2004,2:219~224
    152 J. Vasconcelos, P. Oliveira, Carlos Silvestre. Inertial Navigation System Aided by GPS and Selective Frequency Contents of Vector Measurements. AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, California, AIAA 2005-6057. 2005:1~15
    153 D. G. Meskin, B. Itzhack, Observability analysis of piece-wise constant systems. Application to inertial navigation in-flight alignment IEEETransactions on Aerospace and Electronic Systems. 1992, 28(4):1068-1075
    154 H. Rotstein, J. Reiner, A. Ben-Ishai. Kalman Filter Mechanization in INS/Seeker Fusion and Observability Analysis. AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada, AIAA 2001-4402. 2001:1~14
    155 T. Zhang, B. Wang. Observability of Inertial Navigation System. Journal of Beijing Institute of Technology. 2005, 14 (3):269~272
    156 Konrad Reif, Stefan Gunther. Stochastic stability of the discertetime extended Kalman Filter. Automatic Control, IEEE Transactions,1999, 44(4):714~728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700