用户名: 密码: 验证码:
森林地被可燃物的生物降解技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林可燃物是森林燃烧的物质基础,是林火行为的主体,是林火管理的基本依据。森林地被可燃物作为一种可再生资源,在我国大兴安岭林区载量十分丰富,其引发的火灾不计其数,由于地处寒温带,森林地被可燃物的分解受到很大程度的制约,如何使该地区的地被可燃物加快分解,而又使环境不受污染,是现代林业面临的难题。本文应用微生物学和森林防火学的原理、技术和方法,通过对大兴安岭地区可燃物降解菌的分离、纯化、优良菌株筛选、降解菌剂配制、室内外降解试验等系列研究,建立了适合于大兴安岭林区微生物防火的技术和方法,为我国森林防火在防控技术领域提供了新的方法,丰富了森林防火研究的理论和技术,现将研究结果总结如下:
     本文大兴安岭地区三种主要可燃物类型(落叶松-白桦混交林、白桦林、落叶松林)地被物为研究对象,通过野外采集样品,室内富集、分离、纯化及培养得到19株作为初筛的试验菌株,并通过滤纸降解试验初步筛选出12株对滤纸有良好降解作用的菌株。随后进行以降解落叶松松针为基质的复筛实验,同时通过酶活性的测定,筛选出三株具有良好降解效果的真菌,分别为菌株JZM112、菌株THI2331和菌株HZI3FX532,并对三株菌进行了鉴定,结果为JZM112为深绿木霉Trichoderma atroviride; THI2331为哈茨木霉Trichoderma harzianum; HZI3FX532为比来青霉Penicillin bilaiae。最后将三株菌接种于PDA试管斜面培养基,冷藏于4℃冰箱,待用。
     选用菌株JZM112、菌株THI2331、菌株HZI3FX532和菌株HZI1FX441(几乎没有降解效果的对照菌株)四株真菌作为菌剂制备的真菌。分别接种于麸曲培养基上,待长出孢子后,将麸曲固体基质经冷冻真空干燥处理,然后利用振动筛将孢子粉和麸皮等固体基质分开,得到孢子粉。待需进行喷洒试验时,将孢子粉配制成孢子悬浮液,加入定量的药品后制成菌剂,可以用于的地被可燃物降解试验。
     为确定野外喷洒实验,本实验设计了特定的室内实验。主要考察各菌剂在恒温、恒湿的状态下对地被可燃物的降解效果。喷洒剂按9种不同剂型(无机盐溶液、水、112菌剂、331菌剂、532菌剂、112532菌剂、331532菌剂、441菌剂、3混合菌剂),三种剂量(50倍液、100倍液、400倍液)喷洒。并通过对相同剂量不同菌剂对可燃类型地被物影响比较分析得出,112532菌剂均优于其它菌剂,112532菌剂对三种可燃物类型地被物的降解效果都为最好,可作为野外喷洒试验的菌剂。
     野外喷洒试验在开放的地区进行,样地设置于大兴安岭塔河林区。选用112532菌剂的50倍液、100倍液、400倍液进行室外喷洒,并以同剂量的无机盐溶液、水及441菌剂为对照,结果显示,与未喷洒区相比,100倍液的112532菌剂,在降解的30d内,能使落叶松-白桦混交林木素降解速率提高7.08倍;使白桦林综纤维素降解速率提提高10.46倍;使落叶松林热值损失速率提高提高2.44倍。降解效果显著。
     研究结果表明,利用高效降解微生物可有效提高森林地被可燃物降解率,通过此方法对开设防火林带,降低森林火险,预防森林火灾的发生,具有重要的现实意义。
Forest fuel is burning basis of forest and also dominating the fire behaviors. It has been considered as a major factor for forest management. Forest ground biomass, as a renewable resource, is dramatically abundant in Daxing'an mountains; however, It caused considerable fires in the past several decades. The decomposition of forest fuel is constricted seriously due to the cold-temperate zone where Daxing'an mountains located in. Hence, how to make ground fuel decomposed quickly without any pollution has been a great concern for modern forestry. The study set up the technical and method of microbe-fireproof ing which is fit for Daxing'anling, under the theory, technology and method of microbiology and forest fire science, through separating, purifying, selecting the germ which can decompose combustible, and preparation for microbial inoculums, and degradable test indoor-outdoor. The research supply a new method for China forest fire prevention, which increase theory and technique. The Result of study as follows.
     In this paper, the ground fuel in three major forest types (Larix gmelini-Betula platyphylla、Betula platyphylla、Larix gmelini) of Daxing'an mountains has been studied.19strains were obtained through the process of fieldwork, indoor enrichment, separation, purification and culture. After second filter paper degradation test,12strains left because of the superiorities on decomposition. We did the third round test based on Larch pine leaves, then only three fungal being selected with good degradation effect. They are Trichoderma atroviride,Trichoderma harzianum and Penicillin bilaiae respectively after identifying. Another four stains also be chosen for comparison. We inoculated them in the bran medium for spores growing. The bran solid matrix was dealt with through freeze vacuum drying process, then separating the spore powder from wheat bran solid substrate using shaker. The last step before spraying test is making spore powder to spore suspension by adding quantitative drugs that made from bacteria.
     An indoor trial experiment was done in order to test the performance of every strain in degradation under condition of constant temperature and humidity. Spray9different degradation liquid with three doses (50times,100times,400times) in our study area. Compared with other correspond strains, we got the strains with best effect of degradation which is more suitable for doing field experiment. Several plots were set up for doing spray experiment with different types of strains liquid. The results showed that100times doses of degradation liquid of112532can increase the speed of degradation of lignin in Larix gmelini-Betula platyphylla is7.08times faster than natural process with30days and increasing the speed of degradation of holo-cellulose in Betula platyphylla is10.46times faster than its natural process. Degradation effects were significant.
     The results indicated that efficient degrading microorganisms can improve the degradation rate of forest fuel effectively. It would be having an important practical meaning if the strains be used to make fire belt and reduce and prevent forest fire.
引文
[1]Goldammer J. G. and P. J. Crutzen, Fire in the environment:scientific rational and summary of results of the Dahlem Workshop, The Ecological, Atmospheric and Climatic Importance of Vegetation Fire,1993:1-14
    [2]Cooper, Charles F. The ecology of fire, Sci America,1961(204):50-160
    [3]Waring, R. H. and W. H. Schleginger. Forest Ecosystem:Concept and Management. London:Academic Press,1985:132-136
    [4]Landsberg J. J. Physiological Ecology of Forest Productivity, London:Academic Press, 1986:151-155
    [5]Crutzen, P. J., and Andreae M.O., Biomass burning in the tropics:impact on the atmospheric chemistry and biogeochemical cycles, Science,1990(250):1669-1678
    [6]Andreae, M.O., Biomass burning, its history, use, and distribution and its impact on environmental quality and global climate, in Global Biomass Burning:Atmospheric, Climate and Biospheric Implications,1991:3-21
    [7]郑焕能.林火生态.哈尔滨:东北林业大学出版社,1992(10):3-10
    [8]郑焕能.中国林火.哈尔滨:东北林业大学出版社,1993(12):4-12
    [9]文定元.森林防火基础知识.北京:中国林业出版社,1995:5-15
    [10]郑焕能.森林防火.哈尔滨:东北林业大学出版社,1994:3-9
    [11]胡海清.林火与环境.哈尔滨:东北林业大学出版社,1999:6-15
    [12]Detwiler R P, Hall C S. Tropical forests and the global carbon Cycle. Science, 1988(239):42-47
    [13]王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82-89
    [14]郝占庆,吕航.木质物残体在森林生态系统中的功能评述.生态学进展,1989,6(3):179-183
    [15]廖军,王新根.森林凋落量研究概述.江西林业科技,2000,1:31-34
    [16]Harmon M E.,et al. Coarse woody debris in mixed coniferous forest, Sequoia National Park, California. Can. J. Forest Researsh,1987,17:1265-1272
    [17]Harmon M E., et al. Ecology of coarse woody debris in temperate ecosystem. Adv. Reseach,1986,15:233-241
    [18]李凌浩,邢雪荣,黄大明.武夷山甜槠林粗死木质残体的贮量、动态及其功能评述[J].植物生态学报,1996,20(2):132-143
    [19]胡海清.林火生态与管理.北京:中国林业出版社,2005:23-24
    [20]程东升.森林微生物生态学.哈尔滨:东北林业大学出版社,1993:84-86
    [21]董广生,葛学林,金晓钟,等.林火学.哈尔滨:东北林业大学出版社,1997:189-190
    [22]Sarah E. Hobble, Peter. B. Reich, Jacek Oleksyn et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology,2006, pp. 2288-2297
    [23]Helena Castro, Claire Fortunel, Helena Freitas. Effects of land abandonment on plant litter decomposition in a Montado system:relation to litter chemistry and community functional parameters. Plant Soil,2010,333:181-190
    [24]Muhammad Sanaullah, Abad Chabbi, Gilles Lemaire, et al. How does plant leaf senescenece of grassland species influence decomposition kinetics and litter compounds dynamics. Nutr Cycl Agroecosyst,2010,88:159-171
    [25]Temel Sariyildiz and Mehmet Kucuk. Influence of slope positon, stand type and rhododendron(R hododendron ponticum) on litter decomposition rates of Oriental beech (Fagus orientalis Lipsky.) and spruce [Picea orientalis (L.) Link]. Eur J Forest Res.2009,128:351-360
    [26]Ping Liu, Jianhui Huang, Osbert Jianxin Sun, et al. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia,2010,162:771-780
    [27]Raphael K. Didham. Altered leaf-litter decomposition rates in tropical forest fragments. Oecologia,1998,116:397-406
    [28]C. Kurz-Besson, M. M. Couteaux, B. Berg, et al. A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Eurpoe. Plant Soil,2006,285:97-114
    [29]Carl L. Strojan. Forest leaf-litter decomposition in the Vicinity of a Zinc Smelter. Oecologia(Berl.).1978,32:203-212
    [30]Christopher Martius, Hubert Hofer, Marcos V.B. Garcia, et al. Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutrient Cycling in Agroecosytems,2004,68:137-154
    [31]Cindy E. Prescott. Do rate of litter decomposition tell us anything we really need to know. Forest Ecology and Management,2005,200:66-74
    [32]Qinglin Li, Daryl L. Moorhead, Jared L. Deforest, et al. Mixed litter decomposition in a managed Missouri Ozark forest ecosystem. Forest Ecology and Management,2009,257:668-694
    [33]Eva Ritter. Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech(Fagus sylvatica) forest. Soil Biology & Biochemistry,2005, 37:1237-1247
    [34]J. D. Bates, T. S. Svejcar, R. F. Miller. Litter decomposition in cut and uncut western juniper woodlands. Journal of Arid Environments,2007,70:222-236
    [35]Cathy Kurz, Marie-Madeleine Couteaux, Jean M. Thiery. Residence time and decomposition tate of Pinus pinaster needles in a forest floor from direct field measurements under a Mediterranean climate. Soil Biology & Biochemistry,2000, 32:1197-1206
    [36]C. E. Prescott. Influence of forest floor type on rates of litter decomposition in microcosms. Soil Biol. Biochem,1996,28:1319-1325
    [37]Takashi Osono, Satoru Hobara, Takuya Hishinuma, et al. Selective lignin decomposition and nitrogen mineralization in forest litter colonized by Clitocybe sp. European Journal of Soil Biology,2011,47:114-121
    [38]Bart Vandecasteele, Bruno De Vos, Bart Muys, et al. Rates of forest floor decomposition and soil forming processes as indcators of forest ecosystem functioning on a polluted dredged sediment landfill. Soil Biology & Biochemistry, 2005,37:761-769
    [39]Henry L.Gholz, Dacid A. Wedin, Stephen M. Smitherman, et al. Long-term dynamics of pine and hardwood litter in contrasting environments:toward a global model of decomposition. Global Change Biology,2000,6:751-765
    [40]廖军,王新根.森林凋落量研究概述.江西林业科技,2000,1:31-34
    [41]KILLHAM K. Nitrification in coniferous forest soils. Plant and Soil,1990,128: 31-44
    [42]Berg B, and Ekbohm G.. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest Ⅶ. Canadian Journal of Botany,1991,69:1499-1516
    [43]Brown J. K. Estimating crown fuel weights of red pine and jack pine. USDA Forest Serv. Res. Paper,1965,12:12-13
    [44]刘晓东,王军,张东升,等.大兴安岭地区兴安落叶松林可燃物模型的研究.森林防火,1995,3:8-932
    [45]周志权.辽东3种主要林型地被可燃物载量的研究.东北林业大学学报,2000,28(1):32-34
    [46]袁春明,文定元.马尾松人工林可燃物负荷量和烧损量的动态预测.东北林业大学学报,2000,28(6):24-27
    [47]Olson J S. Energy storage and the balance of producers and decomposers in ecological system[J]. Ecology,1963,44(2):322-330
    [48]董广生,葛学林,金晓钟,等.林火学.哈尔滨:东北林业大学出版社,1997:189-190
    [49]胡肄慧,陈灵芝,孔繁志,等.几种树木枯叶分解速率的试验研究.植物生态学与地植物学学报,1987,11(2):124-131
    [50]Harmon M E., et al. Ecology of coarse woody debris in temperate ecosystem. Adv. Reseach,1986,15:233-241
    [51]杨万勤.森林土壤生态学.成都:四川科学出版社.2006:23-25
    [52]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较.林业科学,2004,40(3):19-25
    [53]Cornelissen JHC. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types[J]. Journal of Ecology,1996,84:573-582
    [54]Wang LX, Wang J, Huang JH. Comparison of major nutrient released patterns of Quercus liaotungensis leaf litter decomposition different climatic zones. Acta Botanica Sinica,2003,45(4):399-407
    [55]Tian XJ, Takeishi T. Relative roles of microorganisms and fauna on needle litter decomposition in a subalpine coniferous forest. Acta Phytoecologica Sinica,2002, 26(3):257-263
    [56]杨万勤,王开运.森林土壤酶的研究进展.林业科学,2004,40(2):152-159
    [57]Brown J. K. Estimating crown fuel weights of red pine and jack pine. USDA Forest Serv. Res. Paper,1965,12:12-13
    [58]张东来,毛子军,张玲,等.森林凋落物分解过程中酶活性研究进展.林业科学,2006,42(1):105-109
    [59]Criquet S, Farnet AM, Tagger S, et al. Annual variations of phenoloxidase activities in an evergreen oak litter:Influence of certain biotic and abiotic factors[J]. Soil Biology and Biochemistry,2000,32:1505-1513
    [60]Aerts R, Caluwe HD. Nutritional and plant mediated controls on leaf litter decomposition of Carex species[J]. Ecology,1997,78(1):244-260
    [61]Fioretto A, Papa S, Sorrentino G. Decomposition of Cistus leaf litter in a Mediterranean marquis ecosystem:Mass loss, microbial enzyme activities and nutrient changes[J]. Soil Biology and Biochemistry,2001,33:311-321
    [62]Simoes DCM, McNeil D, Kristiansen B, et al. Purification and partial characterization of a 1.57 kDa thermostable esterase from Bacillus stearotherm ophilus FEM S Microbial Letters,1997,147:151-156
    [63]Meentemeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology,1978,59:465-472
    [64]Meentemeyer, V., and B. Berg. Regional variation in rate of mass loss of Pinus sylvestris needles in Swedish pine forests as influenced by climate and litter quality. Scandinavian Journal of Forest Research,1986,1:167-180
    [65]Aerts,R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship. Oikos,1997,79:439-449
    [66]Austin, A. T., and P.M. Vitousek. Precipitation, decomposition, and litter decomposability of Metrosideros polymorpha on Hawaii. Journal of Ecology,2000, 88:129-138
    [67]Berendse, F. Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry,1998,42:73-88
    [68]Berg, B., and G. Eckbom. Nitrogen-immobilization in decomposing needle litter at variable carbon:nitrogen ratios. Ecology,1983,64:63-67
    [69]Gholz, H.L., D.A. Wedin, S. M. Smitherman, M. E. Harmon, et al. Long-term dynamics of pine and hardwood litter decomposition in contrasting environments:toward a global model of decomposition. Global Change Biology,2000,6:751-765
    [70]Hendriksen, N. B. Leaf litter selection by detritivore and geophagous earthworms. Biology and Fertility of Soils,1990,10:17-21
    [71]Hobbie, S. E. Effects of plant species on nutrient cycling. Trends in Ecology and Evolution,1992,7:336-339
    [72]Hobbie, S. E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs,1996,66:503-522
    [73]Hobbie, S. E. Interactions between lignin and nutrient availability during decomposition in Hawaiian montane forest. Ecosytems,2000,3:484-494
    [74]Hobbie, S. E., and P. M. Vitousek. Nutrient regulation of decomposition in Hawaiian montane forests:do the same nutrients limit production and decomposition? Ecology,2000,81:1867-1877
    [75]Sheeba Rebecca Isaac, and M. Achuthan Nair. Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Biology & Biochemistry,2005,37:1656-1664
    [76]Lacelle, P., Blanchart E., Martin S., et al. A hierarchial model for decomposition in terrestrial systems application to soils of humid tropics. Biotropca,1993,25(2):13-135
    [77]Lodege D. J.. Nutrient concentrations, percentage moisture and density of field collected fungal mycelia. Soil Bioglogy & Biochemistry,1987,19:727-733
    [78]Berg B.. Dynamics of nitrogen(15N) in decomposing Scots pine (Pinus sylvestris) needle litter. Long term decomposition in a Scots pine forest. Ⅵ. Candian Journal of Botany,1988,66:1539-1546
    [79]Berg B., and Soderstorm B.. Fungal biomass and nitrogen in decomposing Scots pine needle litter. Soil Biology & Biochemistry 1979,11:339-341
    [80]Chesson A.. Plant degradation by ruminants:parallels with litter decomposition in soils. In:Cadisch, G., Gliller, G.E., Driven by Nature:Plant Litter Quality and Decomposition. CAB International, Wallingford, UK,1997,47-66
    [81]Pandey U., and Sing J. S.. Leaf litter decomposition in an oak-conifer forest in Himalaya:The effects of climate and chemical composition. Forestry,1982,55(1):47-59
    [82]Palm C. A., and Sanchez P. A.. Decomposition and nutrient release patterns of the leaves of three tropical legumes. Biotropica,1990,22(4):330-338
    [83]Berg B., McClaugherty C., Johansson M. B.. Litter mass loss rates in late stages of decomposition at some climatically and nutritionally different pine sites:a study on the effects of climate change. Dept. of Forest Ecology and Forest Soils, Swedish University of Agricultural Sciences, Report No.R67
    [84]Taylor B. R., Parkinson D., Parsons W. F.. Nitrogen and lignin content as predictors of litter decay rates:a microsm test. Ecology,1989,70(1):97-104
    [85]Okeke A. I., Omaliko C. P.E.. Leaf litter decomposition and carbon dioxide evolution of some agroforestry fallow species in southern Nigeria. Forest Ecology Management,1992,50:103-116
    [86]George, Suman J., Kumar. Litter dynamics and cumulative soil fertility change in silvopastural systems of a humid tropical region in Central Kerala, India. International Tree Crops Journal,1998,9:267-282
    [87]Berg B., and Staaf H.. Leaching; accumulation and release of nitrogen in decomposing forest litter. In:Clark F. E., Rosswall T., Terrestrial Nitrogen Cycles: Processes, Ecosystem Strategies and Management Impacts. Ecologial Bulletins, Stockholus,1981,163-178
    [88]Rustad L. E., and Cronan C. S. Element loss and retention during litter decay in a red spruce stand in Maine. Canadian Journal of Forest Research,1988,18:947-953
    [89]Jamaludheen V., Kumar, Mohan B.. Litter of multipurpose trees in Kerala, India: variations in the amounts, quality, decay rate and release of nutriens. Forest Ecology and Management,1999,115:1-11
    [90]Edmonds RL, Thomas TB. Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forest, Olympic National Park, Washington[J]. Canadian Journal of Forest Research,1995, 25:1049-1057
    [91]邱尔发,陈卓梅,郑郁善,等.麻竹山地笋用林凋落物发生、分解及养分归还动态.应用生态学报,2005,16(5):811-814
    [92]薛立,邝立钢.杉木凋落物分解速率的研究.四川林业科技,1990,11(1):1-4
    [93]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展.生态学报,2004,23(6):77-83
    [94]许新健,俞新妥,陈金耀.武夷山主要杉木伴生树种落叶分解速率的研究.南京林业大学学报.1995,19(2):13-18
    [95]代静玉,秦淑平,周江敏.水杉凋落物分解过程中溶解性有机质的分组组成变化.生态环境,2004,13(2):207-210
    [96]卢俊培,刘其汉.海南岛尖峰岭热带林凋落叶分解过程的研究.林业科学研究,1989,2(1)25-32
    [97]林鹏,卢昌义,王恭礼,等.海南岛河港海莲红树林凋落物动态的研究.植物生态学与地植物学学报,1990,14(1):69-73
    [98]莫江明,布朗,孔国辉,等.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究.植物生态学报,1996,20(6):534-542
    [99]沈海龙,丁宝永,沈国舫,等.樟子松人工林下针阔叶凋落物分解动态.林业科学,1996,32(5):393-402
    [100]贾黎明,方陆明,胡延杰.杨树刺槐混交林及纯林枯落叶分解.应用生态学报,1998,9(5):463-467
    [101]Cummins K. W.. A worldwide directory of stream ecologists. Michigan State University Institute of Water Research,1973, Technical Report No.28
    [102]Hering T. F.. Fungal decomposition of oak leaf litter, Trans, of the British Myco.Soci.,1967,50:267-273
    [103]Hudson H. J.. The ecology of fungi on plant remains above the soil. New Phytologist,1968,67:837-874
    [104]Hudson H. J.. Fungal Biology. Edward Arnold Ltd.,1986
    [105]Wilhelmi V., and Rotke G. M.. The effect of acid rain, soil temperature and humidity on C-mineralization rates in organic soil layers under spruce. Plant and Soil,1990,121:197-202
    [106]中国科学院《中国自然地理》编辑委员会.中国自然地理-地貌.北京:科学出版社,1981:18-20
    [107]郑焕能.森林燃烧环网.哈尔滨:东北林业大学出版社,2003,134-148
    [108]邢来君,李明春.普通真菌学.北京:高等教育出版社,1999:206-208
    [109]Rifaim A.. A revision of the genus Trichoderm a. Mycological papers,1969,116: 1-56
    [110]Bissett J.. A revision of the genus Trichoderm a Ⅰ:section Longibrachiatum sect. Can J Bot,1984,62:924-931
    [111]Bissett J.. A revision of the genus Trichoderm a Ⅱ:infraspecific classification. Can J Bot,1991,69:2357-2372
    [112]Bissett J.. A revision of the genus Trichoderm a Ⅲ:section Pachybasium. Can J Bot,1991, b (69):2373-2417
    [113]Bissett J.. A revision of the genus Trichoderm a Ⅳ:Additional notes on section Longibrachiatum. Can J Bot,1991, c (69):2418-2420
    [114]魏景超.真菌鉴定手册.上海:上海科学技术出版社,1979:501-512.
    [115]H. L. Barnett and Barry B. Hunter. Illustrated genera of imperfect fungi(third edition). Minnesota:Burgess Publishing Company,1972
    [116]Domsch. K. H., W. Gams, T. H. Anderson. Compendium of Soil Fungi. London: Academic Press,1980
    [117]王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序.微生物学通报,1987,14(2):81-84
    [118]Orth A. B., Royse D. J., Tien M.. Ubiquity of lignin degrading peroxidases among various wood degrading fungi. Appl Environ Microbiol,1993,59:4017-4032
    [119]李坚.木材科学(第二版).北京:高等教育出版社,2202,84-85
    [120]郭新红,喻达时,王婕等.6种植物中木质纤维素含量的比较研究.湖南大学学报(自然科学版),2008,35(9):76-78
    [121]燕红,王子军,鲍中元等.木质素降解菌16-2发酵麦麸生产膳食纤维最佳工艺及其物化特性.浙江大学学报(农业与生命科学版),2011,37(5):516-520
    [122]黄耀,沈雨,周密,等.木质素和氮含量对植物残体分解的影响.植物生态学报,2003,27(2):183-188
    [123]黄慧,中源源,陈宏.黄孢原毛平革菌对玉米秸秆木质素的降解研究.西南大学学报,2011,33(7):93-97
    [124]黄茜,黄凤洪,江木兰,等.木质素降解菌的筛选及混合菌发酵降解私秆的研究.中国生物工程杂志,2008,28(2):66-70
    [125]陈芙蓉,谢更新,郁红艳,等.基于木质素生物降解的堆肥化接种剂开发.生态与农村环境学报,2008,24(2):84-87
    [126]牛红榜,万方浩.外来植物紫茎泽兰入侵的土壤微生物机制.硕士论文:中国农业科学院,2007
    [127]杨红,刘志恒,吕国忠.长白山自然保护区北坡森林土壤真菌种群及其多样性研究.硕士论文:沈阳农业大学,2009
    [128]刘淑霞,周平,赵兰坡,等.吉林黑土区玉米田土壤真菌的多样性.东北林业大学学报,2008,36(7):42-45
    [129]邵宝林.横断山北部高山区土壤真菌群落多样性研究.硕士论文:四川农业大学,2006
    [130]Campbell A. G., Gerrard E. D., Joyce T. W., et al. The MyCoR process for color removal from bleach plant effluent:bench-scale studies. In Proceedings of the 1982 Tappi Research and Development Conference. Atlanta:Tappi Press,1982,209-214
    [131]王双飞,陈嘉翔.制浆造纸废水的生物处理.北方造纸,1994,4:27-30
    [132]白洪志,王慧,韩梅,等.绿色木霉C-08产纤维素酶的固体发酵条件优化.沈阳农业大学学报,2010,41(6):681-685
    [133]赵芸晨,李建龙,陈育如,等.余醉百草枯对木质素降解菌产酶及其生物化学变化的影响.生物工程学报,2009,25(8):1144-1150
    [134]李欢,李晓林,向丹.丛枝菌根真菌对羊草凋落物降解作用的研究.生态环境学报,2010,19(7):1569-1573
    [135]陈宴,戴传超,王兴祥,等.施加内生真菌拟茎点霉(Phomopiss sp.)对茅苍术凋落物降解及土壤降解酶活性的影响.土壤学报,2010,47(3):537-544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700