用户名: 密码: 验证码:
激光产生的锡、碘和金等离子体极真空紫外光谱的分析和模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当一束高能脉冲激光作用到固体样品靶上时会产生激光等离子体,在膨胀过程会产生波段很宽的电磁辐射,其光谱一般由线状谱和连续谱构成。采用激光等离子体光谱技术,可以获得等离子体演化过程中大量有关原子结构及其相关动力学过程的信息,并且具有操作简单、发射波段宽、强度高、脉宽窄和重复性好等优点,是开展光谱研究的理想光源之一。因此,目前激光等离子体光谱已被广泛用于原子物理及其相关领域的应用研究。
     本论文所涉及的工作主要集中在对XUV/EUV波段激光等离子体光谱的分析和模拟,主要包括以下三方面的内容:
     (1)激光产生的锡等离子体作为EUV光刻光源的研究。在计算机芯片制造工业,激光烧蚀锡靶时产生的等离子体由于在13.5 nm附近2%带宽内的辐射在多层反射镜上具有高达70%以上的反射率,已被认为是下一代半导体光刻光源重要的候选光源之一。本文分析了9.5—18 nm波段范围内随激光功率变化的激光锡等离子体光谱,通过与HFCI计算结果及其他作者的实验结果比较,确定了光谱中由于不透明度效应引起的自吸收贡献及自吸收峰位置。并利用基于LTE模型的DCA/UTA程序计算了离子丰度并模拟了光谱。通过与实验光谱的比较,估算了等离子体核心和近边缘的电子温度和电子密度。
     (2)激光产生的碘等离子体中的内壳层光吸收研究。利用双激光等离子体光谱技术,获得了70—127 eV波段范围的碘的4d光吸收光谱。利用HFCI方法,计算获得了相关的跃迁能、跃迁几率、统计权重和自电离宽度等原子数据,确定了其光谱主要由4d—nf的离散跃迁线和4d-εf的“扇形共振”构成。并确定了随离化度的增加,碘离子的离散跃迁线和“扇形共振”的演化情况。最后,基于归一化的玻尔兹曼分布假设和稳态碰撞辐射模型,获得了与实验光谱具有很好一致性的模拟光谱,确定了碘等离子体的参数条件。
     (3)激光产生的金等离子体中的内壳层光吸收研究。本文利用与碘等离子体类似的处理过程,分析了XUV波段的Au~(2+),Au~(3+) and Au~(4+)离子的4f和5p内壳层光吸收光谱。激光产生的金等离子体光谱主要由大量的4f—5d,6d and 5p—5d,6s的共振跃迁及其单双6s旁观电子引起的伴线跃迁构成,其中伴线的贡献要远大于共振线,并随着离化度的增加,双6s旁观电子引起的伴线贡献逐渐大于单6s旁观电子的伴线贡献。同样,利用归一化的玻尔兹曼分布假设和稳态碰撞辐射模型,获得了与实验光谱具有很好一致性的模拟光谱。
     对于上述激光等离子体光谱的分析和模拟,我们希望可以加深激光产生等离子体的物理特性的理解,还可以促进其在应用领域的发展。
Laser-produce plasmas(LPP),formed by focusing a beam from a pulsed laser onto solid sample targets,can emit an intense burst of radiation over a broad spectral range, making them ideally suited to spectroscopic studies.The spectra generally consist of lines and continuum,depending on factors such as the laser power density and the material used.Therefore,laser-produced plasma spectroscopy(LPPs) has been established as a versatile tool for atomic physics studies in the IR to X-ray regions because of its features, such as simplified production and operation,broad emission,high shot to shot intensity, short pulse duration,good reproducibility,lower costs and so on.Using LPPs,one can obtain lots of information about the atomic structure and related dynamics processes.
     The work reported in this thesis consists of the investigation of laser-produced plasma as EUV lithography sources and inner-shell photoabsorption studies of laser-produced iodine and gold plasmas.The following studies focus mainly on the theoretical analysis and simulations of spectra mentioned above.
     Laser-produced plasmas are considered to be important candidate sources of extreme ultraviolet(EUV) radiation for application in future lithography tools for the high-volume manufacturing of computer chips.In this work,extreme ultraviolet(EUV) emission spectra from laser-produced Sn plasmas have been experimentally investigated at different power densities in the 9.5-18 nm wavelength range.Experimental results indicate the presence of a broad reabsorption band and some pronounced dips because of opacity effects in the spectra.With increasing power densities,the reabsorption band shifts to the shorter wavelength side and the absorption dips become deeper.Theoretical calculations using the Cowan code show that the dips arise from the 4d-4f and 4p-4d transitions.Using detailed configuration accounting(DCA) with the term structures treated by the unresolved transition array(UTA) model,we analyze the opacity effects and simulate the spectra.By comparing the results of the simulations with experiments,it can be concluded that the plasma from a 5%Sn target gives essentially pure emission,while the spectra from a pure Sn target contains both emission and absorption,with electron temperatures ranging from 28 to 15 eV,and electron densities from 5.0×10~(20) to 3.7×10~(19) cm~(-3),in going from the core to the outer plasma region.
     The 4d photoabsorption spectra of I~(2+),I~(3+) and I~(4+) have been obtained in the 70-127 eV region with the dual laser produced plasma technique at time delays ranging from 400 to 520 ns.With decreasing time delay,the dominant contribution to spectra evolves from I~(2+) to I~(4+) ions,and each spectrum contains discrete 4d-nf transitions and a broad 4d-εf shape resonance,which are identified with the aid of multiconfiguration Hartree- Fock calculations.The excited states decay by direct autoionization involving 5s or 5p electrons and rates fbr the different processes and resulting linewidths were calculated. With increasing ion stage,the 4d-εf shape resonance becomes intense and broader in going from I~(2+) to I~(3+),and then vanishes in I~(5+).In addition,the discrete structure of the calculated spectrum of each ion gradually approaches the corresponding shape resonance position.Based on the assumption of a normalized Boltzmann distribution amongst the excited states and a steady-state collisional-radiative(CR) model,we reproduced spectra which are in good agreement with experiment.
     The photoabsorption processes of Au~(2+),Au~(3+),and Au~(4+) have been investigated experimentally and theoretically in the 70-127 eV region.Using the dual laser-produced plasma(DLP) technique,the 4f and 5p photoabsorption spectrum has been recorded at 50 ns time delay and was found to be dominated by a great number of transition lines from 4f-5d,6d and 5p-5d,6s transitions,which have been identified by comparison with the aid of Hartree-Fock with configuration interaction calculations.The characteristic feature of the spectrum is that satellite lines from excited configurations containing one or two 6s electrons are more important than resonance lines,and with increasing ionization,satellite contributions from states with one 6s spectator electron gradually become more important than those with two 6s spectator electrons.Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady state collisional-radiative model, we succeeded in reproducing a spectrum which is in good agreement with experiment.
     In a word,the main goals of the work presented in this thesis can be helpful to the further development of optical diagnostic methods fbr application to EUV producing discharges,and improving the understanding of the physical properties of these laser-produced plasmas.
引文
[1]P.Silverman,1st EUVL Source Workshop,ISMT,Dallas(2002).
    [2]A.Nagano,T.Mochizuki,et al.,Laser wavelength dependence of extreme ultraviolet light and particle emissions from laser-produced lithium plasmas,Appl.Phys.Lett.93,091502(2008).
    [3]S.Fujioka et al.,Collisionless Reconnection in an Electron-Positron Plasma,Phys.Rev.Lett.95,245001(2005).
    [4]S.Fujioka et al.,Pure-tin microdroplets irradiated with double laser pulses fbr efficient and minimum-mass extreme-ultraviolet light source production,Appl.Phys.Lett.92,241502(2008).
    [5]E.D.Emmons,A.Aguilar,et al.Photoionization and electron-impact ionization of Xe~(3+),Phys.Rev.A 71,042704(2005).
    [6]J.B.West and J.Morton.Absolute Photoionization-Cross Section Tables fbr Xenon in the VUV and the Soft X-Ray Regions,At.Data Nucl.Data Tables 22,103(1978).
    [7]J.M.Bizau,D.Cubaynes,M.Tichter,F.Wuilleumier,J.Obert,and J.C.Putaux.Rev.Sci.Instrum.63,1389(1992)
    [8]T.B.Lucatorto,T.J.McIlrath,et al.,Radical Redistribution of the 4d Oscillator Strength Observed in the Photoabsorption of the Ba,Ba~+,and Ba~(2+) Sequence,Phys.Rev.Lett.47,1124(181).
    [9]G.O'Sullivan,C.McGuinness,J.T.Costello,E.T.Kennedy,and B.Weinmann.Trends in 4d-subshell photoabsorption along the iodine isonuclear sequence:I,I~+,and I~(2+),Phys.Rev.A 53,3211(1996).
    [10]H.Kjeldsen,P.Andersen,F.Folkmann,H.Knudsen,B.Kristensen,J.B.West and T.Andersen,Absolute photoionization cross sections of I~+ and I~(2+) in the 4d ionization region,Phys.Rev.A 62,020702(R)(2000).
    [11]A.Cummings,C.McGuinness,G.O'Sullivan,J.T.Costello,J.P.Mosnier,and E.T.Kennedy.Wave-function collapse with increasing ionization:4d photoabsorption of Cs through Cs~(4+),Phys.Rev.A 63,022702(2001).
    [12]T.Koizumi,Y.Itoh,et al.,Photoionization of Ba~+ ions due to creation of 4d hole states,J.Phys.B 28,609(1995).
    [13]K.T.Cheng and C.Froese-Fisher,Collapse of the 4f orbital fbr Xe-like ions,Phys.Rev.A 28,2811(1983).
    [14]K.T.Cheng and W.R.Johnson,Orbital collapse and the photoionization of the inner 4d shells fbr Xe-like ions,Phys.Rev.A 28,2820(1983).
    [15]M.Lysaght,D.Kilbane,N.Murphy,A.Cummings,G.O'Sullivan,and P.Dunne. Opacity of neutral and low ion stages of Sn at the wavelength 13.5 nm used in extremeultraviolet lithography,Phys.Rev.A 72,014502(2005).
    [16]R.D'Arcy,J.T.Costello,C.McGuinness,and G.O'Sullivan.Discrete structure in the 4d photoabsorption spectrum of antimony and its ions,J.Phys.B 32,4859(1999).
    [17]L.Gaynor,N.Murphy,D.Kilbane,A.Cummings,G.OSullivan,J.T.Costello,P.van Kampen,and E.T.Kennedy.EUV photoabsorption of laser produced tellurium plasmas:Te Ⅰ-Te Ⅳ,J.Phys.B 38(2005).
    [18]N.Murphy.Spectroscopic studies of fifth row elements and lanthanides.PhD thesis,University College Dublin(1999).
    [19]P.Hayden.Extreme ultraviolet source development using plasmas containing tin.PhD thesis,University College Dublin(2006).
    [20]J.White.Opening the extreme ultraviolet lithography source bottleneck:Developing a 13.5-nm laser-produced plasma source for the semiconductor industry.PhD thesis,University College Dublin(2006).
    [21]L.Gaynor.Inner shell 4d photoabsorption spectroscopy of gas phase tellurium and cerium.PhD thesis,University College Dublin(2006).
    [22]E.R.Kieft.Transient behavior of EUV emitting discharge plasmas.Technische Universiteit Eindhoven(2005).
    [23]I.Radivojevic.Spectrochemical Analysis of Solid Samples by Laser-induced Plasma Spectroscopy.PhD thesis,Technischen University M(u|¨)nchen(2004).
    [24]R.D.Cowan,The Theory of Atomic Structure and Spectra.University of California Press,Berkeley(1981).
    [1]F.Chan,Introduction to plasma physics and controlled fusion,New York,Plenum Press(1984).
    [2]R.H.Huddlestone and S.L.Leonard,Plasma diagnostic techniques,New York,Academic Press(1965).
    [3]I.H.Hutchinson,Principles of plasma diagnostic,Cambridge University Press(2002).
    [4]H.R.Griem,Plasma spectroscopy,New York,McGraw-Hill(1964).
    [5]R.G.Breene,The Shift and Shape of Spectral Lines,Pergamon,London(1961).
    [6]R.D.Bengtson,J.D.Tannich,and P.Kepple,Comparison between measured and theoretical Stark-broadened profiles of H6-H12 emitted from a low-density plasma,Phys.Rev.A 1,532(1970).
    [7]H.R.Griem,Spectral line broadening by plasmas,New York,Academic Press(1974).
    [8]R.F.Smith,J.Dunn,J.Filevich,S.Moon,J.Nilsen,R.Keenan,V.N.Shlyaptsev,J.J.Rocca,J.R.Hunter,and M.C.Marconi.Plasma conditions for improved energy coupling into the gain region of the Ni-like Pd transient collisional x-ray laser,Phys.Rev.E 72,036404(2005).
    [9]P.K.Carroll and E.T.Kennedy.Contemp.Phys.22(1),61(1981).
    [10]R.Sigel,K.Eidmann,F.Larvarenne,and R.F.Schmalz.Phys.Fluids B 2(1),199(1990).
    [11]P.K.Carroll and G.O'Sullivan.Ground-state configurations of ionic species Ⅰ through ⅩⅥ for Z=57-74 and the interpretation of 4d-4f ernission resonances in laserproduced plasmas,Phys.Rev.A 25,275(1982).
    [12]G.O'Sullivan,P.K.Carroll,J.Conway,P.Dunne,R.Faulkner,T.McCormack,C.McGuiness,P.van Kampen,and B.Weinmann.Opt.Eng.33(12),3993(1994).
    [13]J.T.Costello,J.-P.Mosnier,E.T.Kennedy,G.O'Sullivan,and P.K.Carroll.X-UV absorption spectroscopy with laser-produced plasmas:a review,Phys.Scr.T34,77(1991).
    [14]O.Peyrusse,Atomic configuration averages and nonlocal thermodynamical equilibrium plasma spectroscopy calculations.J.Phys.B 32,683(1999).
    [15]F.Jin,and M.Richardson,New laser plasma source for extreme-ultraviolet lithography,Appl.Opt.34,5750,(1995).
    [16]D.Salzmann,Atomic physics in hot plasmas,International series of monographs on physics,Oxford University Press(1998).
    [17]C.Bauche-Arnoult,J.Bauche,and M.Klapisch,Variance of the distributions of energy levels and of the transition arrays in atomic spectra.Phys.Rev.A 20,2424(1979).
    [18]C.Bauche-Arnoult,J.Bauche,and M.Klapisch,Variance of the distributions of energy levels and of the transition arrays in atomic spectra.Ⅱ.Configurations with more than two open subshells.Phys.Rev.A 25,2641(1982).
    [19]J.Bauche,C.Bauche-Arnoult,E.Luc-Koenig,J.F.Wyart,and M.Klapisch,Emissive zones of complex atomic configurations in highly ionized atoms.Phys.Rev.A 28,829(1983).
    [20]C.Bauche-Arnoult,J.Bauche,and M.Klapisch,Variance of the distributions of energy levels and of the transition arrays in atomic spectra.Ⅲ.Case of spin-orbit-split arrays.Phys.Rev.A 31,2248(1985).
    [21]P.Mandelbaum,M.Finkelthal,J.L.Schwob,and M.Klapisch,Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70-100(?)range.Phys.Rev.A 35,5051(1987).
    [22]J.Bauche,C.Bauche-Arnoult,and M.Klapisch.Adv.At.Mol.Phys.23,131(1987).
    [23]J.Bauche,C.Bauche-Arnoult,M.Klapisch,P.Mandelbaum,and J.L.Schwob,J.Phys.B 20,1443(1987).
    [24]P.Mandelbaum,J.L.Schwob,M.Finkenthal,and M.Klapisch,J.Phys.Colloq.49,Cl-217(1988).
    [25]D.C.Griffin,E.L.Andrew,and R.D.Cowan.Phys.Rev.177,62(1969).
    [26]J.D.Ingle and S.R.Crouch.Spectrochemical Analysis,New Jersey,Prentice Hall (1998).
    [27]U.Fano and J.W,Cooper.Rev.Mod.Phys.40,441(1968).
    [28]M.Goeppert Meyer.Phys.Rev.60,184(1941).
    [1]R.D.Cowan.The Theory of Atomic Spectra and Structure.University of California Press,Berkeley(1981).
    [2]R.D.Cowan.J.Opt.Soc.Am.58(6),808(1968).
    [3]J.E.Hansen.J.Phys.B 6,1387(1973).
    [4]P.K.Carroll and E.T.Kennedy,Laser-produced plasmas,Contemporary Physics,22,61(1981).
    [5]M.Busquet,Mixed model:Non-local-thermodynamic equilibrium,non-coronalequilibrium simple ionization model for laser-created plasmas,Phys.Rev.A 25,2302(1982).
    [6]D.J.Heading,J.S.Wark,G.R.Bennett,and R.W.Lee.Simulations of spectra from dense aluminium plasmas.JQSRT 54,167(1995).
    [7]S.Eliezer,A.D.Krumbein,and D.Salzmann,A generalised validity condition for local thermodynamic equilibrium in a laser-produced plasma,Phys.D:J.Appl.Phys.11,1693(1978).
    [8]R.D.Bates,A.E.Kingston,and R.W.P.McWhirter,Recombination between electrons and atomic ions.I.Optically thin plasmas,Proc.Roy.Soc.A,267,297(1962).
    [9]D.Colombant and G.F.Tonon.X-ray emission in laser-produced plasmas.J.Appl.Phys.44,3524(1973).
    [1]J.T.Costello,E.T.Kennedy,J.-P.Mosnier,P.K.Carroll,and G.O'Sullivan,Phys.Scr.T34,77(1991).
    [2]E.T.Kennedy,J.T.Costello,J.P.Mosnier,and P.van Kampen,Radiat.Phys.Chem.70,291(2004).
    [3]L.Gaynor,XUV Flux Enhancement Below 10 nm,Master thesis,University College Dublin.(2004).
    [4]L.Gaynor,Inner shell 4d photoabsorption spectroscopy of gas phase tellurium and cerium,PHD thesis,University College Dublin,(2006).
    [5]N.Murphy.Spectroscopic studies of fifth row elements and lanthanides.PhD thesis,University College Dublin(1999).
    [6]P.Hayden.An Investigation of Tin Based Laser Produced Plasmas as a Source of Radiation at 13.5 nm.Master thesis,University College Dublin(2004).
    [7]P.Hayden.Extreme ultraviolet source development using plasmas containing tin.PhD thesis,University College Dublin(2006).
    [8]P.K.Carroll,E.T.Kennedy,and G.O'Sullivan.New continua for absorption spectroscopy from 40 to 2000 Angstroms.Opt.Lett.2,72(1978).
    [9]P.K.Carroll,E.T.Kennedy,and G.O'Sullivan.Laserproduced continua for absorption spectroscopy in the VUV and XUV.Appl.Opt.19,1454(1980).
    [10]P.K.Carroll,and G.O'Sullivan.Ground state con.gurations of ionic species Ⅰ through XVI for Z=57-74 and the interpretation of 4d-4f emission resonances in laser produced plasmas.Phys.Rev.A.25,275(1982).
    [11]Jenoptik Jena Mikrotechnik GmbH.EUV Spectrograph,E.Spec Manual(2003).
    [1]G.E.Moore.Cramming more components onto integrated circuits.Electronics 38(8),114-117(1965).
    [2]V.Bakshi,et al..chapter 2:EUV source requirements for EUV lithography,SPIE,Bellingham,WA,USA(2006).
    [3]K.Ota,Y.Watanabe,V.Banine,and H.Franken.In EUV Source for Lithography.
    [4]Y.Watanabe,K.Ota,H.Franken,and V.Banine.Source status requirements update.In Proceedings of the EUV Source Workshop,International SEMATECH,San Jose,CA(2005).
    [5]G.Vaschenko,F.Brizuela,C.Brewer,M.Grisham,H.Mancini,C.S.Menoni,M.C.Marconi,J.J.Rocca,W.Chao,J.A.Liddle,E.H.Anderson,D.T.Attwood,A.V.Vinogradov,I.A.Artioukov,Y.P.Pershyn,and V.V.Kondratenko.Nanoimaging with a compact extreme-ultraviolet laser.Optic.Lett.30(16),2095(2005).
    [6]D.Attwood.Soft X-rays and Extreme Ultraviolet Radiation Principles and Applications,Cambridge University Press(1999).
    [7]C.Pagani,E.L.Saldin,E.A.Schneidmiller,and M.V.Yurkov.Design considerations of 10kW-scale extreme ultraviolet SASE FEL for lithography.Nuc.Inst.Meth.Phys.Res.A 436,9(2001).
    [8]K.Bergmann,O.Rosier,R.Lebert,W.Neff,and R.Poprawe.A multi-kilohertz pinch plasma radiation source for extreme ultraviolet lithography.Microelectronic Engineering 57-58,71(2001).
    [9]M.McGeoch.Pinch plasma EUV source with particle injection.J.Phys.D:Appl.Phys.37,3277(2004).
    [10]I.V.Fomenkov,W.N.Partlo,R.M.Ness,I.R.Oliver,S.T.Melnychuk,O.V.Khodykin,and N.R.B(o|¨)wering.Optimizaton of a dense plasama focus device as a light source for EUV lithography,in Emerging Lithography Technologies Ⅵ,R.L.Engelstad,ed.,Proc.SPIE 4688,634(2002).
    [11]K.Bergmann,O.Rosier,W.Neff,and R.Lebert.Pinch plasma radiation source for extreme ultraviolet lithgraphy with kilohertz repetition frequency.Applied Optics 39(22),3833(2000).
    [12]M.A.Klosner,H.A.Bender,W.T.Silfvast,and J.J.Rocca.Intense plasma discharge source at 13.5 nm for extreme ultraviolet lithography.Opt.Lett.22(1),34(1997).
    [13]J.Jonker.High power extreme ultraviolet(EUV) light sources for future lithography.Plas.Sou.Sci.Tech.15(2),71(2006).
    [14]H.Shields,S.W.Fornaca,M.B.Petach,M.Michealian,R.D.McGregor,R.H.Moyer, and R.S.Pierre.Xenon target performance characteristics for laser-produced plasma EUV sources.in Emerging Lithographic Technologies Ⅵ,R.L.Engelstad,ed.,Proc.SPIE 4688,94(2002).
    [15]J.R.Hoffman,A.N.Byhanov,O.V.Khodykin,A.I.Ershov,N.R.B(o|¨)wering,I.V.Fomenkov,W.N.Partlo,and D.W.Myers.LPP EUV conversion efficiency optimization,in Emerging Lithographic Technologies Ⅸ,R.S.Mackay,ed.,Proc.SPIE 5751,892(2005).
    [16]C.-S.Koay,S.George,K.Takenoshita,R.Bernath,E.Fujiwara,M.Richardson,and Ⅴ.Bakshi.High conversion efficiency microscopic tin-doped droplet target laser-plasma source for EUVL,Proc.SPIE 5751,279(2005).
    [17]G.Kubiak,L.Bernardez and K.Krenz,Proc.SPIE 3331,81(1998).
    [18]C.Gwyn,D.Attwood and D.Sweeney,J.Vac.Sci.Technol.B 16,3142(1998).
    [19]L.A.Shmaenok,F.Bijkerk,R.K.Bruineman,A.P.Shevelko,D.M.Simanovski and S.V.Bobashev,Proc.SPIE 2523,113(1995).
    [20]M.Richardson,C.S.Koay,C.Keyser,K.Takenoshita,E.Fujiwara and M.AlRabban,Proc.SPIE 5196,119(2004).
    [21]H.Shields,S.W.Fornaca,M.B.Petach,M.Michaelian,R.D.McGregor,R.H.Moyer and R.J.St Pierre,Proc.SPIE 4688,94(2002).
    [22]U.Statmm,I.Ahmad,I.Balogh,H.Birner,D.Bolshunkhin,J.Brudermann,S.Enke,F.Floher,K.Goel,S.Gze,G.Hergenhan,J.Kleinschmidt,D.Klfel,V.Korobotchko,J.Ringling,G.Schriever,C.D.Tran and C.Ziener,Proc.SPIE 5037,119(2004).
    [23]I.W.Choi,H.Daido,S.Yamagami,K.Nagai,T.Norimatsu and H.Takabe,J.Opt.Soc.Am.B 17,1616(2000).
    [24]T.Aota and T.Tomie.Phys.Rev.Lett.Ultimate Efficiency of Extreme Ultraviolet Radiation from a Laser-Produced Plasma,94,015004(2005).
    [25]Y.Tao,S.S.Harilal,M.S.Tillack,K.L.Sequoia,B.O' Shay and F.Najmabadi,Optics Letters 31,2492(2006).
    [26]P.Mandelbaum,M.Finkenthal,J.L.Schwob and M.Klapisch,Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70-100(?)range,Phys.Rev.A 35,5051(1987).
    [27]S.S.Churilov and A.N.Ryabtsev,Analyses of the Sn IX-Sn Ⅻ spectra in the EUV region,Phys.Scr.73,614(2006).
    [28]S.Fujioka,H.Nishimura,K.Nishihara,A.Sasaki,A.Sunahara,T.Okuno,N.Ueda,T.Ando,Y.Tao,Y.Shimada,K.Hashimoto,M.Yamaura,K.Shigemori,M.Nagai,T.Norimatsu,T.Nishikawa,N.Miyanaga,Y Izawa and K.Mima,Opacity Effect on Extreme Ultraviolet Radiation from Laser-Produced Tin Plasmas,Phys.Rev.Lett. 95,235004(2005).
    [29]H.Ohashi,H.Tanuma,S.Fujioka,A.Sasaki and K.Nishihara,Journal of Physics:Conference Series 58,235(2007).
    [30]E.R.Kieft,J.J.A.M.van der Mullen,G.M.W.Kroesen,V.Banine,and K.N.Koshelev.Characterization of a vacuum-arc discharge in tin vapor using time-resolved plasma imaging and extreme ultraviolet spectrometry.Phys.Rev.E 71,026409(2005).
    [31]E.R.Kieft,K.Garloff and J.J.A.M.van der Mullein Comparison of experimental and simulated extreme ultraviolet spectra of xenon and tin discharges.Phys.Rev.E 71,036402(2005).
    [32]A.Sasaki,K.Nishihara,F.Koike,T.Kagawa,T.Nishikawa,K.Fujima,T.Kawamura and H.Furukawa,IEEE joural of selected topics in quantum electronics 10,1037(2004).
    [33]J.White,G.O'sullivan,S.Zakharov,H.Nishimura,S.Fujioka and K.Nishihara,Appl.Phys.Lett.92,151501(2008).
    [34]P.Hayden,A.Cummings,N.Murphy,G.O'Sullivan,P.Sheridan,J.White and P.Dunne,J.Appl.Phys.99,093302(2006).
    [35]P.Hayden,J.White,A.Cummings,P.Dunne,M.Lysaght,N.Murphy,P.Sheridan and G.O'Sullivan.Microelectronic Engineering 83,699(2006).
    [36]J.Yan and J.M.Li.Chin.Phys.Lett.17,194(2000).
    [37]A.Sasaki,K.Nishihara,M.Murakami,F.Koike,T.Kagawa,T.Nishikawa,K.Fujima,T.Kawamura and H.Furukawa,Appl.Phys.Lett.85,5857(2004).
    [38]W.Svendsen and G.O'Sullivan.Statistics and characteristics of xuv transition arrays from laser-produced plasmas of the elements tin through iodine.Phys.Rev.A 50,3710(1994).
    [39]R.Radtke,C.Biedermann,J.L.Schwob,P.Mandelbaum,and R.Doron.Line and band emission from tungsten ions with charge 21+ to 45+ in the 45-70(?) range.Phy.Rev.A 64,012720(2001).
    [40]G.O'Sullivan and R.Faulkner.Tunable narrowband solt x-ray source for projection lithography.Opt.Eng.33,3978(1994).
    [1]P.K.Carroll and E.T.Kennedy.Doubly Excited Autoionization Resonances in the Absorption Spectrum of Li~+ Formed in a Laser-Produced Plasma,Phys.Rev.Lett.38,1068(1977).
    [2]J.T.Costello,E.T.Kennedy,B.F.Sonntag,and C.Cromer.XUV photoabsorption of laser-generated W and Pt vapours,J.Phys.B 24,5063(1991).
    [3]U.Becket,D.Szostak,H.G.Kerkhoff,M.Kupsch,B.Langer,R.Wehlitz,A.Yagishita,and T.Hayaishi.Subshell photoionization of Xe between 40 and 1000 eV,Phys.Rev.A 39,3902(1989).
    [4]V.Schmidt.Photoionization of atoms using synchrotron radiation,Rep.Prog.Phys.55,1483(1992).
    [5]J.M.Bizau,C.Blancard,D.Cubaynes,F.Folkmann,J.P.Champeaux,J.L.Lemaire,and F.J.Wuilleumier.Absolute photoionization cross,sections along the Xe isonuclear sequence:Xe~(3+) to Xe~(6+),Phys.Rev.A 73,022718(2006).
    [6]A.Aguilar,J.D.Gillaspy,G.F.Gribakin,R.A.Phaneuf,M.F.Gharaibeh,M.G.Kozlov,J.D.Bozek,and A.L.D.Kilcoyne.Absolute photoionization cross sections for Xe~(4+),Xe~(5+),and Xe~(6+) near 13.5 nm:Experiment and theory,Phys.Rev.A 73,032717(2006).
    [7]H.Kjeldsen,P.Andersen,F.Folkmann,J.E.Hansen,M.Kitajima,and T.Andersen.J.Phys.B:At.Mol.Opt.Phys.35,2845(2002).
    [8]H.Kjeldsen,P.Andersen,F.Folkmann,H.Knudsen,B.Kristensen,J.B.West and T.Andersen.Absolute photoionization cross sections of I~+ and I~(2+) in the 4d ionization region,Phys.Rev.A 62,020702(R)(2000).
    [9]G.O'Sullivan,C.McGuinness,J.T.Costello,E.T.Kennedy,and B.Weinmann.Trends in 4d-subshell photoabsorption along the iodine isonuclear sequence:Ⅰ,I~+,and I~(2+),Phys.Rev.A 53,3211(1996).
    [10]M.Ya.Amusia,N.A.Cherepkov,L.V.Chernysheva and S.T.Manson.Photoionization of atomic iodine and its ions,Phys.Rev.A 61,020701(R)(2000).
    [11]A.T.Domondon and X.M.Tong.Photoabsorption spectra of I and its ions in the 4d region,Phys.Rev.A 65,032718(2002).
    [12]J.T.Costello,E.T.Kennedy,J.P.Mosnier,P.K.Carroll,and G.O'Sullivan.X-UV absorption spectroscopy with laser-produced plasmas:a review,Phys.Scr.T34,77(1991).
    [13]E.T.Kennedy,J.T.Costello,J.P.Mosnier,and P.van Kampen,VUV/EUV ionising radiation and atoms and ions:dual laser plasma investigations,Radiat.Phys.Chem. 70,291(2004).
    [14]R.D.Cowan.The Theory of Atomic Structure and Spectra,University of California Press,Berkeley(1981).
    [15]A.Tauheed,Y.N.Joshi and Anjum Naz.Extended Analysis of Doubly Ionized Iodine Spectrum:Ⅰ Ⅲ,Physica Scripta.69,289(2004).
    [16]A.Tauheed,Y.N.Joshi and V.Kaufman.Analysis of the 5s~25p~2,5s5p~3,5s~25p5d and 5s~25p6s configurations of Ⅰ Ⅳ,J.Phys.B 24,3701(1991).
    [17]J.E.Hansen,A.W.Flifet and H.P.Kelly.J.Phys.B 8,L127(1975).
    [18]K.T.Cheng and C.Froese Fischer.Collapse of the 4f orbital for Xe-like ions,Phys.Rev.A 28,2811(1983).
    [19]A.Cummings and G.O' Sullivan,Multifractal analysis of selected rare-earth elements,J.Phys.B 34,199(2001).
    [20]D.Salzmann,Atomic Physics in Hot Plasmas(Oxford University Press,Oxford,1998).
    [21]M.A.Lysaght,D.Kilbane,A.Cummings,N.Murphy,P.Dunne,G.O' Sullivan,P.van Kampen,J.T.Costello and E.T.Kennedy,4d photoabsorption spectra of Sn Ⅱand Sn Ⅳ in the 30-65 eⅤ region,J.Phys.B 38,4247(2005).
    [22]N.Murphy,J.T.Costello,E.T.Kennedy,C.McGuinness,J.P.Mosnier,B.Weinmann and G.O' Sullivan,Discrete structure in the 4d photoabsorption spectrum of tellurium and its ions,J.Phys.B 32,3905(1999).
    [23]N.Murphy,P.Niga,A.Cummings,P.Dunne and G.O' Sullivan,4d rightarrow 5p transitions in the EUV photoabsorption spectrum of Ba Ⅳ,Ba Ⅴand Ba Ⅵ,J.Phys.B 39,365(2006).
    [24]D.Colombant and G.F.Tonon,X-ray emission in laser-produced plasmas,J.Appl.Phys.44,3524(1973).
    [1]M.J.May,K.B.Fournier,P.Beiersdorfer,H.Chen,and K.L.Wong,X-ray spectral measurements and collisional radiative modeling of Ni- to Kr-like Au ions in electron beam ion trap plasmas,Phys.Rev.E 68,036402(2003).
    [2]S.H.Glenzer,K.B.Fournier,B.G.Wilson,R.W.Lee,and L.J.Suter,Ionization Balance in Inertial Confinement Fusion Hohlraums,Phys.Rev.Lett.87,045002(2001).
    [3]M.E.Foord,S.H.Glenzer,R.S.Thoe,K.L.Wong,K.B.Fournier,B.G.Wilson,and P.T.Springer,Ionization Processes and Charge-State Distribution in a Highly Ionized High-Z Laser-Produced Plasma,Phys.Rev.Lett.85,992(2000).
    [4]K.Honda,K.Mima,and F.Koike.M-shell x-ray spectra of laser-produced gold plasmas,Phys.Rev.E 55,4594(1997).
    [5]R.Haensel,K.Radler,and B Sonntag,optical absorption measurements of Tantalum,Tungsten.Rhenium and Platinum in the ultraviolet,Solid State Commun.7,1495(1969).
    [6]J.T.Costello,E.T.Kennedy,B.F.Sonntag,and C.L.Cromer,XUV photoabsorption of laser-generated W and Pt vapours,J.Phys.B 24,5063(1991).
    [7]U.K(o|¨)ble,J.T.Costello,J.P.Mosnier,E.T.Kennedy,and M.Martins,XUV photoabsorption of laser generated Au vapour,J.Phys.B 28,181(1995).
    [8]A.Zangwill and D.A.Liberman,Comput.Phys.Commun.32,63(1984).
    [9]J.T.Costello,E.T.Kennedy,J.P.Mosnier,P.K.Carroll,and G.O'Sullivan,X-UV absorption spectroscopy with laser-produced plasmas:a review,Phys.Scr.T34,77(1991).
    [10]E.T.Kennedy,J.T.Costello,J.P.Mosnier,and P.van Kampen,Radiat.Phys.Chem.70,291(2004).
    [11]R.D.Cowan,The Theory of Atomic Structure and Spectra,University of California Press,Berkeley(1981).
    [12]Ch.Gerth,B.Kanngieβer,M.Martins,P.Sladeczek,K.Tiedtke,and P.Zimmermann,Photoelectron and photoion spectroscopy on atomic Lu in the region of the 5p excitation,Eur.Phys.J.D 5,6569(1999).
    [13]P.van Kampen,Ch.Gerth,M.Martins,P.K.Carroll,J.Hirsch,E.T.Kennedy,O.Meighan,J.-P.Mosnier,P.Zimmermann,and J.T.Costello,Photoabsorption and photoion spectroscopy of atomic uranium in the region of 6p and 5d excitations,Phys.Rev.A 61,062706(2000).
    [14]D.Salzmann,Atomic Physics in Hot Plasmas,Oxford University Press,Oxford(1998).
    [15]M.A.Lysaght,D.Kilbane,A.Cummings,N.Murphy,P.Dunne,G.O'Sullivan,P. van Kampen,J.T.Costello,and E.T.Kennedy,4d photoabsorption spectra of Sn Ⅱand Sn Ⅳ in the 30-65 eⅤ region,J.Phys.B 38,4247(2005).
    [16]N.Murphy,J.T.Costello,E.T.Kennedy,C.McGuinness,J.P.Mosnier,B.Weinmann,and G.O'Sullivan,Discrete structure in the 4d photoabsorption spectrum of tellurium and its ions,J.Phys.B 32,3905(1999).
    [17]N.Murphy,P.Niga,A.Cummings,P.Dunne,and G.O'Sullivan,4d- 5p transitions in the EUV photoabsorption spectrum of Ba Ⅳ,Ba Ⅴ and Ba Ⅵ,J.Phys.B 39,365(2006).
    [18]D.Colombant and G.F.Tonon,X-ray emission in laser-produced plasmas,J.Appl.Phys.44,3524(1973).
    [19]U.Fano,Effects of Configuration Interaction on Intensities and Phase Shifts,Phys.Rev.124,1866(1961).
    [20]J.J.Boyle,Z.Altun,and H.P.Kelly,Photoionization cross-section calculation of atomic tungsten,Phys.Rev.A 47,4811(1993).
    [21]M.Martins,P.Sladeczek,K.Tiedtke,and P.Zimmermann,Vacuum ultraviolet photoionization study of atomic Ir in the region of the 5p and 4f excitation,Phys.Rev.A 55,E8(1997).
    [22]M.Martins,P.Sladeczek,K.Tiedtke,and P.Zimmermann,Photoion spectroscopy of atomic tantalum and rhenium in the region of the 5p and 4f excitation,Phys.Rev.A 56,1329(1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700