用户名: 密码: 验证码:
黄连素减轻缺氧无血清诱导的骨髓间充质干细胞凋亡以及减轻四氯化碳诱导的急性肝损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     在体外缺氧无血清条件下模拟体内器官的缺血微环境,观察缺氧无血清状态下,大鼠骨髓间充质干细胞的损伤情况。并利用传统中药黄连素预处理观察其对骨髓间充质干细胞(Mesenchymal stem cells,MSCs)损伤的保护作用。
     方法
     分离培养大鼠MSCs,并建立体外缺氧无血清诱导的MSCs损伤模型,实验分为正常对照组,缺氧无血清组(缺氧无血清处理6小时),以及黄连素预处理组(缺氧之前1小时给予黄连素)。Hoechst 33342荧光染色和膜联蛋白V/PI双染流式细胞技术观察缺氧无血清是否能够引起MSCs的凋亡。利用细胞活力测定观察不同浓度的黄连素对MSCs的保护作用,同时利用上述凋亡检测技术进一步证实证实黄连素对缺氧无血清诱导的MSCs凋亡的保护作用。
     结果
     细胞在6小时的缺氧无血清环境下,发生严重损伤。通过细胞形态学分析,Hoechest 33342以及流式细胞检测凋亡发现,细胞发生了大量早期凋亡。利用不同浓度的黄连素预处理一小时发现,黄连素对MSCs的损伤具有保护作用,其保护作用随着黄连素的浓度增加而增强,在10μM的浓度,黄连素具有最强烈的保护作用,几乎能完全逆转MSCs死亡。Hoechest 33342荧光染色和流式细胞凋亡检测进一步证实,黄连素能够通过抑制MSCs的凋亡而发挥保护作用。
     结论
     我们发现,缺氧无血清处理后,MSCs发生了早期凋亡。不同浓度的黄连素发现其对细胞损伤具有保护作用。这种保护作用是通过抑制缺氧导致的细胞凋亡而发挥作用的。本实验研究为下一步探讨黄连素的具体保护机制打下基础。
     目的
     建立体外缺氧无血清诱导的大鼠MSCs损伤模型,观察黄连素是否能够通过抑制活性氧簇(Reactive oxygen species, ROS)以及由其引起的c-Jun NH2端激酶c-Jun NH2-terminal kinase,JNK)激活和线粒体依赖的凋亡通路,从而减轻大鼠MSCs的凋亡。同时,研究黄连素可能的其他作用机制。
     方法
     体外缺氧无血清诱导MSCs凋亡,浓度为10μM的黄连素预处理一小时,细胞缺氧无血清造模,2',7'-二氯荧光素二乙酸酯探针(2’,7’-d,ichlorodihydrofluorescein diacetate,DCFH-DA)观察黄连素对ROS的释放,JC-1探针观察线粒体通透性变化,蛋白免疫印迹(Western blot)检测JNK的激活,线粒体相关凋亡蛋白细胞色素C(Cytochorome C, Cyt C)的释放,以及凋亡启动蛋白半胱氨酸蛋白酶(Caspase-3)的激活。同时研究一种经典的抗凋亡信号通路磷酸肌醇-3-激酶(Phosphoinositide-3 kinase,PI3K)/蛋白激酶B(Akt)信号通路是否也参与保护作用。利用预先给与PI3K/Akt阻断剂Wortmannin以及LY294002观察其是否能够阻断黄连素的保护作用,从而观察黄连素是否也通过PI3K/Akt信号通路发挥抗凋亡作用,并同时研究PI3K/Akt与黄连素其它抗凋亡作用的关系。
     结果
     黄连素能够减少缺氧无血清引起的MSCs内ROS的释放,利用抗氧化剂N-乙酰半胱氨酸(acetyl-L-cysteine,NAC)也能够减少ROS的释放并减轻凋亡作用。JC-1探针显示,与缺氧无血清组相比,黄连素还能够减少线粒体膜通透性的下降。Western blot表明黄连素能够抑制JNK的活性,以及线粒体膜通透性下降引起的Cyt C的释放和凋亡蛋白Caspase-3的激活。黄连素还能够增加缺氧无血清早期PI3K/Akt的表达,给与PI3K/Akt阻断剂Wortmannin以及LY294002逆转了黄连素的保护作用。进一步的实验证明,Wortmannin以及LY294002能够抑制黄连素引起的对ROS产生、JNK激活以及随后线粒体凋亡通路的抑制作用,从而阻断黄连素的保护作用。
     结论
     抗氧化剂NAC能够减轻缺氧无血清诱导的骨髓间充质干细胞的凋亡表明ROS在细胞凋亡过程中起到了非常重要的作用。黄连素能够通过抑制ROS的释放,JNK的激活以及线粒体膜电位(mitochondrial membrane potential,ΔΨm)的降低,从而减少凋亡相关蛋白Cyt C的释放以及Caspase-3的激活,最终发挥抗凋亡作用,这种保护作用依赖于PI3K/Akt的激活。本实验为临床联合使用黄连素和骨髓间充质干细胞治疗人类疾病提供相关的实验基础。
     目的
     通过建立四氯化碳(Carbon tetrachloride,CCl4)引起的急性肝损伤模型,观察抗氧化剂黄连素是否能够减轻急性肝损伤引起的细胞死亡,并研究其是否通过抗氧化以及抗凋亡作用来实现保护作用。
     方法
     建立CCl4诱导的急性肝损伤模型,药物处理组预先给予50,100,200mg/kg黄连素灌胃7天。造模24小时后,摘取肝脏组织,多聚甲醛固定,石蜡包埋,进行常规病理切片,观察肝脏损伤情况。病理切片同时TUNEL法检测细胞凋亡。全自动生化仪检测血清丙氨酸氨基转移酶(Alanine transaminase,ALT)以及天冬氨酸氨基转移酶(Aspartate Aminotransferase,AST)水平。黄嘌呤氧化酶法检测血清过氧化物岐化酶(Superoxide dismutase,SOD)以及硫代巴比妥法检测血清丙二醛(Malondialdehyde,MDA))观察肝脏氧化状态。
     结果
     在本实验中,CCl4造模24小时之后,血清ALT和AST急剧升高,黄连素能够减少血清ALT和AST的水平。黄连素给药浓度从50mg /kg到200 mg/kg呈现为浓度依赖的保护作用,并逐渐加强。肝脏氧化状态检测表明,CCl4造模之后,血清SOD急剧降低,而MDA的表达增加,利用黄连素预先处理之后,细胞的SOD增加,而ROS的终产物MDA的活性明显降低,也呈浓度依赖的保护作用,在浓度为200mg/kg时,黄连素的抗氧化作用最强。通过进一步的病理切片和TUNEL凋亡检测进一步证实,与CCl4造模组相比,在用黄连素处理之后,细胞凋亡明显减轻,在200mg/kg浓度达到最大的保护作用。
     结论
     本文通过建立CCl4诱导的急性肝损伤模型,发现传统的中药黄连素能够减轻急性肝损伤引起的细胞凋亡。我们发现,黄连素能够提高抗氧化剂SOD的水平,同时减少ROS生成(表现为其终产物MDA的水平降低),从而发挥抗凋亡作用。本研究为临床利用黄连素进行干预治疗急性肝损伤提供了实验依据。
Objective
     By using an in vitro model of hypoxia consisting of hypoxia and serum deprivation to mimic the in vivo ischemic microenvironment, we sought to investigate whether the Chinese traditional medicine berberine could protect against hypoxia and serum deprivation-induced mesenchymal stem cells injury.
     Methods
     We isolated mesenchymal stem cells from bone marrow and created in vitro model of hypoxia consisting of hypoxia and serum deprivation for 6 hours to induce mesenchymal stem cell injury. Different concentrations of berberine were given one hour before hypoxia and were still present during the process of hypoxia. Hoechst33342 staining and flow cytometric analysis were determined for cell apoptosis. Cell viability assay was used to test the berberine-induced protective effects against mesenchymal stem cells apoptosis.
     Results
     After 6 hours of hypoxia and serum deprivation, MSCs underwent severe injury. Hoechst 33342 staing showed that there was a lot of early-stage aopotosis in the cellsexposed hypoxia, compared to the control group. Pretreatment of berberine showed that it protected against cell injury in a concentration dependent manner, with the highest effects at a dose of 10μM, which almost completely reversed the cell death. Hoechst 33342 staining and flow cytometry conformed that berberine could protect anainst hypoxia and serum deprivation-induced MSCs apoptosis.
     Conclusions
     Our data demonstrated that after hypoxia and serum deprivation, MSCs underwent early-stage apoptosis. Different concentrations of berberine could protect against MSCs deaths. Hoechst 33342 staining and flow cytometry confirmed that berberine could attenuate MSCs apoptosis induced by hypoxia and serum deprivation.
     Objective
     We created a model of hypoxia and serum deprivation-induced MSCs apoptosis,we investigated whether berberine could alleviate reactive oxygen species (ROS)production and inhibit mitochondrial dependent apoptotic pathway, thus protected mesenchymal stem cells apoptosis against hypoxia and serum deprivation. We also explored other mechanisms that could mediate berberine-induced protection.
     Methods
     Mesenchymal stem cells were exposed to hypoxia and serum deprivation for 6 hours; 10μM berberine was treated 1 hour before hypoxia and was present during the process of hypoxia. Production of cellular ROS was evaluated by analyzing changes in fluorescence intensity resulting from the oxidation of the intracellular fluoroprobe DCFH-DA. Loss of the mitochondrial membrane potential was assessed using the fluorescent probe JC-1. Western blot was used to test the JNK phosphrylation and realease of cytochorome c from the mitochondria to the cytosol. Apoptotic protein caspase-3 was also tested for its activation. At the same time we also used the PI3K/Akt inhibitors wortmannin and LY294002 see if they were also involved the protective effects of berberine.
     Results
     Berberine could reduce the ROS production of mesenchymal stem cells exposed to hypoxia and serum deprivation, the antioxidant NAC could also inhibit the release of ROS. The JC-1 probe assay showed that berberine could inhibit the loss of mitochondrial membrane potential compared to hypoxia and serum deprivation group. Western blot analysis showed that berberine could inhibit the JNK phosphrylation and realease of cytochorome c from the mitochondria to the cytosol and also berberine reduced the apoptosis related protein cleaved (activated) caspase-3. Our results also showed that berberine could increase the phosphrylation of Akt in the early stage of hypoxia and serum deprivation, and both PI3K/Akt inhibitors wortmannin and LY294002 could block the protective effects of berberine. Further study showed that wortmannin and LY294002 could block berberine induced ROS production JNK activation and subsequent mitochondrial apoptotic pathway, thus blocked the protective effects of berberine.
     Conclusions
     ROS plays a very important role in hypoxia and serum deprivation-induced MSCs apoptosis. Berberine could inhibit the production of ROS and phosphrylation of JNK, alleviate the release of cytochorome c and activation of caspase-3, and thus confer its
     Objective
     By creating the model of carbon tetrachloride-induced acute liver injury, we sought to investigate whether an antioxidant berberine could protect against liver cell deaths and the mechanisms within this process.
     Methods
     Berberine was give orally once everyday for a successive of 7 days, and then mice were inject intraperitoneally with carbon tetrachloride to induce acute liver injury. After 24 hours, mice blood and liver tissue were collected. Serum ALT, AST, SOD and MDA were measured to test the liver function and oxidation. Liver tissue was also fixed with polyformaldehyde and was stained for TUNEL assay.
     Results
     After 24 hours’treatment, there were huge increase in the serum ALT and AST, as compared to control group. When pretreated with berberine, the ALT and AST level was reduced, with the best effects at the dose of 200mg/kg. The serum SOD was upregulated and MDA was downregulated when pretreated with berberine, compared with the acute liver injury group, with the highest protective effects at the dose of 200mg/kg. The TUNEL assay showed that berberine could significantly reduce the aopotosis.
     Conclusions
     By creating the carbon tetrachloride-induced acute lung injury model, we found that the antioxidant berberine could alleviate acute liver injury-induced cell apoptosis. We also found that berberine could increase the serum antioxidant SOD level, reduce the ROS production (indicated by the decrease of MDA, which is the end product of ROS) and thus confer its anti-apoptotic effects.
引文
1. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ, Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice, Proc Natl Acad Sci U S A 1995, 92:4857-4861
    2. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ, Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts, Proc Natl Acad Sci U S A 1998, 95:3908-3913
    3. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F, Muscle regeneration by bone marrow-derived myogenic progenitors, Science 1998, 279:1528-1530
    4. Popp FC, Piso P, Schlitt HJ, Dahlke MH, Therapeutic potential of bone marrow stem cells for liver diseases, Curr Stem Cell Res Ther 2006, 1:411-418
    5. Wagner J, Kean T, Young R, Dennis JE, Caplan AI, Optimizing mesenchymal stem cell-based therapeutics, Curr Opin Biotechnol 2009, 20:531-536
    6. Menicanin D, Bartold PM, Zannettino AC, Gronthos S, Genomic profiling of mesenchymal stem cells, Stem Cell Rev 2009, 5:36-50
    7. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE,Local delivery of marrow-derived stromal cells augments collateral perfusion throughparacrine mechanisms, Circulation 2004, 109:1543-1549
    8. Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, Kangawa K, Kitamura S, Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia, Cardiovasc Res 2005, 66:543-551
    9. Hagiwara M, Shen B, Chao L, Chao J, Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation, Hum Gene Ther 2008, 19:807-819
    10. Yu Y, Yao AH, Chen N, Pu LY, Fan Y, Lv L, Sun BC, Li GQ, Wang XH,Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration, Mol Ther 2007, 15:1382-1389
    11. Popp FC, Renner P, Eggenhofer E, Slowik P, Geissler EK, Piso P, Schlitt HJ, Dahlke MH, Mesenchymal stem cells as immunomodulators after liver transplantation, Liver Transpl 2009, 15:1192-1198
    12. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD, Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart, Circulation 2002, 105:93-98
    13. Robey TE, Saiget MK, Reinecke H, Murry CE, Systems approaches to preventing transplanted cell death in cardiac repair, J Mol Cell Cardiol 2008, 45:567-581
    14. Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A,Adenoviral gene transfer of activated phosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro, Circulation 1999, 100:2373-2379
    15. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X, Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis, Stem Cells 2008, 26:135-145
    16. Zhu W, Chen J, Cong X, Hu S, Chen X, Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells, Stem Cells 2006, 24:416-425
    17. Carvalho C, Correia SC, Santos RX, Cardoso S, Moreira PI, Clark TA, Zhu X, Smith MA, Perry G, Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia, J Bioenerg Biomembr 2009, 41:433-440
    18. Droge W, Free radicals in the physiological control of cell function, Physiol Rev 2002, 82:47-95
    19. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J, Free radicals and antioxidants in normal physiological functions and human disease, Int J Biochem Cell Biol 2007, 39:44-84
    20. Meng Q, Velalar CN, Ruan R, Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast, Free Radic Biol Med 2008, 44:1032-1041
    21. Cherubini A, Ruggiero C, Morand C, Lattanzio F, Dell'aquila G, Zuliani G, DiIorio A, Andres-Lacueva C, Dietary antioxidants as potential pharmacological agents for ischemic stroke, Curr Med Chem 2008, 15:1236-1248
    22. Slemmer JE, Shacka JJ, Sweeney MI, Weber JT, Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging, Curr Med Chem 2008, 15:404-414
    23. Sun Y, Xun K, Wang Y, Chen X, A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs, Anticancer Drugs 2009, 20:757-769
    24. Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K,Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways, Eur J Pharmacol 2008, 580:70-79
    25. Anis KV, Rajeshkumar NV, Kuttan R, Inhibition of chemical carcinogenesis by berberine in rats and mice, J Pharm Pharmacol 2001, 53:763-768
    26. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD, Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins, Nat Med 2004, 10:1344-1351
    27. Kuo CL, Chi CW, Liu TY, The anti-inflammatory potential of berberine in vitro and in vivo, Cancer Lett 2004, 203:127-137
    28. Liu W, Liu P, Tao S, Deng Y, Li X, Lan T, Zhang X, Guo F, Huang W, Chen F,Huang H, Zhou SF, Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose, Arch Biochem Biophys 2008, 475:128-134
    29. Tang LQ, Wei W, Chen LM, Liu S, Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats, J Ethnopharmacol 2006, 108:109-115
    30. Mizuguchi T, Hui T, Palm K, Sugiyama N, Mitaka T, Demetriou AA, Rozga J,Enhanced proliferation and differentiation of rat hepatocytes cultured with bone marrow stromal cells, J Cell Physiol 2001, 189:106-119
    31. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI, Mechanisms involved in the therapeutic properties of mesenchymal stem cells, Cytokine Growth Factor Rev 2009, 20:419-427
    1. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH, Kadiyala S,Mesenchymal stem cells in osteobiology and applied bone regeneration, Clin Orthop Relat Res 1998, S247-256
    2. Ogueta S, Munoz J, Obregon E, Delgado-Baeza E, Garcia-Ruiz JP, Prolactin is a component of the human synovial liquid and modulates the growth and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells, Mol Cell Endocrinol 2002, 190:51-63
    3. Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F, Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis, Arthritis Rheum 2002, 46:704-713
    4. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C, Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation, J Clin Invest 2004, 113:1701-1710
    5. Duan HF, Wu CT, Wu DL, Lu Y, Liu HJ, Ha XQ, Zhang QW, Wang H, Jia XX, Wang LS, Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor, Mol Ther 2003, 8:467-474
    6. Lange C, Bruns H, Kluth D, Zander AR, Fiegel HC, Hepatocytic differentiationof mesenchymal stem cells in cocultures with fetal liver cells, World J Gastroenterol 2006, 12:2394-2397
    7. Menicanin D, Bartold PM, Zannettino AC, Gronthos S, Genomic profiling of mesenchymal stem cells, Stem Cell Rev 2009, 5:36-50
    8. Popp FC, Renner P, Eggenhofer E, Slowik P, Geissler EK, Piso P, Schlitt HJ, Dahlke MH, Mesenchymal stem cells as immunomodulators after liver transplantation, Liver Transpl 2009, 15:1192-1198
    9. Yu Y, Yao AH, Chen N, Pu LY, Fan Y, Lv L, Sun BC, Li GQ, Wang XH,Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration, Mol Ther 2007, 15:1382-1389
    10. Popp FC, Piso P, Schlitt HJ, Dahlke MH, Therapeutic potential of bone marrow stem cells for liver diseases, Curr Stem Cell Res Ther 2006, 1:411-418
    11. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G,Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury, Int J Mol Med 2004, 14:1035-1041
    12. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG, Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects, Proc Natl Acad Sci U S A 2003, 100:8407-8411
    13. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ,Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts, Nat Med 2003, 9:1195-1201
    14. Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N, Redox regulation of tumor necrosis factor signaling, Antioxid Redox Signal 2009, 11:2245-2263
    15. Genestra M, Oxyl radicals, redox-sensitive signalling cascades and antioxidants, Cell Signal 2007, 19:1807-1819
    16. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J, Free radicals and antioxidants in normal physiological functions and human disease, Int J Biochem Cell Biol 2007, 39:44-84
    17. Droge W, Free radicals in the physiological control of cell function, Physiol Rev 2002, 82:47-95
    18. Pellegrini M, Baldari CT, Apoptosis and oxidative stress-related diseases: the p66Shc connection, Curr Mol Med 2009, 9:392-398
    19. Chandra J, Samali A, Orrenius S, Triggering and modulation of apoptosis by oxidative stress, Free Radic Biol Med 2000, 29:323-333
    20. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K,Reactive oxygen species mediate crosstalk between NF-kappaB and JNK, Cell Death Differ 2006, 13:730-737
    21. Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV, c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation ofreactive oxygen species and cell cycle arrest in human prostate cancer cells, Cancer Res 2006, 66:5379-5386
    22. Benhar M, Engelberg D, Levitzki A, ROS, stress-activated kinases and stress signaling in cancer, EMBO Rep 2002, 3:420-425
    23. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M, Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases, Cell 2005, 120:649-661
    24. Eminel S, Klettner A, Roemer L, Herdegen T, Waetzig V, JNK2 translocates to the mitochondria and mediates cytochrome c release in PC12 cells in response to 6-hydroxydopamine, J Biol Chem 2004, 279:55385-55392
    25. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ, Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway, Science 2000, 288:870-874
    26. Sun Y, Xun K, Wang Y, Chen X, A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs, Anticancer Drugs 2009, 20:757-769
    27. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD, Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins, Nat Med 2004, 10:1344-1351
    28. Liu W, Liu P, Tao S, Deng Y, Li X, Lan T, Zhang X, Guo F, Huang W, Chen F, Huang H, Zhou SF, Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose, Arch Biochem Biophys 2008, 475:128-134
    29. Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K,Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways, Eur J Pharmacol 2008, 580:70-79
    30. Kuo CL, Chi CW, Liu TY, The anti-inflammatory potential of berberine in vitro and in vivo, Cancer Lett 2004, 203:127-137
    31. Tang LQ, Wei W, Chen LM, Liu S, Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats, J Ethnopharmacol 2006, 108:109-115
    32. Toth A, Halmosi R, Kovacs K, Deres P, Kalai T, Hideg K, Toth K, Sumegi B, Akt activation induced by an antioxidant compound during ischemia-reperfusion, Free Radic Biol Med 2003, 35:1051-1063
    33. Widenmaier SB, Ao Z, Kim SJ, Warnock G, McIntosh CH, Suppression of p38 MAPK and JNK via Akt-mediated inhibition of apoptosis signal-regulating kinase 1 constitutes a core component of the beta-cell pro-survival effects of glucose-dependent insulinotropic polypeptide, J Biol Chem 2009, 284:30372-30382
    34. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R,Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED, A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer Cell 2007, 11:37-51
    35. Okouchi M, Ekshyyan O, Maracine M, Aw TY, Neuronal apoptosis in neurodegeneration, Antioxid Redox Signal 2007, 9:1059-1096
    36. Schumacker PT: Reactive oxygen species in cancer cells, live by the sword, die by the sword, Cancer Cell 2006, 10:175-176
    37. Bubici C, Papa S, Dean K, Franzoso G: Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B, molecular basis and biological significance, Oncogene 2006, 25:6731-6748
    38. Zhang Y, Herman B, Ageing and apoptosis, Mech Ageing Dev 2002, 123:245-260
    39. Lambeth JD, NOX enzymes and the biology of reactive oxygen, Nat Rev Immunol 2004, 4:181-189
    40. Stambolic V, Woodgett JR, Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration, Trends Cell Biol 2006, 16:461-466
    41. Downward J, PI 3-kinase, Akt and cell survival, Semin Cell Dev Biol 2004, 15:177-182
    42. Kim JK, Pedram A, Razandi M, Levin ER, Estrogen prevents cardiomyocyteapoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms, J Biol Chem 2006, 281:6760-6767
    43. Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A, Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner, J Biol Chem 2003, 278:13898-13904
    1. Stravitz RT, Kramer DJ, Management of acute liver failure, Nat Rev Gastroenterol Hepatol 2009, 6:542-553
    2. Gao F, Xu X, Ling Q, Wu J, Zhou L, Xie HY, Wang HP, Zheng SS, Efficacy and safety of moderately steatotic donor liver in transplantation, Hepatobiliary Pancreat Dis Int 2009, 8:29-33
    3. Droge W, Free radicals in the physiological control of cell function, Physiol Rev 2002, 82:47-95
    4. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J, Free radicals and antioxidants in normal physiological functions and human disease, Int J Biochem Cell Biol 2007, 39:44-84
    5. Genestra M, Oxyl radicals, redox-sensitive signalling cascades and antioxidants, Cell Signal 2007, 19:1807-1819
    6. Sun Y, Xun K, Wang Y, Chen X, A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs, Anticancer Drugs 2009, 20:757-769
    7. Pelicano H, Carney D, Huang P, ROS stress in cancer cells and therapeutic implications, Drug Resist Updat 2004, 7:97-110
    8. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA, Reactive oxygen species, cell signaling, and cell injury, Free Radic Biol Med 2000, 28:1456-1462
    9. Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K,Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways, Eur J Pharmacol 2008, 580:70-79
    10. Anis KV, Rajeshkumar NV, Kuttan R, Inhibition of chemical carcinogenesis by berberine in rats and mice, J Pharm Pharmacol 2001, 53:763-768
    11. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD, Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins, Nat Med 2004, 10:1344-1351
    12. Kuo CL, Chi CW, Liu TY, The anti-inflammatory potential of berberine in vitro and in vivo, Cancer Lett 2004, 203:127-137
    13. Liu W, Liu P, Tao S, Deng Y, Li X, Lan T, Zhang X, Guo F, Huang W, Chen F, Huang H, Zhou SF, Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose, Arch Biochem Biophys 2008, 475:128-134
    14. Tang LQ, Wei W, Chen LM, Liu S, Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats, J Ethnopharmacol 2006, 108:109-115
    15. Weiler-Normann C, Herkel J, Lohse AW, Mouse models of liver fibrosis, Z Gastroenterol 2007, 45:43-50
    16. Weber LW, Boll M, Stampfl A, Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model, Crit Rev Toxicol 2003, 33:105-136
    17. Tunon MJ, Alvarez M, Culebras JM, Gonzalez-Gallego J, An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure, World J Gastroenterol 2009, 15:3086-3098
    18. Cullen JM, Mechanistic classification of liver injury, Toxicol Pathol 2005, 33:6-8
    19. Carvalho C, Correia SC, Santos RX, Cardoso S, Moreira PI, Clark TA, Zhu X, Smith MA, Perry G, Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia, J Bioenerg Biomembr 2009, 41:433-440
    20. Miao L, St Clair DK, Regulation of superoxide dismutase genes: implications in disease, Free Radic Biol Med 2009, 47:344-356
    21. Franco R, Cidlowski JA, Apoptosis and glutathione: beyond an antioxidant, Cell Death Differ 2009, 16:1303-1314
    1. Genestra M, Oxyl radicals, redox-sensitive signalling cascades and antioxidants, Cell Signal 2007, 19:1807-1819
    2. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J, Free radicals and antioxidants in normal physiological functions and human disease, Int J Biochem Cell Biol 2007, 39:44-84
    3. Benhar M, Engelberg D, Levitzki A, ROS, stress-activated kinases and stress signaling in cancer, EMBO Rep 2002, 3:420-425
    4. Pelicano H, Carney D, Huang P, ROS stress in cancer cells and therapeutic implications, Drug Resist Updat 2004, 7:97-110
    5. Saxon A, Diaz-Sanchez D, Air pollution and allergy: you are what you breathe, Nat Immunol 2005, 6:223-226
    6. Antosiewicz J, Herman-Antosiewicz A, Marynowski SW, Singh SV, c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells, Cancer Res 2006, 66:5379-5386
    7. Kondo T, Hirose M, Kageyama K, Roles of oxidative stress and redox regulation in atherosclerosis, J Atheroscler Thromb 2009, 16:532-538
    8. Wright E, Jr., Scism-Bacon JL, Glass LC, Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia, Int J Clin Pract 2006, 60:308-314
    9. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM,Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin, Circ Res 2004, 94:53-59
    10. Levraut J, Iwase H, Shao ZH, Vanden Hoek TL, Schumacker PT, Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation, Am J Physiol Heart Circ Physiol 2003, 284:H549-558
    11. Jezek P, Hlavata L, Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism, Int J Biochem Cell Biol 2005, 37:2478-2503
    12. Karihtala P, Soini Y, Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies, Apmis 2007, 115:81-103
    13. Jacobs KA, Krauss RM, Fattor JA, Horning MA, Friedlander AL, Bauer TA, Hagobian TA, Wolfel EE, Brooks GA, Endurance training has little effect on active muscle free fatty acid, lipoprotein cholesterol, or triglyceride net balances, Am J Physiol Endocrinol Metab 2006, 291:E656-665
    14. Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R, The protective role of ROS in autoimmune disease, Trends Immunol 2009, 30:201-208
    15. Das SK, Vasudevan DM, Alcohol-induced oxidative stress, Life Sci 2007, 81:177-187
    16. Cheng Y, Zhao Q, Liu X, Araki S, Zhang S, Miao J, Phosphatidylcholine-specific phospholipase C, p53 and ROS in the association of apoptosis and senescence invascular endothelial cells, FEBS Lett 2006, 580:4911-4915
    17. Zhao J, Zhao B, Wang W, Huang B, Zhang S, Miao J,Phosphatidylcholine-specific phospholipase C and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells, J Cell Biochem 2007, 102:421-428
    18. Burhans WC, Heintz NH, The cell cycle is a redox cycle: linking phase-specific targets to cell fate, Free Radic Biol Med 2009, 47:1282-1293
    19. Randerath E, Zhou GD, Randerath K, Organ-specific oxidative DNA damage associated with normal birth in rats, Carcinogenesis 1997, 18:859-866
    20. Lloyd DR, Phillips DH, Carmichael PL, Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack, Chem Res Toxicol 1997, 10:393-400
    21. Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S,Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues, Nature 1987, 327:77-79
    22. Copeland WC, Wachsman JT, Johnson FM, Penta JS, Mitochondrial DNA alterations in cancer, Cancer Invest 2002, 20:557-569
    23. Jackson AL, Loeb LA, The contribution of endogenous sources of DNA damage to the multiple mutations in cancer, Mutat Res 2001, 477:7-21
    24. Finkel T, Reactive oxygen species and signal transduction, IUBMB Life 2001,52:3-6
    25. Liu H, Colavitti R, Rovira, II, Finkel T, Redox-dependent transcriptional regulation, Circ Res 2005, 97:967-974
    26. Fruehauf JP, Meyskens FL, Jr., Reactive oxygen species: a breath of life or death?, Clin Cancer Res 2007, 13:789-794
    27. Finkel T, Holbrook NJ, Oxidants, oxidative stress and the biology of ageing, Nature 2000, 408:239-247
    28. Miao L, St Clair DK, Regulation of superoxide dismutase genes: implications in disease, Free Radic Biol Med 2009, 47:344-356
    29. Zelko IN, Mariani TJ, Folz RJ, Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression, Free Radic Biol Med 2002, 33:337-349
    30. Nishikawa M, Hashida M, Takakura Y, Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis, Adv Drug Deliv Rev 2009, 61:319-326
    31. Terevinto A, Ramos A, Castroman G, Cabrera MC, Saadoun A, Oxidative status, in vitro iron-induced lipid oxidation and superoxide dismutase, catalase and glutathione peroxidase activities in rhea meat, Meat Sci 84:706-710
    32. Chaudiere J, Ferrari-Iliou R, Intracellular antioxidants: from chemical to biochemical mechanisms, Food Chem Toxicol 1999, 37:949-962
    33. Wang Y, Walsh SW, Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas, J Soc Gynecol Investig 1996, 3:179-184
    34. Muller A, Cadenas E, Graf P, Sies H, A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen), Biochem Pharmacol 1984, 33:3235-3239
    35. Balsano C, Alisi A, Antioxidant effects of natural bioactive compounds, Curr Pharm Des 2009, 15:3063-3073
    36. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, PhinneyDG, Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects, Proc Natl Acad Sci U S A 2003, 100:8407-8411
    37. Gomez-Romero M, Arraez-Roman D, Segura-Carretero A, Fernandez-Gutierrez A, Analytical determination of antioxidants in tomato: typical components of the Mediterranean diet, J Sep Sci 2007, 30:452-461
    38. Rao AV, Ray MR, Rao LG, Lycopene, Adv Food Nutr Res 2006, 51:99-164
    39. Chong EW, Wong TY, Kreis AJ, Simpson JA, Guymer RH, Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis, Bmj 2007, 335:755
    40. Riccioni G, Mancini B, Di Ilio E, Bucciarelli T, D'Orazio N, Protective effect oflycopene in cardiovascular disease, Eur Rev Med Pharmacol Sci 2008, 12:183-190
    41. Stahl W, Sies H, Carotenoids and protection against solar UV radiation, Skin Pharmacol Appl Skin Physiol 2002, 15:291-296
    42. Kavanaugh CJ, Trumbo PR, Ellwood KC, The U.S. Food and Drug Administration's evidence-based review for qualified health claims: tomatoes, lycopene, and cancer, J Natl Cancer Inst 2007, 99:1074-1085
    43. Oborna I, Fingerova H, Hajduch M, Svobodova M, Brezinova J, Vostalova J, Novotny J, [Lycopene therapy in male infertility], Ceska Gynekol 2007, 72:326-329
    44. Riccioni G, Carotenoids and cardiovascular disease, Curr Atheroscler Rep 2009, 11:434-439
    45. Maiani G, Caston MJ, Catasta G, Toti E, Cambrodon IG, Bysted A, Granado-Lorencio F, Olmedilla-Alonso B, Knuthsen P, Valoti M, Bohm V, Mayer-Miebach E, Behsnilian D, Schlemmer U, Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans, Mol Nutr Food Res 2009, 53 Suppl 2:S194-218
    46. Biyani MK, Sheorey DS, Carotenes: a ray of hope in prevention of cardiovascular disorders, cancers and cataract, J Assoc Physicians India 1994, 42:899-903
    47. Mayne ST, Beta-carotene, carotenoids, and disease prevention in humans, Faseb J 1996, 10:690-701
    48. Getoff N, Vitamin free radicals and their anticancer action. Review, In Vivo 2009, 23:599-611
    49. Thomas DR, Vitamins in aging, health, and longevity, Clin Interv Aging 2006, 1:81-91
    50. Miyazawa T, Shibata A, Sookwong P, Kawakami Y, Eitsuka T, Asai A, Oikawa S, Nakagawa K, Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol), J Nutr Biochem 2009, 20:79-86
    51. Itsiopoulos C, Hodge A, Kaimakamis M, Can the Mediterranean diet prevent prostate cancer?, Mol Nutr Food Res 2009, 53:227-239
    52. Constantinou C, Papas A, Constantinou AI, Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs, Int J Cancer 2008, 123:739-752
    53. Mandl J, Szarka A, Banhegyi G, Vitamin C: update on physiology and pharmacology, Br J Pharmacol 2009, 157:1097-1110
    54. Duconge J, Miranda-Massari JR, Gonzalez MJ, Jackson JA, Warnock W, Riordan NH, Pharmacokinetics of vitamin C: insights into the oral and intravenous administration of ascorbate, P R Health Sci J 2008, 27:7-19
    55. Verrax J, Pedrosa RC, Beck R, Dejeans N, Taper H, Calderon PB, In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells, Curr Med Chem 2009, 16:1821-1830
    56. Ohno S, Ohno Y, Suzuki N, Soma G, Inoue M, High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer, Anticancer Res 2009, 29:809-815
    57. Verrax J, Calderon PB, The controversial place of vitamin C in cancer treatment, Biochem Pharmacol 2008, 76:1644-1652
    58. Butt MS, Sultan MT, Green tea: nature's defense against malignancies, Crit Rev Food Sci Nutr 2009, 49:463-473
    59. Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X, Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis, Stem Cells 2008, 26:135-145
    60. Yin ST, Tang ML, Su L, Chen L, Hu P, Wang HL, Wang M, Ruan DY, Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage, Toxicology 2008, 249:45-54
    61. Li YM, Chan HY, Huang Y, Chen ZY, Green tea catechins upregulate superoxide dismutase and catalase in fruit flies, Mol Nutr Food Res 2007, 51:546-554
    62. Li HL, Huang Y, Zhang CN, Liu G, Wei YS, Wang AB, Liu YQ, Hui RT, Wei C, Williams GM, Liu DP, Liang CC, Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways, Free Radic Biol Med 2006, 40:1756-1775
    63. Khan N, Adhami VM, Mukhtar H, Review: Green tea polyphenols inchemoprevention of prostate cancer: preclinical and clinical studies, Nutr Cancer 2009, 61:836-841
    64. Zhu J, Luo D, Shen CH, Xu J, Photo-protection of epigallocatechin-3-gallate on aging and gene mutation of human skin fibroblasts caused by ultraviolet radiation: an in vitro experiment], Zhonghua Yi Xue Za Zhi 2007, 87:1398-1401
    65. Queen BL, Tollefsbol TO, Polyphenols and aging, Curr Aging Sci 3:34-42
    66. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY, EGCG inhibits proliferation of cardiac fibroblasts in rats with cardiac hypertrophy, Planta Med 2009, 75:113-120
    67. Giakoustidis DE, Giakoustidis AE, Iliadis S, Koliakou K, Antoniadis N, Kontos N, Papanikolaou V, Papageorgiou G, Kaldrimidou E, Takoudas D, Attenuation of liver ischemia/reperfusion induced apoptosis by epigallocatechin-3-gallate via down-regulation of NF-kappaB and c-Jun expression, J Surg Res 159:720-728
    68. Ramesh E, Jayakumar T, Elanchezhian R, Sakthivel M, Geraldine P, Thomas PA,Green tea catechins, alleviate hepatic lipidemic-oxidative injury in Wistar rats fed an atherogenic diet, Chem Biol Interact 2009, 180:10-19
    69. DeYulia GJ, Jr., Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW,Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling, Proc Natl Acad Sci U S A 2005, 102:5044-5049
    70. Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, Giordano S, Pani G, Galeotti T, Pro-metastatic signaling by c-Met through RAC-1 and reactiveoxygen species (ROS), Oncogene 2006, 25:3689-3698
    71. Mates JM, Sanchez-Jimenez FM, Role of reactive oxygen species in apoptosis: implications for cancer therapy, Int J Biochem Cell Biol 2000, 32:157-170
    72. Martindale JL, Holbrook NJ, Cellular response to oxidative stress: signaling for suicide and survival, J Cell Physiol 2002, 192:1-15
    73. Rudolph J, Redox regulation of the Cdc25 phosphatases, Antioxid Redox Signal 2005, 7:761-767
    74. Xu Q, Konta T, Nakayama K, Furusu A, Moreno-Manzano V, Lucio-Cazana J, Ishikawa Y, Fine LG, Yao J, Kitamura M, Cellular defense against H2O2-induced apoptosis via MAP kinase-MKP-1 pathway, Free Radic Biol Med 2004, 36:985-993
    75. Minetti M, Mallozzi C, Di Stasi AM, Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling, Free Radic Biol Med 2002, 33:744-754
    76. McCubrey JA, Lahair MM, Franklin RA, Reactive oxygen species-induced activation of the MAP kinase signaling pathways, Antioxid Redox Signal 2006, 8:1775-1789
    77. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z, Vascular endothelial growth factor (VEGF) and its receptors, Faseb J 1999, 13:9-22
    78. Mulder KM, Role of Ras and Mapks in TGFbeta signaling, Cytokine Growth Factor Rev 2000, 11:23-35
    79. Sundaresan M, Yu ZX, Ferrans VJ, Sulciner DJ, Gutkind JS, Irani K, Goldschmidt-Clermont PJ, Finkel T, Regulation of reactive-oxygen-species generation in fibroblasts by Rac1, Biochem J 1996, 318 ( Pt 2):379-382
    80. Chapple IL, Reactive oxygen species and antioxidants in inflammatory diseases, J Clin Periodontol 1997, 24:287-296
    81. Abe J, Berk BC, Fyn and JAK2 mediate Ras activation by reactive oxygen species, J Biol Chem 1999, 274:21003-21010
    82. Salmeen A, Barford D, Functions and mechanisms of redox regulation of cysteine-based phosphatases, Antioxid Redox Signal 2005, 7:560-577
    83. Parekh AB, Penner R, Store depletion and calcium influx, Physiol Rev 1997, 77:901-930
    84. Gopalakrishna R, Jaken S, Protein kinase C signaling and oxidative stress, Free Radic Biol Med 2000, 28:1349-1361
    85. Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R, Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma, Science 1997, 275:394-397
    86. Kyriakis JM, Avruch J, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation, Physiol Rev 2001, 81:807-869
    87. Iles KE, Forman HJ, Macrophage signaling and respiratory burst, Immunol Res2002, 26:95-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700