用户名: 密码: 验证码:
MPP~+诱导的SH-SY5Y细胞帕金森病模型的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用1-甲基-4-苯基-吡啶离子(MPP+)在体外构建未分化的和全反式维甲酸(ATRA)与十四烷酰佛波醇乙酸酯(TPA)序贯分化的SH-SY5Y细胞损伤的帕金森病(PD)模型,并进一步研究这两种PD细胞模型的蛋白质组学改变,筛选出与MPP+作用相关的蛋白质,为阐明PD的发病机制提供新的线索和理论依据。对构建的PD细胞模型通过MTT比色法检测细胞活性及代谢状态、Hoechst33342染色检测细胞凋亡和台盼兰染色检测细胞的死亡率。采用二维差异凝胶电泳(2D-DIGE)和基质-辅助激光解析/电离飞行时间质谱(MALDI-TOF MS)技术分析MPP+诱导的两种SH-SY5Y细胞PD模型的蛋白质组学改变。在MPP+处理24小时的未分化SH-SY5Y细胞中鉴定出3个差异表达蛋白:可溶性抗药性相关钙结合蛋白(sorcin)、膜联蛋白V (annexin V)和核糖体蛋白PO (RPLPO),它们在功能上分别与钙离子稳态、DNA损伤修复和凋亡有关。在MPP+处理48小时的ATRA和TPA序贯分化的SH-SY5Y细胞中确切地鉴定了10个差异蛋白点,代表了8个不同的蛋白质:核磷蛋白(NPM1)、含TCP1的伴侣蛋白β亚基(CCTβ)、90kDa热休克蛋白β(HSP90AB1)、14-3-3蛋白p亚型(14-3-3p,基因名Ywhab)、14-3-3蛋白ε亚型(14-3-3ε,基因名Ywhae)、14-3-3蛋白ζ亚型(14-3-3ζ,基因名Ywhaz).α-微管蛋白(a-tubulin)和3-磷酸甘油酸脱氢酶(Phgdh),他们分别参与细胞骨架的重构、分子伴侣活性、L-丝氨酸的生物合成等。这些结果表明很多途径与MPP+在SH-SY5Y细胞诱导的毒性有关,本研究结果为进一步研究PD的发病机制和合理筛选治疗靶点提供了有价值的新的线索和理论依据。在所鉴定的蛋白中,RPLPO在PD细胞模型中首次报道,NPM1、CCTβ、HSP90AB1、14-3-3β、14-3-3ε、14-3-3ζ、Phgdh和sorcin在MPP~-诱导的SH-SY5Y细胞PD模型中首次报道,膜联蛋白V表达水平上调在MPP~+诱导的SH-SY5Y细胞PD模型首次报道。
Parkinson's disease (PD) is a common progressive neurodegenerative disease pathologically characterized by the loss of dopaminergic neurons and the presence of intracellular inclusions in the spared neurons, known as Lewy bodies, in the substantia nigra pars compacta (SNpc). Despite intensive research, the exact cause of PD and the mechanisms that lead to nigro-striatal DAergic neuron death remain largely elusive. PD is considered to be resulted from complex interplay between genetic and environmental factors and mechanisms believed to contribute to the development of PD include oxidative stress, mitochondrial dysfunction, protein misfolding and aggregation, proteasome dysfunction, excitotoxicity, iron deposition and inflammation. It is likely that more than one of these mechanisms is involved in the pathogenesis of PD, yet the exact combination and succession remain unclear. In this study,2D-DIGE coupled with MALDI-ToF MS were used for identifying specific changes in protein expression in 1-methyl-4-phenyl-pyridinium (MPP+)-treated SH-SY5Y cells undifferentiated and differentiated by all-trans retinoic acid (ATRA) followed by phorbol ester 12-o-tetradecanoylphorbol-13-acetate (TPA). SH-SY5Y cells possess many characteristics of DAergic neuron, including expressing both tyrosine hydroxylase and dopamine-β-hydroxylase, as well as dopamine transporter (DAT), and when exposed to differentiation factors (RA/TPA), the cells acquire a more pronounced DAergic phenotype. Moreover, these cells can mimic many aspects of the DAergic neuron death observed in PD when treated by neurotoxins such as 1-methyl-4-phenyl-pyridinium (MPP+),6-hydroxydopamine (6-OHDA), or rotenone, so differentiated and undifferentiated SH-SY5Y cells have recently been widely used as a DAergic neuron model for PD research. MPP+ is the active metabolite of the dopamine specific neurotoxin 1-methyl-4-phenyl-1.2,3,6-tetrahydropyridine (MPTP), which has been widely used to induce experimental PD model for more than 20 years. Thus MPP+-induced SH-SY5Y cells were chosen to study the pathogenesis of PD in this study. Proteomics represents a powerful tool to perform high-throughput studies at protein level, allowing the detection of the appearance of new proteins, differences in the amount of expressed proteins, and changes in post-translational modified (PTM)。In this study, comprehensive analysis of high-throughout protein data was done on experimental PD mimics by proteomics research, which unquestionably contribute to comprehensive recognition of PD.
     Objective:To observe the different sensitivity of undifferentiated, ATRA-differentiated and ATRA/TPA-differentiated SH-SY5Y cells to 1-methyl-4-phenyl-pyridinium ion (MPP+), a kind of PD mimicking neurotoxin, in order to make better use of SH-SY5Y cells in neurotoxicity and PD research. Then to built in vitro PD cell models in undifferentiated SH-SY5Y cells treated with 1.0 mM MPP+for 24 h and ATRA/TPA-differentiated SH-SY5Y cells treated with 1.0 mM MPP+for 48 h. And to identify the differentially expressed proteins in these two kinds of PD cell models for revealing the potential pathogenesis of PD.
     Methods:SH-SY5Y cells were differentiated with 10μM ATRA for 6 days or 10μM ATRA for 3 days followed by 80 nM TPA for another 3 days (RA/TPA) and undifferentiated SH-SY5Y cells were cultured at the same time and condition. Then each of these groups was treated with different concentration of MPP+(0.05,0.1,0.25,0.5,1.0 and 2.0 mM) for different time (24,48, and 72 h). Cell morphology was observed under inverse microscopy, cell viability was calculated by the method of MTT assay and trypan blue exclusion was employed to detect the death rate of three groups of SH-SY5Y cells treated with 1mM MPP+ for 48 h. Then, we built in vitro PD cell models in undifferentiated SH-SY5Y cells treated with MPP+ for 24 h and ATRA/TPA-differentiated SH-SY5Y cells treated with MPP+ for 48 h. Cell apoptosis was observed via Hoechst 33342 staining, and cell viability was calculated by MTT assay and trypan blue exclusion. Quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used to determine the changing protein levels in the two kinds of PD cell models.
     Results:ATRA and ATRA/TPA could induce morphological differentiation, inhibit growth of SH-SY5Y cells and showed time-and dose-dependent manner. After treated with MPP+, the cell viability declined in a time-and concentration-dependent manner in three groups of SH-SY5Y cells. Trypan blue exclusion and MTT assay showed that SH-SY5Y cells with different differentiation status have different sensitivity to MPP+. The results showed that ATRA/TPA-differentiated SH-SY5Y cells is the most sensitive cells to MPP+, the next is undifferentiated SH-SY5Y cells, and ATRA-differentiated SH-SY5Y cells are the least sensitive cells. In undifferentiated SH-SY5Y cells treated with 1.0 mM MPP+for 24 h, the cell viability decreased to 75.8%±1.5%, apoptosis rate reached to 23%±2.5%, and the death rate was 25.7%±1.5%. And in ATRA/TPA-differentiated SH-SY5Y cells treated with 1.0 mM MPP+for 48 h, the cell viability decreased to 54.3%±0.8%, apoptosis rate reached to 35.3%±1.5%, and the death rate was 38.3%±2.1%.
     After MPP+-induced undifferentiated and ATRA/TPA-differentiated SH-SY5Y cells PD models were built, a comparative proteomic approach (2D-DIGE coupled with MALDI-ToF MS) was performed to identify differentially expressed proteins in PD models. Via comparing MPP+-treated undifferentiated SH-SY5Y cells to controls, a total of 22 proteins displayed at least a 1.3-fold change in relative abundance. Among with, three proteins were identified successfully as sorcin (soluble resistance-related calcium binding protein), annexin V (annexin A5, ANXA5), and ribosomal protein P0 (ribosomal phosphoprotein P0, RPLPO), which in function are associated respectively with apoptosis, calcium homeostasis, and DNA insults. Via comparing MPP+-treated ATRA/TPA-differentiated SH-SY5Y cells to controls,49 protein spots were found to be differentially expressed. Among which,10 protein spots were unambiguously identified, representing 8 distinct proteins:nucleophosmin (NPM1), chaperonin containing TCP 1 subunitβ(CCTβ), heat shock 90 kDa protein 1, beta (HSP90AB1 or HSP90-β),14-3-3 beta (14-3-3β, gene symbol Ywhab),14-3-3 epsilon (14-3-3ε, gene symbol Ywhae)、14-3-3 zeta (14-3-3ζ,, gene symbol Ywhaz),α-tubulin, 3-phosphoglcerate dehydrogenase (Phgdh). In some cases, more than one protein spots corresponding to the same protein, which might represent different PTM forms of the same protein, leading to minor drift of molecular weight and isoelectric point. The function of these proteins have implication on pathways such as cytoskeletal reorgnization, chaperone activity, and L-serine biosythesis, and the upregulation of these chaperone proteins in present study provide further evidence for a role of ER stress and UPR in pathogenesis of PD.
     Conclusion:These results indicated that multiple mechanisms may be pertinent in the underlying pathogenesis of PD, and provided new valuable clues for the further exploration of the pathogenesis and treatment of PD.
引文
[1]Koch A, Lehmann-Horn K, Dachsel JC, et al. Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells [J]. Parkinsonism Relat Disord,2009,15(3):220-5.
    [2]Cheng YF, Zhu GQ, Wang M, et al. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP(+)-elicited apoptosis [J]. Neurosci Res, 2009,63(1):52-8.
    [3]Takeuchi H, Yanagida T, Inden M, et al. Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models [J]. J Neurosci Res,2009,87(2):576-85.
    [4]Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity and cytogenetics of human neuroblastoma cells in continuous culture [J]. Cancer Res, 1973,33(11):2643-52.
    [5]Ciccarone V, Spengler BA, Meyers MB, et al. Phenotypic diversification in human neuroblastoma cells:expression of distinct neural crest lineages [J]. Cancer Res,1989, 49(1):219-25.
    [6]Joshi S, Guleria R, Pan J, et al. Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells [J]. Oncogene,2006,25(2):240-7.
    [7]Singh J, Kaur G. Transcriptional regulation of polysialylated neural cell adhesion molecule expression by NMDA receptor activation in retinoic acid-differentiated SH-SY5Y neuroblastoma cultures [J]. Brain Res.2007,1154:8-21.
    [8]Pahlman S. Odelstad L, Larsson E. et al. Phenotypic changes of human neurobiastoma cells in culture induced by 12-O-tetradecanoyl-phorbol-13-acetate [J].Int J Cancer. 1981,28(5):583-9.
    [9]Cernaianu G, Brandmaier P, Scholz G, et al. All-trans retinoic acid arrests neuroblastoma cells in a dormant state. Subsequent nerve growth factor/brain derived neurotrophic factor treatment adds modest benefit [J]. J Pediatr Surg,2008,43(7): 1284-94.
    [10]Guarnieri S, Pilla R, Morabito C, et al. Extracellular guano sine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells [J]. Int J Dev Neurosci,2009,27(2):135-47.
    [11]Kume T, Kawato Y, Osakada F, et al. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype [J]. Neurosci Lett,2008,443(3):199-203.
    [12]Mollereau C, Zajac JM, Roumy M. Staurosporine differentiation of NPFF2 receptor-transfected SH-SY5Y neuroblastoma cells induces selectivity of NPFF activity towards opioid receptors [J]. Peptides,2007,28(5):1125-8.
    [13]Oyarce AM, Fleming PJ. Multiple forms of human dopamine beta-hydroxylase in SH-SY5Y neuroblastoma cells [J]. Arch Biochem Biophys,1991,290(2):503-10.
    [14]Takahashi T, Deng Y, Maruyama W, et al. Uptake of a neurotoxin-candidate, (R)-1, 2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system [J]. J Neural Transm Gen Sect,1994,98(2):107-18.
    [15]Presgraves SP, Ahmed T, Borwege S, et al. Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists [J]. Neurotox Res,2004,5(8):579-98.
    [16]Cheung YT, Lau WK, Yu MS, et al. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research [J]. Neurotoxicology, 2009,30(1):127-35..
    [17]Datki Z, Juhasz A, Galfi M, et al. Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells [J]. Brain Res Bull,2003,62(3):223-9.
    [18]Storch A, Burkhardt K, Ludolph AC, et al. Protective effects of riluzole on dopamine neurons:involvement of oxidative stress and cellular energy metabolism [J]. J Neurochem,2000,75(6):2259-69.
    [19]Ikeda H, Pastuszko A, Ikegaki N, et al.3,4-dihydroxyphenylalanine (dopa) metab-olism and retinoic acid induced differentiation in human neuroblastoma [J]. Neurochem Res,1994,19(12):1487-94.
    [20]Fagerstrom S, Pahlman S, Gestblom C, et al. Protein kinase C-epsilon is implicated in neurite outgrowth in differentiating human neuroblastoma cells [J]. Cell Growth Differ, 1996,7(6):775-85.
    [21]Gimenez-Cassina A, Lim F, Diaz-Nido J. Differentiation of a Human Neuroblastoma Into Neuron-Like Cells Increases Their Susceptibility to Transduction by Herpesviral Vectors [J]. J Neurosci Res,2006,84(4):755-67.
    [22]Akerman KEO, Scott IG, Andersson LC. Functional differentiation of human ganglion cell derived neuroblastoma cell line SH-SY5Y induced by a phorbolester (TPA) [J]. Neurochem Int,1984,6(1):77-80.
    [23]Tosetti P, Taglietti V, Toselli M. Functional changes in potassium conductances of the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J Neurophysiol,1998,79(2):648-58.
    [24]Brown AM, Riddoch FC, Robson A, et al. Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells [J]. Biochem J, 2005,388(3):941-8.
    [25]Millan MJ Di Cara B, Hill M, et al. S32504, a novel naphtoxazine agonist at dopamine D3/D2 receptors:II. Actions in rodent, primate and cellular models of antiparkinson activity in comparison to ropinirole [J]. J Pharmacol Exp Ther,2004, 309(3):921-35.
    [26]Jenab S, Inturrisi CE. Retinoic acid regulation of mu opioid receptor and c-fos mRNAs and AP-1 DNA binding in SH-SY5Y neuroblastoma cells. Molecular [J]. Brain Res Mol Brain Res,2002,99(1):34-39.
    [27]Chen S, Zhang X, Yang D, et al. D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase-and JNK-dependent pathways [J]. FEBS Lett,2008,582(5):603-10.
    [28]Wakamatsu M, Iwata S, Funakoshi T, et al. Dopamine receptor agonists reverse behavioral abnormalities of a-synuclein transgenic mouse, a new model of Parkinson's disease [J]. J Neurosci Res,2008,86(3):640-6.
    [29]Scheller D, Ullmer C, Berkels R, et al. The in vitro receptor profile of rotigotine:a new agent for the treatment of Parkinson's disease [J]. Naunyn Schmiedebergs Arch Pharmacol,2009,379(1):73-86.
    [30]Farooqui SM. Induction of adenylate cyclase sensitive dopamine D2-receptors in retinoic acid induced differentiated human neuroblastoma SHSY-5Y cells [J]. Life Sci, 1994,55(24):1887-93.
    [31]Pahlman S, Ruusala AI, Abrahamsson L, et al. Retinoic acid-induced differentiation of cultured human neuroblastoma cells:a comparison with phorbolester-induced differentiation [J]. Cell Differ,1984,14(2):135-44.
    [32]Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation [J]. J Neurobiol,2006,66(7):739-56.
    [33]Uemura K, Kitagawa N, Kohno R, et al. Presenilin 1 mediates retinoic acid-induced differentiation of SH-SY5Y cells through facilitation of Wnt signaling [J]. J Neurosci Res,2003,73(2):166-75.
    [34]Kim SN, Kim SG, Park SD, et al. Participation of type II protein kinase A in the retinoic acid-induced growth inhibition of SH-SY5Y human neuroblastoma cells [J]. J Cell Physiol, 2000,182(3):421-8.
    [35]Encinas M, Iglesias M, Liu Y, et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor dependent, human neuron-like cells [J]. J Neurochem,2000,75(3): 991-1003.
    [36]Pennypacker KR, Kuhn DM, Billingsley ML. Changes in expression of tyrosine hydroxylase immunoreactivity in human SMS-KCNR neuroblastoma following retinoic acid or phorbol ester-induced differentiation [J]. Brain Res Mol Brain Res, 1989,5(4):251-8.
    [37]Adem A, Mattsson ME, Nordberg A, et al. Muscarinic receptors in human SH-SY5Y neuroblastoma cell line:regulation by phorbol ester and retinoic acid-induced differentiation [J]. Brain Res,1987,430(2):235-42.
    [38]Magni P, Beretta E, Scaccianoce E, et al. Retinoic acid negatively regulates neuropeptide Y expression in human neuroblastoma cells [J]. Neuropharmacology, 2000,39(9):1628-36.
    [39]Sarkanen JR, Nykky J, Siikanen J, et al. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells [J]. J Neurochem,2007,102(6):1941-52.
    [40]Mattsson ME, Ruusala AI, Pahlman S. Changes in inducibility of ornithine decarboxylase activity in differentiating human neuroblastoma cells [J]. Exp Cell Res, 1984,155(1):105-12.
    [41]Heby O. Role of polyamines in the control of cell proliferation and differentiation [J]. Differentiation,1981,19(1):1-20.
    [42]Mattsson ME, Enberg G, Ruusala AI, et al. Mitogenic response of human SH-SY5Y neuroblastoma cells to insulin-like growth factor Ⅰ and Ⅱ is dependent on the stage of differentiation [J]. J Cell Biol, 1986,102(5):1949-54.
    [43]Olsson AK, Vadhammar K, Nanberg E. Activation and protein kinase C-dependent nuclear accumulation of ERK in differentiating human neuroblastoma cells [J]. Exp Cell Res,2000,256(2):454-67.
    [44]Jalava A, Heikkila J, Lintunen M, et al. Staurosporine induces a neuronal phenotype in SH-SY5Y human neuroblastoma cells that resembles that induced by the phorbol ester 12-O-tetradecanoyl phorbol-13 acetate (TPA) [J]. FEBS Lett,1992,300(2):114-8.
    [45]Gomez-Santos C, Ambrosio S, Ventura F, et al. TGF-betal increases tyrosine hydroxylase expression by a mechanism blocked by BMP-2 in human neuroblastoma SH-SY5Y cells [J]. Brain Res,2002,958(1):152-60.
    [46]Kaplan DR. Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol,2000,10(3):381-91.
    [47]Lavenius E, Parrow V, Nanberg E, et al. Basic FGF and IGF-I promote differentiation of human SH-SY5Y neuroblastoma cells in culture [J]. Growth Factors,1994,10(1): 29-39.
    [48]Kou W, Luchtman D, Song C. Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells [J]. Eur J Nutr,2008,47(2):104-13.
    [49]Edsjo A, Lavenius E, Nilsson H, et al. Expression of trkB in human neuroblastoma in relation to MYCN expression and retinoic acid treatment [J]. Lab Invest,2003,83(6): 813-23.
    [50]Mastroeni D, Grover A, Leonard B, et al. Microglial responses to dopamine in a cell culture model of Parkinson's disease [J]. Neurobiol Aging,2009,30(11):1805-17.
    [51]Jalava A, Akerman K, Heikkila J. Protein kinase inhibitor, staurosporine, induces a mature neuronal phenotype in SH-SY5Y human neuroblastoma cells through an alpha-, beta-, and zeta-protein kinase C-independent pathway [J]. J Cell Physiol.1993,155(2): 301-12.
    [52]Edsjo A, Holmquist L, Pahlman S. Neuroblastoma as an experimental model of neuronal differentiation and hypoxia-induced tumor cell dedifferentiation [J]. Semin Cancer Biol,2007,17(3):248-56.
    [53]Shen JH, Zhang Y, Wu NH, et al. Resistance to geldanamycin-induced apoptosis in differentiated neuroblastoma SH-SY5Y cells. Neurosci Lett,2007,414(2):110-4.
    [54]Cecchi C, Pensalfini A, Liguri G, et al. Differentiation Increases the Resistance of Neuronal Cells to Amyloid Toxicity [J]. Neurochem Res,2008,33(12):2516-31.
    [55]Lasorella A, Iavarone A, Israel MA. Differentiation of neuroblastoma enhances Bcl-2 expression and induces alterations of apoptosis and drug resistance [J]. Cancer Res, 1995,55(20):4711-6.
    [56]Tieu K, Zuo DM. Yu PH. Differential Effects of Staurosporine and Retinoic Acid on the Vulnerability of the SH-SY5Y Neuroblastoma Cells:Involvement of Bcl-2 and p53 Proteins [J]. J Neurosci Res,1999.58(3):426-35.
    [57]Jantas D, Pytel M, Mozrzymas JW, et al. The attenuating effect of memantine on staurosporine-, salsolinol-and doxorubicin-induced apoptosis in human neuroblastoma SH-SY5Y cells [J]. Neurochem Int,2008,52(4-5):864-77.
    [58]Ho R, Eggert A, Hishiki T, et al. Resistance of chemotherapy mediated by TrkB in neuroblastomas [J]. Cancer Res,2002,62(22):6462-6.
    [59]Guo JT, Chen AQ, Kong Q, et al. Inhibition of Vesicular Monoamine Transporter-2 Activity in a-Synuclein Stably Transfected SH-SY5Y Cells [J]. Cell Mol Neurobiol, 2008,28:35-47.
    [60]Lonergan PE, Martin DS, Horrobin DF, et al. Neuroprotective actions of eicosapen-taenoic acid on lipopolysacchari de-induced dysfunction in rat hippocampus [J]. J Neurochem,2004,91(1):20-9.
    [61]Kitao Y, Matsuyama T, Takano K, et al. Does ORP150/HSP12A protect dopaminergic neurons against MPTP/MPP(+)-induced neurotoxicity? [J]. Antioxid Redox Signal. 2007,9(5):589-95.
    [62]Gainetdinov RR, Fumagalli F, Jones SR, et al. Dopamine transporter is required for in vivo MPTP neurotoxicity:evidence from mice lacking the transporter [J]. J Neurochem,1997,69(3):1322-5.
    [63]Langston JW, Ballard P, Tetrud JW, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis [J]. Science,1983,219(4587):979-80.
    [64]Langston JW, Langston EB, Irwin I. MPTP-induced parkinsonism in human and non-human primates-clinical and experimental aspects [J]. Acta Neurol Scand Suppl, 1984,100:49-54.
    [65]Burns RS, Chiueh CC, Markey SP, et al. A primate model of parkinsonism:selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [J]. Proc Natl Acad Sci USA,1983, 80(14):4546-50.
    [66]Fornai F, Schluter OM, Lenzi P, et al. Parkinson-like syndrome induced by continuous MPTP infusion:convergent roles of the ubiquitin-proteasome system and alpha-synuclein [J]. Proc Natl Acad Sci USA,2005:102(9):3413-8.
    [67]Meredith GE, Totterdell S, Petroske E, et al. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson's disease [J]. Brain Res,2002,956(1):156-65.
    [68]Youdim MB, Bar Am O, Yogev-Falach M, et al. Rasagiline:neurodegeneration, neuroprotection, and mitochondrial permeability transition [J]. J Neurosci Res,2005, 79(1-2):172-9.
    [69]Langston JW, Irwin I, Langston EB, et al. Pargyline prevents MPTP-induced parkinsonism in primates [J]. Science,1984,225(4669):1480-2.
    [70]Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism [J]. Prog Neurobiol,2005,76(2):77-98.
    [71]McGeer PL, McGeer EG. The inflammatory response system of brain:implications for therapy of Alzheimer and other neurodegenerative diseases [J]. Brain Res Brain Res Rev,1995,21(2):195-218.
    [72]Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease [J]. Nat Med,1999,5(12):1403-9.
    [73]Sriram K, Miller DB, O'Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity:role of tumor necrosis factor-alpha [J]. J Neurochem,2006,96(3):706-18.
    [74]Mogi M, Harada M, Narabayashi H, et al. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease [J]. Neurosci Lett,1996,211(1):13-6.
    [75]Kurosaki R, Muramatsu Y, Michimata M, et al. Role of nitric oxide synthase against MPTP neurotoxicity in mice [J]. Neurol Res,2002,24(7):655-62.
    [76]Dehmer T, Lindenau J, Haid S, et al. Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo [J]. J Neurochem,2000,74(5):2213-6.
    [77]Watanabe H, Muramatsu Y, Kurosaki R, et al. Protective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity:an immunohis-tological study [J]. Eur Neuropsychopharmacol,2004,14(2):93-104.
    [78]Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP:contribution to the apoptotic theory in Parkinson's disease [J]. Prog Neurobiol,2001,65(2):135-72.
    [79]Westlund KN, Denney RM, Rose RM, et al. Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem [J]. Neuroscience,1988,25(2):439-56.
    [80]Miller GW, Staley JK, Heilman CJ, et al. Immunochemical analysis of dopamine transporter protein in Parkinson's diseas [J]. Ann Neurol,1997,41(4):530-9.
    [81]Javitch JA, D'Amato RJ, Strittmatter SM, et al. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine:uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity [J]. Proc Natl Acad Sci USA,1985,82(7):2173-7.
    [82]Dauer W, Przedborski S. Parkinson's disease:mechanisms and models [J]. Neuron, 2003,9(6):889-909.
    [83]Staal RG, Hogan KA, Liang CL, et al. In vitro studies of striatal vesicles containing the vesicular monoamine transporter (VMAT2):rat versus mouse differences in sequestration of 1-methyl-4-phenylpyridinium [J]. J Pharmacol Exp Ther,2000, 293(2):329-35.
    [84]Ouchi Y, Yoshikawa E, Okada H, et al. Alterations in binding site density of dopamine transporter in the striatum, orbitofrontal cortex, and amygdala in early Parkinson's disease:compartment analysis for beta-CFT binding with positron emission tomography [J]. Ann Neurol,1999,45(5):601-10.
    [85]Bezard E, Gross CE, Fournier MC, et al. Absence of MPTP-induced neuronal death in mice lacking the dopamine transporter [J]. Exp Neurol,1999,155(2):268-73.
    [86]Liu Y, Edwards RH. The role of vesicular transport proteins in synaptic transmission and neural degeneration [J]. Annu Rev Neurosci,1997,20:125-56.
    [87]Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson's disease and heavy metal exposure [J]. J Biol Chem,2001.276(47): 44284-96.
    [88]Nicotra A. Parvez SH. Cell death induced by MPTP, a substrate for monoamine oxidase B [J]. Toxicology,2000,153(1-3):157-66.
    [89]Xu J, Wei C, Xu C, et al. Rifampicin protects PC 12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-Synuclein multimer [J]. Brain Res, 2007.1139:220-5.
    [90]Fan GH, Qi C, Chen SD. Heat shock proteins reduce toxicity of 1-methyl-4-phenylpyridinium ion in SK-N-SH cells [J]. J Neurosci Res,2005,82(4):551-62.
    [91]Sharma SK, Carlson EC, Ebadi M. Neuroprotective actions of Selegiline in inhibiting 1-methyl,4-phenyl, pyridinium ion (MPP+)-induced apoptosis in SK-N-SH neurons [J]. J Neurocytol,2003,32(4):329-43.
    [92]Meredith GE, Totterdell S, Beales M, et al. Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson's disease [J]. Exp Neurol,2009,219(1):334-40.
    [93]Zhu JH, Horbinski C, Guo F, et al. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death [J]. Am J Pathol,2007,170(1):75-86.
    [94]Hochman A, Sternin H, Gorodin S, et al. Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice [J]. J Neurochem,1998,71(2):741-8.
    [95]Yang L, Matthews RT, Schulz JB, et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2 [J]. J Neurosci,1998.18(20): 8145-52.
    [96]Vila M, Jackson-Lewis V, Vukosavic S, et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease [J]. Proc Natl Acad Sci USA,2001,98(5):2837-42.
    [97]Hassouna I, Wickert H, Zimmermann M, et al. Increase in bax expression in substantia nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice [J]. Neurosci Lett,1996,204(1-2):85-8.
    [98]Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene [J]. Cell,1995,80(2):293-9.
    [99]Duan W, Zhu X, Ladenheim B, et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism [J]. Ann Neurol,2002,52(5):597-606.
    [100]Trimmer PA, Smith TS, Jung AB, et al. Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity [J]. Neurodegeneration,1996, 5(3):233-9.
    [101]von Coelln R, Kiigler S, Bahr M, et al. Rescue from death but not from functional impairment:caspase inhibition protects dopaminergic cells against 6-hydroxydo-pamine-induced apoptosis but not against the loss of their terminals [J]. J Neurochem, 2001,77(1):263-73.
    [102]Bilsland J, Roy S, Xanthoudakis S, et al. Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons [J]. J Neurosci, 2002,22(7):2637-49.
    [103]Du Y, Dodel RC, Bales KR, et al. Involvement of a caspase-3-like cysteine protease in 1-methyl-4-phenylpyridinium-mediated apoptosis of cultured cerebellar granule neurons [J]. J Neurochem,1997,69(4):1382-8.
    [104]Klevenyi P, Andreassen O, Ferrante RJ, et al. Transgenic mice expressing a dominant negative mutant interleukin-lbeta converting enzyme show resistance to MPTP neurotoxicity [J]. Neuroreport,1999,10(3):635-8.
    [105]Hartmann A, Hunot S, Michel PP, et al. Caspase-3:A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease [J]. Proc Natl Acad Sci USA,2000,97(6):2875-80.
    [106]Cassarino DS, Parks JK, Parker WD Jr. et al. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism [J]. Biochim Biophys Acta,1999, 1453(1):49-62.
    [107]Mochizuki H, Hayakawa H, Migita M, et al. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease [J]. Proc Natl Acad Sci USA,2001,98(19):10918-23.
    [108]Xia XG Harding T, Weller M, et al. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease [J]. Proc Natl Acad Sci USA,2001,98(18):10433-8.
    [109]Chen XC, Fang F, Zhu YG, et al. Protective effect of ginsenoside Rg1 on MPP+ induced apoptosis in SHSY5Y cells [J]. J Neural Transm,2003,110(8):835-45.
    [110]Chun HS, Gibson GE, DeGiorgio LA, et al. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mecha-nism[J]. J Neurochem,2001,76(4):1010-21.
    [111]Wang H, Shimoji M, Yu SW, et al. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease [J]. Ann N Y Acad Sci,2003, 991:132-9.
    [112]Eberhardt O, Schulz JB. Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson's disease [J]. Toxicol Lett,2003,139(2-3):135-51.
    [113]Melrose HL, Lincoln SJ, Tyndall GM, et al. Parkinson's disease:a rethink of rodent models [J]. Exp Brain Res,2006,173(2):196-204.
    [114]Bove J, Zhou C, Jackson-Lewis V, et al. Proteasome inhibition and Parkinson's disease modeling [J]. Ann Neurol,2006,60(2):260-4.
    [115]McNaught KS, Perl DP, Brownell AL, et al. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease [J]. Ann Neurol,2004, 56(1):149-62.
    [116]Collins FS, Green ED, Guttmacher AE, et al. A vision for the future of genomics research [J]. Nature,2003,422(6934):835-47.
    [117]Editors et al. Breakthrough of the year. Peering into 2002 [J]. Science,2001,294 (5551):2444.
    [118]Swinbanks D. Government backs proteome proposal [J]. Nature,1995,378(6558):653.
    [119]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium [J]. Electrophoresis,1995, 16(7):1090-4.
    [120]Graves PR, Haystead TA. Molecular biologist's guide to proteomics [J]. Microbiol Mol Biol Rev,2002,66(1):39-63.
    [121]Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature,2000, 405(6788):837-46.
    [122]曹志成,余坚文,梁荣能.蛋白质组学-引领后基因组时代[J].中国生物工程杂志,2005,25(1):33-38.
    [123]Huang ZY, Yang PY, Almofti MR, et al. Comparative analysis of the proteome of left
    ventricular heart of arteriosclerosis in rat [J]. Life Sci,2004,75(26):3103-15.
    [124]Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electroph-oresis-based proteome analysis technology [J]. Proc Natl Acad Sci USA,2000,97(17): 9390-5.
    [125]Hanash SM. Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients:current status [J]. Electrophoresis,2000,21(6):1202-9.
    [126]Tonge R, Shaw J, Middleton B, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology [J]. Proteomics, 2001,1(3):377-96.
    [127]Richard J. Simpson. Proteins and Protemoics:A Laboratory Manual [M]. Cold Spring Harbor Laboratory Press,2003:425-595.
    [128]Henzel WJ, Watanabe C, Stults JT. Protein identification:the origins of peptide mass fingerprinting [J]. J Am Soc Mass Spectrom,2003,14(9):931-42.
    [129]Ekstrom S, Onnerfjord P, Nilsson J, et al. Integrated microanalytical technology enabling rapid and automated protein identification [J]. Anal Chem,2000,72(2): 286-93.
    [130]Hoffmann ED. Tandem mass spectrometry:a primer [M]. J Mass Spectrom,1996, 31(1):129-137.
    [131]Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome [J]. Nat Biotechnol,2001,19(4):379-82.
    [132]Sowell RA, Owen JB. Butterfield DA. Proteomics in animal models of Alzheimer's and Parkinson's diseases [J]. Ageing Res Rev,2009,8(1):1-17.
    [133]Abbott A. Brain protein project enlists mice in'dry run'[J]. Nature,2003.425(6954): 110.
    [134]Periquet M, Corti O, Jacquier S, et al. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function [J]. J Neurochem,2005,95(5):1259-76.
    [135]Jin J, Meredith GE, Chen L, et al. Quantitative proteomic analysis of mitochondrial proteins:relevance to Lewy body formation and Parkinson's disease [J]. Brain Res Mol Brain Res,2005,134(1):119-38.
    [136]Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease [J]. Science,2003,302(5646):819-22.
    [137]Skold K, Svensson M, Nilsson A, et al. Decreased striatal levels of PEP-19 following MPTP lesion in the mouse [J]. J Proteome Res,2006,5(2):262-9.
    [138]Putkey JA, Kleerekoper Q, Gaertner TR, et al. A new role for IQ motif proteins in regulating calmodulin function [J]. J Biol Chem,2003,278(50):49667-70.
    [139]De Iuliis A, Grigoletto J, Recchia A, et al. A proteomic approach in the study of an animal model of Parkinson's disease [J]. Clin Chim Acta,2005,357(2):202-9.
    [140]Butterfield DA, Gnjec A, Poon HF, et al. Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease:an initial assessment[J]. J Alzheimers Dis,2006,10(4):391-7.
    [141]Reed T, Perluigi M, Sultana R, et al. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment:insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease [J]. Neurobiol Dis,2008,30(1):107-20.
    [142]Valastro B, Dekundy A, Krogh M, et al. Proteomic analysis of striatal proteins in the rat model of L-DOPA-induced dyskinesia [J]. J Neurochem,2007,102(4):1395-409.
    [143]Licker V, Kovari E, Hochstrasser DF, et al. Proteomics in human Parkinson's disease research [J]. J Proteomics,2009,73(1):10-29.
    [144]Hale JE, Gelfanova V, You JS, et al. Proteomics of cerebrospinal fluid:methods for sample processing [J]. Methods Mol Biol,2008,425:53-66.
    [145]Goldman D, Merril CR, Ebert MH. Two-dimensional gel electrophoresis of cerebros-pinal fluid proteins [J]. Clin Chem,1980,26(9):1317-22.
    [146]Finehout EJ, Franck Z, Lee KH. Towards two-dimensional electrophoresis mapping of the cerebrospinal fluid proteome from a single individual [J]. Electrophoresis,2004, 25(15):2564-75.
    [147]Pan S, Zhu D, Quinn JF. et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry [J]. Proteomics,2007,7(3):469-73.
    [148]Zellner M, Veitinger M, Umlauf E. The role of proteomics in dementia and Alzheimer's disease [J]. Acta Neuropathol,2009,118(1):181-95.
    [149]Brechlin P, Jahn O, Steinacker P, et al. Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease [J]. Proteomics,2008,8(20):4357-66.
    [150]Tokuda T, Salem SA, Allsop D, et al. Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease [J]. Biochem Biophys Res Commun,2006,349(1):162-6.
    [151]El-Agnaf OM, Salem SA, Paleologou KE, et al. Alpha-synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma [J]. FASEB J,2003,17(13):1945-7.
    [152]Waragai M, Wei J, Fujita M, et al. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson's disease [J]. Biochem Biophys Res Commun,2006,345(3): 967-72.
    [153]Abdi F, Quinn JF. Jankovic J, et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodege-nerative disorders [J]. J Alzheimers Dis,2006,9(3):293-348.
    [154]Hochstrasser H, Bauer P, Walter U, et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease [J]. Neurology,2004,63(10):1912-7.
    [155]Torsdottir G, Sveinbjornsdottir S, Kristinsson J, et al. Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson's disease:a follow-up study [J]. J Neurol Sci,2006, 241(1-2):53-8.
    [156]Zhang J, Sokal I, Peskind ER, et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases [J]. Am J Clin Pathol,2008,129(4):526-9.
    [157]Crecelius A, Gotz A, Arzberger T, et al. Assessing quantitative post-mortem changes in the gray matter of the human frontal cortex proteome by 2-D DIGE [J]. Proteomics, 2008,8(6):1276-91.
    [158]Franzen B, Yang Y, Sunnemark D, et al. Dihydropyrimidinase related protein-2 as a biomarker for temperature and time dependent post mortem changes in the mouse brain proteome [J]. Proteomics,2003,3(10):1920-9.
    [159]Hunsucker SW, Solomon B, Gawryluk J, et al. Assessment of post-mortem-induced changes to the mouse brain proteome [J]. J Neurochem,2008,105(3):725-37.
    [160]Basso M, Giraudo S, Lopiano L, et al. Proteome analysis of mesencephalic tissues: evidence for Parkinson's disease [J]. Neurol Sci,2003,24(3):155-6.
    [161]Basso M, Giraudo S, Corpillo D, et al. Proteome analysis of human substantia nigra in Parkinson's disease [J]. Proteomics,2004,4(12):3943-52.
    [162]Werner CJ, Heyny-von Haussen R, Mall G, et al. Proteome analysis of human substantia nigra in Parkinson's disease [J]. Proteome Sci,2008,6:8.
    [163]Choi J, Levey Al, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases [J]. J Biol Chem,2004,279(13):13256-64.
    [164]Shi M, Caudle WM, Zhang J. Biomarker discovery in neurodegenerative diseases:a proteomic approach [J]. Neurobiol Dis,2009,35(2):157-64.
    [165]El-Agnaf OM, Salem SA, Paleologou KE, et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson's disease [J]. FASEB J,2006,20(3):419-25.
    [166]Waragai M, Nakai M, Wei J, et al. Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson's disease [J]. Neurosci Lett,2007,425(1):18-22.
    [167]Wang C, Sadovova N, Ali HK, et al. L-carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture [J]. Neurosc-ience,2007,144(1):46-55.
    [168]李林,全反式维甲酸诱导HL-60细胞分化的作用机理研究[J].中国博士学位论文全文数据库.1992-7-1.
    [169]Selvaraj S, Watt JA, Singh BB. TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+) [J]. Cell Calcium,2009,46:209-18.
    [170]Langston JW, Ballard PA Jr. Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine [J]. N Engl J Med.1983,309(5):310.
    [171]Hanash S. Disease proteomics [J]. Nature,2003,422:226-32.
    [172]Wang H, Qian WJ, Chin MH, et al. Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment [J]. J Proteome Res,2006,5(2):361-9.
    [173]Lee do Y, Lee KS, Lee HJ, et al. Kynurenic acid attenuates MPP(+)-induced dopami-nergic neuronal cell death via a Bax-mediated mitochondrial pathway [J]. Eur J Cell Biol,2008,87(6):389-97.
    [174]Stessl M, Marchetti-Deschmann M, Winkler J, Lachmann B, Allmaier G, Noe CR. A proteomic study reveals unspecific apoptosis induction and reduction of glycolytic enzymes by the phosphorothioate antisense oligonucleotide oblimersen in human melanoma cells [J]. J Proteomics,2009,72(6):1019-30.
    [175]Jin J, Hulette C, Wang Y, et al. Proteomic identification of a stress protein, mortalin/ mthsp70/GRP75:relevance to Parkinson disease [J]. Mol Cell Proteomics,2006,5(7): 1193-204.
    [176]Clemen CS, Herr C, Hovelmeyer N, et al. The lack of annexin A7 affects functions of primary astrocytes [J]. Exp Cell Res,2003,291(2):406-14.
    [177]Chen PS, Peng GS, Li G, et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes [J]. Mol Psychiatry,2006,11(12):1116-25.
    [178]Diedrich M, Mao L, Bernreuther C, et al. Proteome analysis of ventral midbrain in MPTP-treated normal and L1 cam transgenic mice [J]. Proteomics,2008,8(6):1266-75.
    [179]Farrell EF. Antaramian A, Rueda A, et al. Sorcin inhibits calcium release and modulates excitation-contraction coupling in the heart [J]. J Biol Chem,2003,278(36): 34660-6.
    [180]Arduino DM, Esteves AR, Cardoso SM, et al. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death:Relevance to Parkinson's disease [J]. Neurochem Int,2009,55(5):341-48.
    [181]Collis LP, Meyers MB, Zhang J, et al. Expression of a sorcin missense mutation in the heart modulates excitation-contraction coupling [J]. FASEB J,2007,21(2):475-87.
    [182]Matsumoto T, Hisamatsu Y, Ohkusa T, et al. Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates excitation-contraction coupling in the heart [J]. Basic Res Cardiol,2005,100(3):250-62.
    [183]Smith GL, Elliott EE, Kettlewell S, et al. Na(+)/Ca(2+) exchanger expression and function in a rabbit model of myocardial infarction [J]. J Cardiovasc Electrophysiol, 2006,17Suppl1:S57-S63.
    [184]Franceschini S, Ilari A, Verzili D, et al. Molecular basis for the impaired function of the natural F112L sorcin mutant:X-ray crystal structure, calcium affinity, and interaction with annexin VII and the ryanodine receptor [J]. FASEB J,2008,22(1): 295-306.
    [185]Qi J, Liu N, Zhou Y, et al. Overexpression of sorcin in multidrug resistant human leukemia cells and its role in regulating cell apoptosis [J]. Biochem Biophys Res Commun,2006,349(1):303-9.
    [186]Kawakami M, Nakamura T, Okamura N, et al. Knock-down of Sorcin Induces Up-regulation of MDR1 in HeLa Cells [J]. Biol Pharm Bull,2007,30(6):1065-73.
    [187]Diaz-Blanco E, Bruns I, Neumann F,. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase [J]. Leukemia,2007, 21(3):494-504.
    [188]Terkawi MA, Jia H, Gabriel A, et al. A shared antigen among Babesia species: ribosomal phosphoprotein P0 as a universal babesial vaccine candidate [J]. Parasitol Res,2007,102(1):35-40.
    [189]Terkawi MA, Jia H, Zhou J, et al Babesia gibsoni ribosomal phosphoprotein P0 induces cross-protective immunity against B. microti infection in mice [J]. Vaccine, 2007,25(11):2027-35.
    [190]Mangano EN, Hayley S. Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure:Neuroimmune sensitization of neurodegeneration [J]. Neurobiol Aging,2009,30(9):1361-78.
    [191]Yuan X, Kuramitsu Y, Furumoto H, et al. Nuclear protein profiling of Jurkat cells during heat stress-induced apoptosis by 2-DE and MS/MS [J]. Electrophoresis,2007, 28(12):2018-26.
    [192]Monge M, Vilaseca M, Soto-Cerrato V, et al. Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant (MCF-7 MR) cell line [J]. Invest New Drugs,2007,25(1):21-9.
    [193]Chetsawang B, Kooncumchoo P, Govitrapong P, et al.1-Methyl-4-phenyl-pyridinium ion-induced oxidative stress, c-Jun phosphorylation and DNA fragmentation factor-45 cleavage in SK-N-SH cells are averted by selegiline [J]. Neurochem Int,2008. 53(6-8):283-8.
    [194]Nishida J, Shiratsuchi A, Nadano D, et al. Structural change of ribosomes during apoptosis:degradation and externalization of ribosomal proteins in doxorubicin-treated Jurkat cells [J]. J Biochem,2002,131(3):485-93.
    [195]刘懿,凌诒萍,钟慈声.Annexin钙依赖的磷脂结合蛋白在细胞分泌中的作用[J].生理科学进展.1997,4:367-369.
    [196]Tait JF, Smith C, Wood BL. Measurement of phosphatidylserine exposure in leukocytes and platelets by whole-blood flow cytometry with annexin V [J]. Blood Cells Mol Dis,1999,25(5-6):271-8.
    [197]Pain S, Barrier L, Deguil J, et al. A cell-permeable peptide inhibitor TAT-JBD reduces the MPP+-induced caspase-9 activation but does not prevent the dopaminergic degeneration in substantia nigra of rats [J]. Toxicology,2008,243(1-2):124-37.
    [198]Vermes I, Steur EN, Reutelingsperger C, et al. Decreased concentration of annexin Ⅴ in parkinsonian cerebrospinal fluid:speculation on the underlying cause [J]. Mov Disord.1999,14(6):1008-1010.
    [199]Hoozemans JJ, van Haastert ES, Eikelenboom P. et al. Activation of the unfolded protein response in Parkinson's disease [J]. Biochem Biophys Res Commun,2007, 354(3):707-11.
    [200]Stephenson D, Ramirez A, Long J, et al. Quantification of MPTP-induced dopaminergic neurodegeneration in the mouse substantia nigra by laser capture microdissection [J]. J Neurosci Methods,2007,159(2):291-9.
    [201]Ryu EJ, Angelastro JM, Greene LA. Analysis of gene expression changes in a cellular model of Parkinson disease [J]. Neurobiol Dis,2005,18(1):54-74.
    [202]Holtz WA, O'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons [J]. J Biol Chem,2003,278(21):19367-77.
    [203]Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response [J]. Semin Cell Dev Biol,2007,18(6):716-31.
    [204]Spiess C, Meyer AS, Reissmann S, et al. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets [J]. Trends Cell Biol,2004,14(11):598-604.
    [205]Roodveldt C, Bertoncini CW, Andersson A, et al. Chaperone proteostasis in Parkinson's disease:stabilization of the Hsp70/alpha-synuclein complex by Hip [J]. EMBO J,2009,28(23):3758-3770.
    [206]Bassilana F, Mace N, Li Q, Stutzmann JM, et al. Unraveling substantia nigra sequential gene expression in a progressive MPTP-lesioned macaque model of Parkinson's disease [J]. Neurobiol Dis,2005,20(1):93-103.
    [207]Broadley SA, Hartl FU. The role of molecular chaperones in human misfolding diseases [J]. FEBS Lett,2009,583(16):2647-53.
    [208]Ostergren A, Lindquist NG, Brittebo EB. Differential effects of dopamine melanin on norharman-induced toxicity in PC12 cells [J]. J Neural Transm,2007,114(7):909-18.
    [209]Periquet M, Corti O, Jacquier S, et al. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function [J]. J Neurochem,2005,95(5):1259-76.
    [210]Qing Y, Yingmao G, Lujun B, et al. Role of Npml in proliferation, apoptosis and differentiation of neural stem cells [J]. J Neurol Sci,2008,266(1-2):131-7.
    [211]Liu H, Tan BC, Tseng KH, et al. Nucleophosmin acts as a novel AP2alpha-binding transcriptional corepressor during cell differentiation [J]. EMBO Rep,2007,8(4): 394-400.
    [212]Di Fiore PP. Playing both sides:nucleophosmin between tumor suppression and oncogenesis [J]. J Cell Biol,2008,182(1):7-9.
    [213]Qi W, Shakalya K, Stejskal A, et al. NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells [J]. Oncogene,2008, 27(30):4210-20.
    [214]Kerr LE, Birse-Archbold JL, Short DM, et al. Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death [J]. Oncogene,2007,26(18):2554-62.
    [215]Thompson J, Finlayson K, Salvo-Chirnside E, et al. Characterisation of the Bax-nucleophosmin interaction:the importance of the Bax C-terminus [J]. Apoptosis,2008, 13(3):394-403.
    [216]Ahn JY, Liu X, Cheng D, et al. Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD [J]. Mol Cell,2005, 18(4):435-45.
    [217]Li J, Zhang X, Sejas DP, et al. Hypoxia-induced nucleophosmin protects cell death through inhibition of p53 [J]. J Biol Chem,2004,279(40):41275-79.
    [218]Li Z, Boone D, Hann SR. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation [J]. Proc Natl Acad Sci USA. 2008,105(48):18794-9.
    [219]Maiguel DA, Jones L, Chakravarty D, et al. Nucleophosmin sets a threshold for p53 response to UV radiation [J]. Mol Cell Biol,2004,24(9):3703-11.
    [220]Szebeni A, Olson MO. Nucleolar protein B23 has molecular chaperone activities [J]. Protein Sci,1999,8(4):905-12.
    [221]Kurki S, Peltonen K, Latonen L, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell,2004,5(5):465-75.
    [222]Gething MJ, Sambrook J. Protein folding in the cell [J]. Nature.1992,355(6355):33-45.
    [223]Kubota H, Hynes G, Carne A. et al. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin [J]. Curr Biol, 1994,4(2):89-99.
    [224]Brackley KI, Grantham J. Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation [J]. Cell Stress Chaperones,2009,14(1):23-31.
    [225]Chen B, Piel WH, Gui L, et al. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics.2005,86(6):627-37.
    [226]McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease [J]. Neurobiol Aging,2006,27(4):530-45.
    [227]Radanyi C, Le Bras G, Marsaud V, et al. Antiproliferative and apoptotic activities of tosylcyclonovobiocic acids as potent heat shock protein 90 inhibitors in human cancer cells [J]. Cancer Lett,2009,274(1):88-94.
    [228]Liang J, Clark-Dixon C, Wang S, et al. Novel suppressors of alpha-synuclein toxicity identified using yeast [J]. Hum Mol Genet,2008,17(23):3784-95.
    [229]Woodcock JM, Murphy J, Stomski FC, et al. trolled by phosphorylation of Ser58 at the dimer interface [J]. J Biol Chem,2003,278(38):36323-7.
    [230]Anantharam V, Lehrmann E, Kanthasamy A, et al. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells:relevance to oxidative damage in Parkinson's disease [J]. Neurochem Int,2007,50(6):834-47.
    [231]Linde CI, Di Leva F, Domi T, et al. Inhibitory interaction of the 14-3-3 proteins with ubiquitous (PMCA1) and tissue-specific (PMCA3) isoforms of the plasma membrane Ca2+pump [J]. Cell Calcium,2008,43(6):550-61.
    [232]Kulathingal J, Ko LW, Cusack B, et al. Proteomic profiling of phosphoproteins and glycoproteins responsive to wild-type alpha-synuclein accumulation and aggregation [J]. Biochim Biophys Acta,2009,1794(2):211-24.
    [233]Kawamoto Y, Akiguchi I, Nakamura S, et al.14-3-3 proteins in Lewy bodies in Parkinson disease and diffuse Lewy body disease brains [J]. J Neuropathol Exp Neurol, 2002,61(3):245-53.
    [234]Su QJ, Chen XW, Chen ZB, et al. Involvement of ERK1/2 and p38 MAPK in up-regulation of 14-3-3 protein induced by hydrogen peroxide preconditioning in PC 12 cells [J]. Neurosci Bull,2008,24(4):244-50.
    [235]Choi SI, Joo SS, Yoo YM.14-3-3βMelatonin prevents nitric oxide-induced apoptosis by increasing the interaction between 14-3-3beta and p-Bad in SK-N-MC cells [J]. J Pineal Res,2008,44(1):95-100.
    [236]Wu KK, Liou JY. Cyclooxygenase inhibitors induce colon cancer cell apoptosis Via PPARdelta--> 14-3-3epsilon pathway [J]. Methods Mol Biol,2009,512:295-307.
    [237]Porter GW, Khuri FR, Fu H. Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways [J]. Semin Cancer Biol,2006,16(3):193-202.
    [238]Chen XW, Sun SG, Cheng DB, et al. Overexpression of 14-3-3 protein protects pheochromocytoma cells against 1-methyl-4-phenylpyridinium toxicity [J]. Neurosci Bull,2006,22(5):281-7.
    [239]Su QJ, Chen XW, Chen ZB, et al. Involvement of ERK1/2 and p38 MAPK in up-regulation of 14-3-3 protein induced by hydrogen peroxide preconditioning in PC12 cells [J]. Neurosci Bull,2008,24(4):244-50.
    [240]Subramanian RR, Zhang H, Wang H, et al. Interaction of apoptosis signal-regulating kinase 1 with isoforms of 14-3-3 proteins [J]. Exp Cell Res,2004,294(2):581-91.
    [241]Yang H, Masters SC, Wang H, et al. The proapoptotic protein Bad binds the amphipathic groove of 14-3-3zeta [J]. Biochim Biophys Acta,2001,1547(2):313-9.
    [242]Zha J, Harada H, Yang E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) [J]. Cell,1996, 87(4):619-628.
    [243]Nomura M, Shimizu S, Sugiyama T, et al.] 4-3-3 Interacts directly with and negati-vely regulates pro-apoptotic Bax [J]. J Biol Chem,2003,278(3):2058-65.
    [244]Nutt LK, Buchakjian MR, Gan E, et al. Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2 [J]. Dev Cell,2009, 16(6):856-66.
    [245]Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor [J]. Cell.1999,96(6):857-68.
    [246]Halskau (?) Jr, Ying M, Baumann A, et al. Three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes [J]. J Biol Chem,2009,284(47):32758-69.
    [247]Ostrerova N. Petrucelli L, Farrer M, et al. alpha-Synuclein shares physical and functional homology with 14-3-3 proteins [J]. J Neurosci,1999,19(14):5782-91.
    [248]Berg D, Holzmann C, Riess O.14-3-3 proteins in the nervous system [J]. Nat Rev Neurosci,2003,4(9):752-62.
    [249]Xu J, Kao SY, Lee FJ, et al. Dopamine-dependent neurotoxicity of alpha-synuclein:a mechanism for selective neurodegeneration in Parkinson disease [J]. Nat Med,2002, 8(6):600-6
    [250]Jorda EG, Verdaguer E, Jimenez A, et al. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis [J]. Biochem Pharmacol.,2005,70(3):470-80.
    [251]Feng J. Microtubule:a common target for parkin and Parkinson's disease toxins [J]. Neuroscientist,2006,12(6):469-76.
    [252]Ren Y, Liu W, Jiang H, et al. Selective vulnerability of dopaminergic neurons to microtubule depolymerization [J]. J Biol Chem,2005,280(40):34105-12.
    [253]Olanow CW, Perl DP, DeMartino GN, et al. Lewy-body formation is an aggresome-related process:a hypothesis [J]. Lancet Neurol,2004,3(8):496-503.
    [254]Cappelletti G, Incani C, Maci R. Involvement of tubulin in MPP+neurotoxicity on NGF-differentiated PC12 cells [J]. Cell Biol Int,1995,19(8):687-93.
    [255]Kim JM, Lee KH, Jeon YJ, et al. Identification of genes related to Parkinson's disease using expressed sequence tags [J]. DNA Res,2006,13(6):275-86.
    [256]Cappelletti G, Surrey T, Maci R. The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor [J]. FEBS Lett.2005, 579(21):4781-6.
    [257]Lee HJ, Khoshaghideh F, Lee S, et al. Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein [J]. Eur J Neurosci,2006,24(11): 3153-62.
    [258]Kabuta T, Setsuie R, Mitsui T, et al. Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum Mol Genet,2008,17(10):1482-96.
    [259]Olah J, Tokesi N, Vincze O, et al. Interaction of TPPP/p25 protein with glyceraldehyde-3-phosphate dehydrogenase and their co-localization in Lewy bodies [J]. FEBS Lett, 2006,580(25):5807-14.
    [260]Yang F, Jiang Q, Zhao J, et al. Parkin stabilizes microtubules through strong binding mediated by three independent domains [J]. J Biol Chem,2005,280(17):17154-62.
    [261]Bizzozero OA, Reyes S, Ziegler J, et al. Lipid peroxidation scavengers prevent the carbonylation of cytoskeletal brain proteins induced by glutathione depletion [J]. Neurochem Res,2007,32(12):2114-22.
    [262]Gillardon F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability--a point of convergence in parkinsonian neurodegeneration? [J]. J Neurochem,2009,110(5):1514-22.
    [263]Mattson MP. Methylation and acetylation in nervous system development and neurodegenerative disorders [J]. Ageing Res Rev,2003,2(3):329-42.
    [264]Yoshida K, Furuya S, Osuka S, et al. Targeted disruption of the mouse 3-phosphogl-ycerate dehydrogenase gene causes severe neurodevelopmental defects and results in embryonic lethality [J]. J Biol Chem,2004,279(5):3573-7.
    [265]Fuchs SA, Dorland L, de Sain-van der Velden MG. et al. D-serine in the developing human central nervous system [J]. Ann Neurol.2006,60(4):476-80.
    [266]Furuya S, Yoshida K, Kawakami Y, et al. Inactivation of the 3-phosphoglycerate dehydrogenase gene in mice:changes in gene expression and associated regulatory networks resulting from serine deficiency [J]. Funct Integr Genomics,2008,8(3): 235-49.
    [267]De Koning TJ, Duran M, Van Maldergem L, et al. Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency:outcome of treatment with amino acids [J]. J Inherit Metab Dis,2002,25(2):119-25.
    [268]Guerreiro N. Staufenbiel M, Gomez-Mancilla B. Proteomic 2-D DIGE profiling of APP23 transgenic mice brain from pre-plaque and plaque phenotypes [J]. Alzheimers Dis.2008,13(1):17-30.
    [269]Yamasaki M, Yamada K, Furuya S, et al.3-Phosphoglycerate dehydrogenase, a key enzyme for 1-serine biosynthesis, is preferentially expressed in the radial giia/astrocyte lineage and olfactory ensheathing glia in the mouse brain [J]. J Neurosci.2001, 21(19):7691-704.
    [270]Cho HM, Jun DY, Bae MA, et al. Nucleotide sequence and differential expression of the human 3-phosphoglycerate dehydrogenase gene [J]. Gene,2000,245(1):193-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700